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1 Introduction

An immersed surface‐link is a generically immersed closed oriented surface in the 4‐space
\mathbb{R}^{4} . When the surface has only one component, it is also called an immersed surface‐knot.
When the surface consists of 2‐spheres, it is also called an immersed sphere‐link or simply
an immersed 2‐link. When the immersion is an embedding, it is also called a surface‐link.
Two (immersed) surface‐links \mathcal{L} and \mathcal{L}' are equivalent if there is an orientation‐preserving
auto‐homeomorphism h of \mathbb{R}^{4} sending \mathcal{L} to \mathcal{L}' orientation‐preservingly. A normal form

of an immersed surface‐link introduced by S. Kamada and K. Kawamura in [5] is used

to define a marked graph diagram of an immersed surface‐link. In [6], we extend the

method of presenting surface‐links by marked graph diagrams to presenting immersed

surface‐links. We also give some local moves on marked graph diagrams that preserve the

ambient isotopy classes of their presenting immersed surface‐links, which are extension of

moves given by Yoshikawa [19] for presentation of embedded surface‐links.

2 Marked graph representation of immersed surface‐links

In this section, we review (oriented) marked graph diagrams representing immersed surface‐

links described in [6]. A marked graph is a 4‐valent graph in \mathbb{R}^{3} each of whose vertices is

a vertex with a marker looks like \rangle\langle . Two marked graphs are said to be equivalent if

they are ambient isotopic in \mathbb{R}^{3} with keeping the rectangular neighborhoods of markers.

As usual, a marked graph in \mathbb{R}^{3} can be described by a link diagram on \mathbb{R}^{2} with some 4‐

valent vertices equipped with markers, called a marked graph diagram. An orientation of

a marked graph G in \mathbb{R}^{3} is a choice of an orientation for each edge of G . An orientation of

a marked graph G is said to be consistent if every vertex in G looks like \geq $\xi$ . A marked

graph  G in \mathbb{R}^{3} is said to be orientable if G admits a consistent orientation. Otherwise, it

is said to be non‐orientable. By an oriented marked graph we mean an orientable marked

graph in \mathbb{R}^{3} with a fixed consistent orientation. Two oriented marked graphs are said to

be equivalent if they are ambient isotopic in \mathbb{R}^{3} with keeping the rectangular neighbor‐
hood, marker and consistent orientation. For t\in \mathbb{R} , we denote by \mathbb{R}_{t}^{3} the hyperplane of

\mathbb{R}^{4} whose fourth coordinate is equal to t\in \mathbb{R} , i.e., \mathbb{R}_{t}^{3} = \{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbb{R}^{4} | x_{4} =t\}.
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An immersed surface‐link \mathcal{L}\subset \mathbb{R}^{4}=\mathbb{R}^{3}\times \mathbb{R} can be described in terms of its cross‐sections

\mathcal{L}_{t}=\mathcal{L}\cap \mathbb{R}_{t}^{3}, t\in \mathbb{R} (cf. [3]). It is shown [5] that any immersed surface‐link \mathcal{L} , there is an

immersed surface‐link \mathcal{L}'\subset \mathbb{R}^{3}[-2, 2] satisfying the following conditions:

(1) The intersections \mathcal{L} í and \mathcal{L}_{-1}' are \mathrm{H}‐trivial links;

(2) All saddle points of \mathcal{L}' are in \mathbb{R}^{3}[0] ;

(3) All maximal points of \mathcal{L}' are in \mathbb{R}^{3}[2] ;

(4) All minimal points of \mathcal{L}' are in \mathbb{R}^{3}[-2] ;

(5) The intersections \mathcal{L}'\cap(\mathbb{R}^{3}[1,2]) and \mathcal{L}'\cap(\mathbb{R}^{3}[-2, -1]) are disjoint unions of a disjoint
system of trivial knot cones and a disjoint system of Hopf link cones.

We call \mathcal{L}' a normal form of \mathcal{L} . Let \mathcal{L} be an immersed surface‐link in \mathbb{R}^{4}
,

and \mathcal{L}' \mathrm{a}

normal form of \mathcal{L} . Then \mathcal{L} Ó is a spatial 4‐valent regular graph in \mathbb{R}_{0}^{3} . We give a marker at

each 4‐valent vertex (saddle point) that indicates how the saddle point opens up above as

illustrated in Fig. 1. We choose an orientation for each edge of \mathcal{L} Ó that coincides with the

induced orientation on the boundary of \mathcal{L}'\cap \mathbb{R}^{3}\times(-\infty, 0 ] from the orientation of \mathcal{L}' . The

resulting oriented marked graph G is called an oriented marked graph of \mathcal{L} . As usual, G

is described by a link diagram D with rigid marked vertices. Such a diagram D is called

an oriented marked graph diagram or an oriented ch‐diagram (cf. [17]) of \mathcal{L}.

