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Quantum phase space distributions such as the Wigner distribution and its generalizations
have been used in many fields of physics and engineering. Standard quantum mechanics
can be formulated in terms of these position momentum distributions, and the resulting
formulation is called the phase-space formulation of quantum mechanics [13, 5]. A similar

formulation is used to describe time varying spectra and that field is called time-frequency
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Abstract. The main historical purpose of the standard Gram-Charlier and
Edgeworth series is to “correct” a Gaussian distributions when new informa-
tion, such as moments, is given which does not match those of the Gaussian.
These methods relate a probability distribution to a Gaussian by way of an op-
erator transformation that is a function of the differentiation operator. We use
the methods of the phase-space formulation of quantum mechanics to generalize
these methods. We generalize in two ways. First, we relate any two probability
distributions by way differentiation operator. Second, we generalize to the case
where the differentiation operator is replaced by an arbitrary Hermitian operator.
The generalization results in a unified approach for the operator transformation
of probability densities. Also, when the Edgeworth and Gram-Charlier series are
truncated, the resulting approximation is generally not manifestly positive. We

present methods where the truncated series remain manifestly positive.

Introduction

analysis [4].



The distributions involved are often called quasi-distributions because they do not satisfy
all the properties of a probability density. In particular, they may go negative. Many of the
results of the phase-space formulation and time-frequency analysis seem peculiar and are un-
like methods that have been developed in standard probability theory. However, in standard
probability theory there are the Edgeworth and Gram-Charlier series, which are methods for
correcting probability distributions [18]. These methods are similar to the methods used in
quasi-probability distribution theory. We therefore argue that the operator methods used in
quantum mechanics, and in particular in the phase-space formulation of quantum mechanics,

are fruitful in generalizing the standard Edgeworth/Gram-Charlier series.

2 Notation and mathematical preliminaries

Operators will be denoted by script letters as, for example,

1d
D=-—— 1
idz (1)
However, because of convention, the differentiation operator will be denoted by D

a .
D—E;—’LD (2)

If an operator is operating on function of variables other than z, then we denote that by a
subscript. For example
d
D,=— 3
Y dy ( )

All integrals go from -0o to oo unless others noted

/ =_Z ()

Hermitian operators. A operator, A, is Hermitian if for any two functions g and f , we

have
/ 0" (@) Af(z)dz = / £(2){Ag(2)} da (5)

The phrase Hermitian operator is used in physics, but in other fields the term symmetric

operator is often used. In addition, the term “self adjoint operator” is used.



Functions of operators. There are many ways to define functions of operators.

We

mention two of them. A function of an operator, f(A), is defined by first expanding the

ordinary function f(z) in a power series

f@) = faz"

n=0

and then defining f(A) by substituting A for z,

FA) = fal”

n=0

A second way is by the Fourier transform, f(k), of f(z),
fo) = o= [ fla)e = aa
- Ver

1 o~
= — [ f(k)e=*dk
One then defines f(A) by substituting A for z in Eq. (9)

f(A) = V—% / F(k) A

with

(6)

®)

9)

(10)

Expansion of functions and transforms. For a Hermitian operator, A, the eigenvalue

problem

Aug(z) = O up(z)

(1)

produces real eigenvalues, 6, and eigenfunctions, u,(z), that are complete and orthogonal

/ s () uo(2) dz = 5(6 — &)

/ up(z' ) ug(z)df = 6(z — ')
Any function, f(z), can be expanded as
f@) = / F () uo(z) db

where

F6) = [ 1) u5(0) do

(12)

(13)

(14)

(15)



The function F(6) is called the transform of f(z) in the 6 representation

Function of an operator operating on an eigenfunction and on an arbitrary func-
tion. If ug(x) are the eigenfunctions of the operator A, then for a function of this operator,
f(A), we have that

f(A)ue(z) = f(O)us() (16)

This follows straightforwardly by expanding f(.A) in a Taylor series and using Eq. (11)
repeatedly.
For example suppose ug(z) = e~ are the eigenfunctions of the operator iD,

iDe™®0 = ge=tf (17)
then we have that for any function (6)
Q(iD)e ™ = Q(f)e "¢ (18)

Eq. (16) allows one to evaluate the operation of f(A) on an arbitrary function, g(z).
First, expand g(z) as

o(z) = / G(0)ue(x) db (19)
where the transform, G(9), is given by
66) = [ gyife) do (20)
Now, consider
£(A9(@) = 1(4) [ GO)uala) ds (21)
- [ 6O (Aua) as (22)

