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1 Introduction

In [10] virtual knot theory was introduced by L. Kauffman. It is a generalization of knot

theory based on Gauss diagrams and link diagrams in closed oriented surfaces. Virtual

links correspond to stable equivalence classes of links in thickened orientable surfaces [2, 8].
Twisted knot theory was introduced by M. Bourgoin [1]. It is an extension of virtual

knot theory. Twisted links correspond to stable equivalence classes of links in oriented

3‐manifolds which are line bundles over (possibly non‐orientable) closed surfaces. We

construct a double covering diagram of a twisted link diagram by taking the orientation

double covering of the surface on which the diagram is realized.

A virtual link diagram is called normal if the associated abstract link diagram is

checkerboard colorable (§ 3). A virtual link is called normal if it has a normal diagram
as a representative. Every classical link diagram is normal, and hence the set of classical

link diagrams is a subset of that of normal virtual link diagrams. The set of normal vir‐

tulal link diagrams is a subset of that of virtual link diagrams. The f‐polynomial (Jones
polynomial) is an invariant of a virtual link [10]. It is shown in [4] that the f‐polynomial
of a normal virtual link has a property that the f‐polynomial of a classical link has. This

property may make it easier to define Khovanov homology of virtual links as stated in O.

Viro [13].
In this paper, we discuss a double covering diagram of a twisted link diagram [9]. We

introduce a method of converting a virtual link diagram to a normal virtual link diagram
by use of the double covering technique [7]. We show some applications of our method.
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2 Double covering diagram of a twisted link diagram

A virtual link diagram is a generically immersed, closed and oriented 1‐manifold in \mathbb{R}^{2}
with information of positive, negative or virtual crossing, on its double points. A virtual

crossing is an encircled double point without over‐under information. A twisted link

diagram is a virtual link diagram, possibly with bars on arcs. A virtual link (or twisted

link) is an equivalence class of virtual (or twisted) link diagrams under Reidemeister moves

and virtual Reidemeister moves (or Reidemeister moves, virtual Reidemeister moves and
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twisted Reidemeister moves) depicted in Figures 1. We call Reidemeister moves and

virtual Reidemeister moves generalized Reidemeister moves.

I II III

Reidemeister moves

I II III IV

Virtual Reidemeister moves

I II III

Twisted Reidemeister moves

Figure 1: Generalized Reidemeister moves and twisted Reidemeister moves

An abstract link diagram (ALD) is a pair of a compact surface  $\Sigma$ and a link diagram  D

on  $\Sigma$ such that the underlying 4‐valent graph |D| is a deformation retract of  $\Sigma$
,

denoted

by ( $\Sigma$, D_{ $\Sigma$}) . Two ALDs ($\Sigma$_{1}, D_{1}) and ($\Sigma$_{2}, D_{2}) are equivalent if there exist a closed surface

F and embeddings g_{i} : $\Sigma$_{i}\rightarrow F (i=1,2) such that g_{1}(D_{1}) is equivalent to g_{2}(D_{2}) under

Reidemeister moves I, II, and III on F . An abstract link is an equivalence class of abstract

link diagrams. Refer to [8].
We obtain an ALD from a twisted link diagram D as in Figure 2. Such an ALD is

called the ALD associated with D . Figure 3 shows twisted link diagrams and the ALDs

associated with them.

Figure 2: The correspondence from a twisted link diagrams to an ALD

(i) (ii) (iii) (iv)

Figure 3: Twisted link diagrams and ALDs

Theorem 2.1 (\mathrm{c}\mathrm{f}.[1, 8, 9]) Let D and D' be twisted link diagrams. Two ALDs which

associated with D and D' are equivalent if and only if D and D' are equivalent.
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Let K be a twisted link and D be a twisted link diagram of K . Let ( $\Sigma$, D_{ $\Sigma$}) be

the abstract link diagram associated with D
,

and let (\overline{ $\Sigma$}, D_{ $\Sigma$}) be the orientation double

covering of ( $\Sigma$, D_{ $\Sigma$}) . Note that \overline{ $\Sigma$} is orientable. See Figure 4.

Figure 4: Double covering of an ALD

Theorem 2.2 ([9]) The double covering of a twisted link is well defined. Namely, for
two equivalent twisted link diagrams D and D'

,
two double covering of ALDs associated

with D and D' are equivalent as an abstract link.

We show a construction of the double covering diagram of a twisted link diagram [9].
Let D be a twisted link diagram. Assume that D is on the right of the y‐axis in the

xy‐plane and all bars are parallel to the x‐axis with disjoint y‐coordinates. Let D^{*} be

the twisted link diagram obtained from D by reflection with respect to the y‐axis and

switching the over‐under information of all classical crossings of D . Let B=\{b_{1}, . . . , b_{k}\}
be a set of bars of D and for i\in\{1, . . . , k\} ,

we denote by b_{i}^{*} the bar of D^{*} corresponding
to b_{i} . See Figure 5 (i). For horizontal lines l_{1} ,

. . .