Figure 1: Marking of a vertex

Let D be an oriented marked graph diagram. We obtain two links L_{-}(D) and L_{+}(D)
from D by replacing each marked vertex in D as shown in Fig. 2. Links L_{-}(D) and L_{+}(D)
are also called the negative resolution and the positive resolution of D

, respectively. By
replacing a neighborhood of each marked vertex v_{i} (1 \leq i \leq n) with an oriented band

B_{i} as illustrated in Fig. 2. Denote the disjoint union B_{1}\sqcup\cdots\sqcup B_{n} of bands by \mathcal{B}(D) . \mathrm{A}

link L is \mathrm{H}‐trivial if L is a split union of trivial knots and Hopf links. A marked graph
diagram D is said to be \mathrm{H}‐admissible if both resolutions L_{-}(D) and L_{+}(D) are \mathrm{H}‐trivial

classical link diagrams as shown in Fig. 3.

From now on, we recall how to construct an immersed surface‐link \mathcal{L} in \mathbb{R}^{4} from a

given \mathrm{H}‐admissible oriented marked graph diagram (cf. [5, 6 Let D be an \mathrm{H}‐admissible

oriented marked graph diagram. We define a surface‐link \mathcal{F}(D) \subset \mathbb{R}^{3}\times[-1, 1] ,
called the

proper surface associated with D
, by
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Figure 2: Marked vertex resolutions

Figure 3: An \mathrm{H}‐admissible marked graph diagram

(\mathbb{R}_{t}^{3}, \mathcal{F}(D)\cap \mathbb{R}_{t}^{3})= \left\{\begin{array}{ll}
(\mathbb{R}^{3}, L_{+}(D)) & \mathrm{f}\mathrm{o}\mathrm{r} 0<t\leq 1,\\
(\mathbb{R}^{3}, L_{-}(D)\cup \mathcal{B}(D)) & \mathrm{f}\mathrm{o}\mathrm{r} t=0,\\
(\mathbb{R}^{3}, L_{-}(D)) & \mathrm{f}\mathrm{o}\mathrm{r} -1\leq t<0.
\end{array}\right.
It is known that a marked graph diagram D is orientable if and only if the proper surface

\mathcal{F}(D) associated with D is an orientable surface. Since D has a consistent orientation,
the resolutions L_{+}(D) and L_{-}(D) have the orientations induced from the orientation of

D . We choose an orientation for the proper surface \mathcal{F}(D) so that the induced orientation

of the cross‐section L_{+}(D) =\mathcal{F}(D)_{1} = \mathcal{F}(D)\cap \mathbb{R}_{1}^{3} at t = 1 matches the orientation of

L_{+}(D) . Let [a, b] be a closed interval with a<b . For a link L
,

let \hat{L}*[a, b] (or \check{L}*[a, b] )
be a cone with L[a] (or L[b] ) as the base and a point in \mathbb{R}^{3}[b] (or \mathbb{R}^{3}[a] ), respectively. Let

H=(O_{1}\cup\cdots\cup O_{m})\cup(P_{1}\cup\cdots\cup P_{n}) be an \mathrm{H}‐trivial link in \mathbb{R}^{3}
,

where O_{i} is a trivial knot

and P_{j} is a Hopf link for i=1
,

. . .

, m, j=1 ,
. . .

,
n.

\bullet Let  H_{\wedge}[a, b] be a disjoint union of a disjoint system of trivial knot cones \hat{O}_{i}*[a, b](i=
1

,
. . .

, m) and a disjoint system of Hopf link cones \hat{P}_{j}*[a, b](j=1, . . . , n) in \mathbb{R}^{3}[a, b].
\bullet Let  H_{\vee}[a, b] be a disjoint union of a disjoint system of trivial knot cones \check{O}_{i}*[a, b](i=

1
,

. . .