Using Eq. (16) we then have that

f(A)g(z) = / C(6) (B)uo(z) db (23)

If we further substitute for G(6) as given by Eq. (20), then

f(A)g(a) = / / o(a')ug(a') £ (6)uo(z) dbd’ (24)



which can be written as

1) = [ ol (e, 2)de (25)
where
() = [ Oua(o) a9 (26
Translation operator. The operator that translates a function is e,
P f(z) = f(z +96) (27)

The operator e~*P+*D*/2_ The action of the operator on an arbitrary function is

e=aD+OD/2 £( ) = % / e—p'—f#ﬁ f(z') d=' (28)
Yt

Hermite polynomials and functions. In physics and engineering the standard definition
for the Hermite polynomials, H,(z), is [2, 16]

o L :
Hy(z) = Z gy 22 = (-1 (29)
and the Hermite functions are defined by
1 2
- - —z?/2

Un () Tt H,(z)e (30)

The Hermite functions are orthonormal and complete,
/un(a:)uk(x) dz = Opy, (31)
D tn(@)un(2) = 8(2’ - z) (32)

n=0
In the probability literature, the Hermite polynomials with notation He,(z), are defined
slightly differently [18],
dv _2
. = (=1)" z2/2 & —x?/2
He,(z) = (—1)"¢ e (33)
The relation between the two definitions is

H,(z) = 2"*He,(v/2x) (34)
He,(z) = 27"2H,(z/V?) (35)



It is also useful to define the functions
o

2nnl/T

where m and « are real numbers and where H,(a(z —m)) are translated and scaled Hermite

H,(a(z —m))e=®*@m?/2 (36)

un(z;m, ) =

polynomials given by

Ha(ofz —m)) = L gtem gt (37)

These functions are also orthonormal

/un(a:; m, a)u(z; m, @) dz = by, (38)

Characteristic function, moment, cumulants. As standard, the characteristic function,
M(8), of a probability distribution P(z) is defined by [15]

M(9) = / €% P(z)dz (39)
The probability distribution may be obtained from the characteristic function by way of
P(z) = —23; 2 01(6)df (40)

By expanding the exponential in Eq. (39) one has

me) = 3 o) ()

where (z") are the moments of P(x).
The cumulant form of the characteristic functions is where one expands the log of the

characteristic function
o0 Z.,n n
In M) =) fon 0 (42)
n=1

where K, are called the cumulants. Therefore
= = (0",
M(6) = exp [Z nnaen} =3 B o) (43)
n=1 : n=0 :

The relation between the moments and cumulants is well known [18].



3 Quasi distributions’

Suppose we have an ordinary function of two variables g(z, k) and a corresponding operator
G(X, K) where the operators X and K are

T in the x representation

X = (44)
ia% in the Fourier representation
K= %% in the z representation (45)
k in the Fourier representation
The fundamental relation between X and K is the commutation relation,
[X,K]|=XK—-KX =1 (46)
The relation between the ordinary function and the operator is symbolized by
g9(z, k) ©» G(X, K) (47)
The relation between g(z, k) and G(X,K) is called a correspondence rule.
In quantum mechanics, we calculate expectation value by way of [1, 16]
@K = [4(0) G, K)(a) do (48)

where 1)(z) is the state function of the system. Classically, if we have a joint density of
and k, say C(x, k), the expectation value of g(z, k) is calculated by phase space integrations

(9(z, k)) = //g(x, k) C(z, k) dz dk (49)
We want the two approaches to give the same answer,
(G(X,K)) = (g(, k) (50)

There are an infinite number of quasi-distributions, and all bilinear ones may be obtained
from (3, 13, 4, 5]

C(z, k) = 4_71r_2 // P*(u— 37) Y(u + 17) B(0, 7) e =R gy dr df (51)

1This section may be skipped for those readers who are not interested in the quantum mechanics moti-

vation of the subsequent sections.



where ®(f,7) is the kernel function that characterizes the distribution. Eq. (51) may be

expressed in terms of a characteristic function M (6, 7),

M@,7) = / / I (5 k) dadk (52)
The distribution function is then given by
C(z, k) = / M(8,7) e "% dg dr (53)
Substituting Eq. (51) into Eq. (52) one has
M0, 1) = (4, 7')/ v*(z — 57) e oh(z + —7') dz (54)
The general correspondence rule is
G(X,K) = / / 5(6,7)8(6, 7) #XHE 4g dr (55)
where 1
9(6,7) = Zﬁ//g(x, k) e~ gg dk (56)