, l_{k} such that l_{i} contains b_{i} and the

(i) (ii)

Figure 5: The double covering of a twisted link diagram

corresponding bar b_{i}^{*} of D^{*}
,

we replace each part of D II D^{*} in a neighborhood of N(l_{i}) for

each i\in\{1, . . . , k\} as in Figure 6. We denote by  $\psi$(D) the virtual link diagram obtained

this way.
For example, for the twisted link diagram D depicted as in Figure 5 (i), the virtual

link diagram  $\psi$(D) is as in Figure 5 (ii).
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Figure 6: The replacement of diagram

We call this diagram  $\psi$(D) the double covering diagram of D . Then we have the

followings.

Theorem 2.3 ([9]) Let D and D' be twisted link diagrams. If D and D' are equivalent
as a twiated link, then  $\psi$(D) and  $\psi$(D') are equivalent as a virtual link.

As a consequence of Theorem 2.3 we have the following.

Corollary 2.4 For a virtual knot invariant X,  X\mathrm{o} $\psi$ is an invariant of twisted links.

Bourgoin introduced the twisted knot group in [1], which is a virtual knot group of a

double covering diagram of a twisted link diagram.

Theorem 2.5 ([9]) Let  D be a twisted link diagram. Let \overline{L} be a link in  $\Sigma$ \times [-1, 1]
presented by the abstract link of the double covering of D. Then a twisted knot group

coincides with $\pi$_{1} ( $\Sigma$\times [-1,1]-L/ $\Sigma$\times\{1\}) (or $\pi$_{1} ( $\Sigma$\times [-1,1]-\overline{L}/ $\Sigma$\times\{-1\})) .

In [5], the author introduced a twisted quandle. A fundamental twisted quandle of

a twisted link diagram D coincides with a fundamental quandle of the double covering
diagram of D . The JKSS invariant is an invariant of virtual links [12]. The doubled JKSS

invariant is an invariant of twisted links [6], which coincides with the JKSS invariant

[3, 12] of the double covering diagram of a twisted link diagram.

3 Normal virtual links

The diagram D is said to be normal or checkerboard colorable if the regions of  $\Sigma$-|D_{ $\Sigma$}|
can be colored black and white such that colors of two adjacent regions are different. In

Figure 7, we show an example of a normal diagram. A classical link diagram is normal.

A twisted link is said to be normal if it has a normal twisted link diagram. Note that

normality is not necessary to be preserved under generalized Reidemeister moves. For

example the virtual link diagram in the right of Figure 8 is not normal and is equivalent
to the trefoil knot diagram in the left which is normal. However we have the following.

Theorem 3.1 ([13]) Let D and D' two normal virtual link diagrams. If they are equiv‐
alent, there is a sequence of normal virtual link diagrams D_{0}=D, D_{1} ,

. . . D_{n-1}, D_{n}=D'
such that D_{i} and D_{i+1} are related with one of generalized Reidemeister moves.
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Figure 7: A normal twisted link diagram and its associated ALD with a checkerboard coloring

Figure 8: A diagram of a normal virtual link which is not normal

Proposition 3.2 ([7]) For a normal twisted link diagram D
,

the double covering diagram
of D $\psi$(D) is normal.

H. Dye introduced the notion of cut points to a virtual link diagram in her talk pre‐

sented in the Special Session 35, �Low Dimensional Topology and Its Relationships with

Physics�, held in Porto, Portugal, June 10‐13, 2015 as part of the 1st \mathrm{A}\mathrm{M}\mathrm{S}/\mathrm{E}\mathrm{M}\mathrm{S}/\mathrm{S}\mathrm{P}\mathrm{M}
Meeting.

Let (D, P) be a pair of a virtual link diagram D and a finite set P of points on edges
of D . We call the ALD associated with the twisted link diagram which is obtained from

(D, P) by replacing all points of P with bars, the ALD associated with (D, P) . See

Figure 9 (ii) and (iii). If the ALD associated with (D, P) is normal, then we call the set

of points P a cut system of D and call each point of P a cut point. For the virtual link

diagram in Figure 9 (i) we show an example of a cut system in Figure 9 (ii) and the ALD

associated with it in Figure 9 (iii).

(i) (ii) (iii)

Figure 9: Example of cut points

A cut system of a virtual link diagram is not unique. Dye introduced the cut point
moves depicted in Figure 10.

The author showed the following.

Theorem 3.3 ([7]) For a virtual link diagram D
,

two cut systems of D are related by a

sequence of cut point moves I, II and III.