, m) and a disjoint system of Hopf link cones \check{P}_{j}*[a, b](j=1, . . . , n) in \mathbb{R}^{3}[a, b].
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By capping off \mathcal{F}(D) with L_{+}(D)_{\wedge}[1 ,
2 ] and L_{-}(D)_{\vee}[-2, -1] ,

we obtain an oriented im‐

mersed surface‐link S(D) in \mathbb{R}^{4} . We call the oriented immersed surface‐link S(D) the

oriented immersed surface‐link associated with D . It is straightforward from the con‐

struction of S(D) that D is an oriented marked graph diagram of the oriented immersed

surface‐link S(D) .

Definition 2.1. An immersed surface‐link \mathcal{L} is presented by an \mathrm{H}‐admissible marked

graph diagram D if \mathcal{L} is ambient isotopic to S(D) constructed from D.

Theorem 2.2. Let \mathcal{L} be an immersed surface‐link. Then there is an \mathrm{H}‐admissible marked

graph diagram D such that \mathcal{L} is presented by D.

We discuss moves on marked graph diagrams which preserve the ambient isotopy classes

of the immersed surface‐links presented by the diagrams.

Figure 4: Moves of Type I

The moves depicted in Fig. 4 on marked graph diagrams are called moves of type I,
which do not change the equivalence classes of marked graphs in \mathbb{R}^{3}.

The moves depicted in Fig. 5 on marked graph diagrams are called moves of type II,
which change the equivalence classes of marked graphs in \mathbb{R}^{3} . When a marked graph
diagram D is H‐admissible (or admissible) then the result obtained from D by any move

of type II is also H‐admissible (or admissible) and the immersed surface‐link (or surface‐

link) presented by the diagrams are ambient isotopic, respectively.
It is known that two admissible marked graph diagrams present ambinet isitopic

surface‐links if and only if they are related by the moves of type I and II (cf. [14, 18, 19

These moves are called Yoshikawa moves.

101



Figure 5: Moves of Type II

Let D be a link diagram of an H‐trivial link L . A crossing point p of D is an unlinking
crossing point if it is a crossing between two components of the same Hopf link of L and

if the crossing change at p makes the Hopf link into a trivial link.

Definition 2.3. Let D be an H‐admissible marked graph diagram and let D_{-} and D_{+} be

the diagrams of the lower resolution L_{-}(D) and the upper resolution L_{+}(D) , respectively.
A crossing point p of D is an lower singular point (or an upper singular point, respectively)
if p is an unlinking crossing point of D_{-} (or D_{+} ).

We introduce new moves for H‐admissible marked graph diagrams. They are the moves

$\Gamma$_{9}, $\Gamma$_{9}' and $\Gamma$_{10} in Fig. 6, which we call moves of type III. For the moves (a) of $\Gamma$_{9} and $\Gamma$_{9}' in

Fig. 6 we require a condition that the components l^{+} (in the resolution L_{+}(D) ) and l^{-} (in
the resolution L_{-}(D) ) are trivial, respectively. For the moves (b) of $\Gamma$_{9} and $\Gamma$_{9}' , we require
a condition that p is an upper singular point and a lower singular point, respectively.

Figure 6: Moves of Type III
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The generalized Yoshikawa moves for marked graph diagrams are the moves $\Gamma$_{1} ,
. . .

, $\Gamma$_{5}
(Type I), $\Gamma$_{6} , . . .

, $\Gamma$_{8} (Type II), and $\Gamma$_{9}, $\Gamma$_{9}', $\Gamma$_{10} (Type III) as shown in Fig. 4, Fig. 5, and

Fig. 6, respectively.

Definition 2.4. Let D and D' be marked graph diagrams. Marked graph diagrams D and

D' are stably equivalent if they are related by a finite sequence of generalized Yoshikawa

moves.

Definition 2.5. A set S of moves are independent if x is not generated by finite sequences

of moves in S\backslash \{x\} for every x\in S.

Question 2.6 (S. Kamada, A. Kawauchi, J. Kim, S. Y. Lee [6]). Is the set of generalized
Yoshikawa moves independent?

Lemma 2.7. Let \mathcal{L} and \mathcal{L}' be immersed surface‐links, and D and D' their marked

graph diagrams, respectively. If D and D' are related by a finite sequence of general‐
ized Yoshikawa moves, then \mathcal{L} and \mathcal{L}' are equivalent.