It then follows that the quantum expectation value calculated gives the same answer as the

classical one, that is

/ / o(z, k) C(z, k) dz dk — / W*(z) G(X, K) () do (57)

We also want
[we bk = (58)
[webds =lowr (59)

where |1)(z)[* is the probability distribution of position and |¢(k)|? is the probability distri-

bution of momentum, where the momentum wave function is
1 .
k)= —/ z)e @k dy 60
olh) = —= [ v(a) (60)
The first quantum phase space quasi-distribution proposed was that of Wigner [22]

W(z, k) / W@ - 1r) e+ ir) e dr (61)



If we take ®(0,7) = 1 in Eq. (51) we obtain the Wigner distribution. Moyal [17] showed
that if we use the Wigner distribution, Eq.(57) will hold if we associate the classical function
with the Weyl operator [20, 5, 23], which is defined by

w(X,K) = / / 3060, 7) €OXHTE 4G g7 (62)

Transformation properties of quasi-distributions. The important result for our sub-
sequent considerations is the relation and transformation properties between distributions.
If we have two distributions C(z, k) and Cy(z, k) characterized by the kernels ®; and ®,,
then the relation between them is [3, 7, 13]

Cola, k) = / / (@ -, K — k) Co(a, k) da’ dk (63)

with 8,0,

2 T eifztirk
921 x, k? 47!'2//® (0 7’ df dr (64)
Equivalently one can show that,
®
Cato ) = 288218 ¢4, (65)
1( L) c’)k)

This equation relates two distributions by an operator transformation.

3.1 Edgeworth series

The main historical purpose of the Gram-Charlier and Edgeworth series is to “correct” a
Gaussian distributions when new information, such as moments, are given where the new
moments do not match the moment of the Gaussian. One form of the standard Edgeworth

series is

Py(z) = exp[ (x? —m)D ( @ _o%)D? + Z @) D"jl N(m,o?) (66)

n=3

where N(m,0?) is the normal distribution

N(m,o?) = exp [ _p—m)® ] (67)

2mo? 202

and £ are the cumulates of the probability distribution Pj(x).



Although we have given the Edgeworth series for the one dimensional case, a similar
relation holds for the two dimensional case. Now, notice that in Eq. (66) the probability
distributions Py(z) and N(m,0?) are related by an operator transformation, and that is
exactly how the two distributions in Eq. (65) are related.

The issues we address in this paper are; can one generalize Eq. (66) so that the starting
distribution is arbitrary rather than Gaussian? Second, can the operator D be replaced by

other operators?

4 Generalization one: The relation between distribu-
tions involving D
We show that any two probability densities Pi(z) and P;(z) may be related by [8, 9]
Py(z) = Q(iD)Pi(z) (68)

where (D) is function of the operator iD that is given explicitly below. Suppose M (z)
and Ms(z) are the corresponding characteristic functions to the two densities,

10

M (6) = /emPl(m) dz ; Pi(z) = %/e‘iele(O)dG (69)
My(0) = / €% P, (2) dz : Py(z) = 5; / e ML()d0  (70)
We write Ma(6)
Me(6) = TG M) = AE)M() (1)
where - My (6) )
— M;(6)
The probability distribution, P»(z), is then
5@=%/¢”MM9 (73)
::5%; e‘*’“%%%%g%ﬂdi(G)de (74)

_ % / e=1=00)(9) M, (6)d6 (75)



Using Eq. (18) we have

Q(0)e™™ = Q(iD)e~**¢ (76)
and therefore
Py(z)= % / Q(iD)e== My (6)do (77)
- Q(iD)% / e~ 1, (6)dB (78)
— Q(iD)Py(z) (79)

which is Eq. (68).

Two Dimensions. For the two dimensional case, the characteristic function, M (@, ), and

density, P(z,y), are related by
M@,7) = // €9V (z y) da dy (80)

P(z,y) = ﬁ//M(G, T) e "=V gf dr (81)

Suppose we have two, two dimensional densities, P;(z,y) and Py(z,y) with corresponding
characteristic functions M1(6, 7) and My(0, ), we set

_ M2(97T)
9(077-) - Ml(e, 7_) (82)
The same proof used for the one dimensional case leads to
P2(xiy) =Q(Dx,Dy) Pl(w’y) (83)

Generalization to higher dimensions is straightforward.