4 Conversion to a normal virtual link diagram

Let (D, P) be a virtual link diagram D with a cut system P . We replace all cut points
of P with bars. Then we obtain a twisted link diagram, denoted by t(D, P) . We put
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I II 111

Figure 10: The cut point moves

 $\phi$= $\psi$ \mathrm{o}t . Then we have

 $\phi$ : {virtual link diagrams with a cut system} \rightarrow {virtual link diagrams}.

By Proposition 3.2, the diagram  $\phi$(D, P) is a normal virtual link diagram. We call it

the converted normal diagram of (D, P) . Thus we have

 $\phi$ ({virtual link diagrams with cut points}) \subset {normal virtual link diagrams}.

The local replacement of a virtual link diagram depicted in Figure 11 is called a Kauff‐
man flype or a  K‐flype. If a virtual link diagram D' is obtained from D by a finite sequence

of generalized Reidemeister moves and \mathrm{K}‐flypes, then they are said to be K‐equivalent.
For a virtual link diagram of D

,
if a virtual link diagram D' is obtained from D by a

Figure 11: Kauffman flype

\mathrm{K}‐flype at a classical crossing c
,
then the sign of the corresponding classical crossing c' of

D' is the same as that of c . If D is normal, then D' is normal.

We have the following theorem.

Theorem 4.1 ([7]) Let (D, P) and (D', P') be virtual link diagrams with cut systems. If
D and D' are equivalent (or K‐equivalent), then the converted normal diagrams  $\phi$(D, P)
and  $\phi$(D', P') are K‐equivalent.

The following lemma is a key lemma of the proof of Theorem 4.1.

Lemma 4.2 Let D be a virtual link diagram. Suppose that P and P' are cut systems of
D. Then the converted normal diagrams  $\phi$(D, P) and  $\phi$(D, P') are K‐equivalent.

5 Applications

In this section we give applications of our method.

For a 2‐component virtual link diagram D
,

the half of the sum of signs of non‐self

classical crossings of D is said to be the linking number of D.

Proposition 5.1 ([7]) The linking number is invariant under the generalized Reidemeis‐

ter moves and K‐flypes.
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We have the following theorems (Theorems 5.2 and 5.3).

Theorem 5.2 ([7]) Let (D, P) be a virtual knot diagram with a cut system. Then  $\phi$(D, P)
is a 2‐component virtual link diagram and the linking number of  $\phi$(D, P) is an invariant

of the virtual knot represented by D.

The odd writhe is a numerical invariant of virtual knots [11]. A classical crossing c of

D is said to be odd if there is an odd number of classical crossings of an arc of D whose

two endpoints are c . The odd writhe of D is the sum of signs of odd crossings of D.

Theorem 5.3 ([7]) Let (D, P) be a virtual knot diagram with a cut system. The linking
number of  $\phi$(D, P) is equal to the odd writhe of D.

H. Miyazawa, K. Wada and A. Yasuhara introduced the notion of an even virtual link.

Let D be a virtual link diagram. If there is an even number of endpoints of chords on

each circle of Gauss diagram of D, D is said to be even. If D and D' are equivalent and

D is even, D' is even. A virtual link diagram of normal virtual link is even. A virtual

knot is even.

Proposition 5.4 Let D be an even n ‐component virtual link diagram D. For a cut system
P of D

,
The double covering diagram  $\phi$(D, P) is a 2n ‐component normal virtual link

diagram, where each component of D corresponds to 2‐component link diagram in  $\phi$(D, P) .

Let D be an n‐component ordered virtual link diagram, where D_{i} is a i‐th component
of D(i=1, \ldots, n) . For a cut system of D, P

,
we denote a 2‐component of the converting

diagram  $\phi$(D, P) which corresponds to D_{i} of D by \overline{D}_{i} where each component of \overline{D}_{i} is \overline{D}_{i}^{1}
or \overline{D}_{i}^{2} . Let 1\tilde{\mathrm{k}}(D_{i}^{k}, D_{j}^{l}) be the linking number between \overline{D}_{i}^{k} and \overline{D}_{j}^{l} for k, l=1

,
2.

The set \{1\tilde{\mathrm{k}}(D_{i}^{1}, D_{j}^{1}), 1\tilde{\mathrm{k}}(D_{i}^{2}, D_{j}^{2}), 1\tilde{\mathrm{k}}(D_{i}^{1}, D_{j}^{2}), 1\tilde{\mathrm{k}}(D_{i}^{2}, D_{j}^{1})\} is denoted by Q_{ij}(D)(i\neq j) .

Corollary 5.5 The set Q_{ij}(D) is an invariant of an ordered even virtual link. The linking
number \tilde{l}k(D_{i}^{1}, D_{i}^{2}) is an invariant of an ordered even virtual link.
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