Problem 2.8 (J. Kim). Find the set S of local moves of marked graph diagrams such that

the marked graph diagrams are related by S if and only if their immersed surface‐links

are equivalent.

Problem 2.9 (J. Kim). Create a table of \mathrm{H}‐admissible marked graph diagrams repre‐

senting immersed surface‐links under the equivalence of S in the previous Problem with

ch‐index 10 or less, where the ch‐index of a marked graph diagram is the sum of the

number of crossings and that of vertices.

Definition 2.10 (cf. [5]). A positive (or negative) standard singular 2‐knot, denoted

by S(+) (or S is the immersed 2‐knot of the marked graph diagram D (or D' ) in

Fig. 7, respectively. An unknotted immersed sphere is defined to be the connected sum

mS(+)\# nS(-) for any non‐negative integers m, n with m+n>0.

A double point singularity p of an immersed 2‐knot S is inessential if S is the connected

sum of an immersed 2‐knot and an unknotted immersed sphere such that p belongs to

the unknotted immersed sphere. Otherwise, p is essential.

D D'

Figure 7: Standard singular 2‐knot
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3 Confirming immersed 2‐knots with essential singularity

In this section, the main theorem will be shown with an example of infinitely many
immersed 2‐knots with essential singularity. For an immersed 2‐knot K

,
let E(K) =

\mathrm{C}1(S^{4}\backslash \mathrm{N}(K)\mathrm{J} . Let Ẽ(K) be the infinite cyclic covering of E(K) . Then the homology
H(K)=H_{1}(E(K)) is a finitely generated  $\Lambda$‐module, where  $\Lambda$=\mathbb{Z}[t, t^{-1}] . This module is

called the first Alexander module of K (cf. [15]). Let

DH(K)= {x\in H(K)| \exists\{$\lambda$_{i}\}_{1\leq i\leq m} : coprime (m\geq 2) with $\lambda$_{i}x=0, \forall i },

called the annihilator  $\Lambda$ ‐submodule, which is known to be equal to the integral torsion

part of the Alexander module  H(K) (cf. [9, Section 3 Let  $\epsilon$(K) be the first elementary
ideal of DH(K) . A  $\Lambda$‐ideal is symmetric if the ideal is unchanged by replacing  t by t^{-1}.
Let DH(K)^{*}=\mathrm{h}\mathrm{o}\mathrm{m}(DH(K), \mathbb{Q}/\mathbb{Z}) have the induced  $\Lambda$‐module structure, called the dual

 $\Lambda$‐module of  DH(K) . The following lemma is used in our argument.

Lemma 3.1. If K is a 2‐knot such that the dual  $\Lambda$‐module  DH(K)^{*} is  $\Lambda$‐isomorphic to

 DH(K) ,
then the first elementary ideal  $\epsilon$(K) is symmetric.

For any marked graph diagram D of K
,
the fundamental group  $\pi$(K) of K is generated

by the connected components of D
, namely, the connected components obtained from D

by cutting the under‐crossing points and the relations s_{3}=s_{2}^{-1}s_{1}s_{2} for all crossings as in

(a) or (b) in Fig. 8.

(a) (b)

Figure 8: Labels at a crossing or a vertex

A computation of the Alexander module H(K) and the ideal  $\epsilon$(K) is shown in a

concrete example as follows:

Example 3.2. Let K be the immersed 2‐knot of D in Fig. 9. The immersed 2‐knot K

has only one double point. The fundamental group  $\pi$(K) is computed as follows:

 $\pi$(K)=<x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10},x_{11},x_{12},x_{13},x_{14},x_{15}|x_{1}=x_{2}^{-1}x_{3}x_{2}, x_{2}=x_{3}^{-1}x_{5}x_{3}, x_{1}=x_{3}^{-1}x_{4}x_{3}, x_{2}=

x_{1}^{-1}x_{3}x_{1},x_{6}=x_{2}^{-1}x_{1}x_{2}, x_{6}=x_{1}^{-1}x_{7}x_{1}, x_{1}=x_{7}^{-1}x_{8}x_{7}, x_{2}=x_{7}^{-1}x_{9}x_{7},x_{10}=x_{2}^{-1}x_{7}x_{2}, x_{10}=x_{1}^{-1}x_{11}x_{1}, x_{1}=
x_{11}^{-1}x_{12}x_{11}, x_{2}=x_{11}^{-1}x_{13}x_{11},x_{14}=x_{2}^{-1}x_{11}x_{2}, x_{14}=x_{1}^{-1}x_{2}x_{1},x_{1}=x_{2}^{-1}x_{15}x_{2}>.

This group  $\pi$(K) is isomorphic to the group <x_{1}, x_{2}|r_{1}, r_{2}> ,
where

r_{1} : x_{2}x_{1}x_{2}^{-1}=x_{1}x_{2}x_{1}^{-1} , r_{2} : (x_{1}x_{2}^{-1})^{3}x_{1}(x_{1}x_{2}^{-1})^{-3}=x_{2}.
Then the following  $\Lambda$‐semi‐exact sequence

 $\Lambda$[r_{1}^{*}, r_{2}^{*}]^{d}-3 $\Lambda$[x_{1}^{*}, x_{2}^{*}]4^{d} $\Lambda$\rightarrow $\epsilon$ \mathbb{Z}\rightarrow 0
of the group presentation of  $\pi$(K) is obtained by using the fundamental formula of the

Fox differential calculus in [1], where  $\Lambda$[r_{1}^{*}, r_{2}^{*}] and  $\Lambda$[x_{1}^{*}, x_{2}^{*}] are free  $\Lambda$‐modules with bases
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 r_{i}^{*} (i= 1,2) and x_{j}^{*} (j = 1,2) , respectively, and the  $\Lambda$‐homomorphisms  $\epsilon$, d_{1} and d_{2} are

given as follows:

 $\epsilon$(t)=1, d_{1}(x_{j}^{*})=t-1(j=1,2) , d_{2}(r_{i}^{*})=\displaystyle \sum_{j=1}^{u}\frac{\partial r_{i}}{\partial x_{j}}x_{j}^{*}(i=1,2)
for the Fox differential calculus \displaystyle \frac{\partial r_{i}}{\partial x_{j}} regarded as an element of  $\Lambda$ by letting  x_{j} to t . The

Alexander module H(K) is identified with the quotient  $\Lambda$‐module \mathrm{K}\mathrm{e}\mathrm{r}(d_{1})/{\rm Im}(d_{2}) (see
[10, Theorem 7.1.5]). The Alexander matrix M_{K} = (m_{ij}) defined by m_{ij} = \displaystyle \frac{\partial r_{i}}{\partial x_{j}} is a

presentation matrix of the  $\Lambda$‐homomorphism  d_{2} and calculated as follows:

M_{K}= \left\{\begin{array}{ll}
2t-1 & 1-2t\\
4-3t & 3t-4
\end{array}\right\}
Hence we have

H(K)\cong $\Lambda$/(2t-1,4-3t) ,

which is equal to DH(K) . Thus, the first elementary ideal  $\epsilon$(K) of K is

 $\epsilon$(K)=<2t-1, 4-3t>
=<2t-1, 4-3t, 3(2t-1)+2(4-3t)>
=<2t-1, 5>.

The following lemma is useful in a computation for a symmetric ideal.

Lemma 3.3. ([13]) The following statements are equivalent:

1. The ideal <2t-1, m>\mathrm{i}\mathrm{s} symmetric.

2. An integer m is \pm 2^{r} or \pm 2^{r}3 for any integer r\geq 0.

Lemma 3.4. ([13]) There are infinitely many immersed 2‐knots with one essential double

point singularity.

Let J be one of the immersed 2‐knots K_{n}, K_{n}' (n = 1,2,3, \ldots) such that the first

elementary ideal  $\epsilon$(J) is asymmetric. Then the following corollary is obtained.

Corollary 3.5. The connected sum J#U of J and any immersed 2‐knot U such that the

group orders |DH(J)| and |DH(U)| are coprime is an immersed 2‐knot with at least one

essential double point singularity.

Finally, the ideal (2t- 1,5) is known to be the first elementary ideal of a ribbon

torus‐knot in [4].
By using an immersed 2‐knot in Lemma 3.4, the following main theorem is proved.

Theorem 3.6. ([13]) Let K=nK_{m}^{*} be the connected sum of n copies of an immersed

2‐knot K_{m}^{*} with one essential double point singularity whose first elementary ideal is

< 2t-1, m > for any integer m \geq  5 without factors 2 and 3. Then K gives infinitely
many immersed 2‐knots with n double point singularities every of which is essential.
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D

Figure 9: An \mathrm{H}‐admissible marked graph diagram D
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