4.1 Generalized Edgeworth type series

We now obtain a generalized Edgeworth series. For two densities Pi(z) and Py(z) we write

the corresponding characteristic functions in cumulant form,

oC ‘n
M;(6) = exp [Z ng%eﬂ] (84)
n=1 :

M(6) = exp [i nﬁf)ga'":l (85)

n=1

11



where «{ and £ are the respective cumulates of P;(z) and P(z). Using Eq. (72) we have

ex Pt gn
0(0) = %ﬁ% _exz Ew (Wa} (86)

or

Q(8) = exp [i (k@ — kD) %9“] (87)
Eq. (68) then gives ~
Pifa) = exp [i(nm W5 D) ] (@) (59)
i =
Py(z) = exp [g;(ngp - n;”)%m] Pi(z) (89)

We call Eq. (89) the generalized Edgeworth series since it relates any two probability den-

gities.

5 Approximation

We now discuss two approximations.

5.1 First approximation

We expand the operator in Eq. (89) in a power series

= (=)~ 1 1
€xp l:;(l‘&g) - H,sll))TDn =1- lllD + 50«2D2 - 6043D3

1 I S
521-(14D —E%D +',?é6a6D (90)

where we have kept terms up to D8. Therefore the approximation is

1 1 1 1
PQ(CL') ~ [1 - a,lD -+ 5(121)2 - ECLgDB 51(14D4 - m 5D5 + %%DG ] Pl(l') (91)

For notational convenience we define

T = K — K (92)

12



One can take advantage of the relation between cumulates and moments [18] to write that

ay=m

az=my+1}

as =13 + 3nam + 13

aq =14 + 4nsmy + 303 + 6mon} + 1

as = s + 51471 + 10m375 + 100372 + 15020, + 10m:0% + 1

ag = 1 + 6msn1 + 15mam + 15m4m7 + 103

+60n3mamn + 20ms73 + 1575 + 450507 + 15many + 715
If we assume that P;(z) is standardized, that is,
fs(ll) =0 ngl) =1

then

a; = I‘ﬁg?)

as = (552) - 1) + (ﬁ?))z

a3 =mn3+3 (rcgz) - 1) /cgz) + (n&z))s

a4 = n4+4n3fs§2) +3 (5&2) - 1)2 + 6(&%2) — 1) + (IC(12))4

as =15 + 5n4m§2) + 1073 (ngm - 1) + 10m3 (n§2))2 +15 (lcg‘)) - 1)2n52)
+10 (n?’ - 1) (nﬁ”)s + (nﬁz))s

2
as = 1 + 6756 + 15m, (n§2) - 1) + 15, (n(f’) + 1072 + 6073 (ngm _ 1) P

(93)
(94)
(95)
(96)
(97)
(98)
(99)

(100)

(101)
(102)

(103)
(104)
(105)
(106)

(107)

3 3 2 2 4 6
+20m5 ()" + 15 (6 — 1) +45 (= 1) (5) + 15 (w0 = 1) () + (=)

If we further assume that P(z) is also standardized

K2 =0 K =1

(108)

(109)



then
a; =0 (110)
as =0 (111)
a3 =1 (112)
ae =10 (113)
as =15 (114)
as = 16 + 10n3 (115)
Explicitly,
M3, Mpe M5 54 ne + 1073 ¢
~ —_ 11
Py(z) D + 24D 120D 20 D°+ ... | Pi(x) (116)

This the same form as the standard expansion except that in the standard case Pi(z) is
Gaussian [18].

5.2 Second approximation

Consider writing Eq. (89) in the following form

Py(z) = exp [Z T )" pn Pi(z) (117)
= exp [ mD + -7)2D2] exp [;:n,, Dk D"} Py(z) (118)
Using Eq. (28) we have, )
exp [—mD + %nzDz] f(@)
_ \/2% xp [—(‘”—‘;JL‘V] (&) da’ (119)

and therefore

Py(z) = \/2;W exp [ (x_%] [Znn

n=3

| P(z')dz’ (120)

This is still exact. If we now expand up to 6th order in D,

14



M3, Th m6 +10n3 6
, L+ 8T B e 1
exp l:;nn } [ —D; + D 120Dnc + 20 Dy, (121)
we obtain
7 —x+m)? ]
Pz Sl £ VAR
‘2( V2 / [ 212
_ B3 5 776+1077?2> 6 ... ’ ’
[1 ED% + 24D 120D BB DY | (e (122)
5.3 Gaussian case
If we take P;(z) to be Gaussian,
1 (z —m)?
= 2) = —_— 2
Pi(z) = N(m,o?) Wexp[ oy ] (123)
then Eq. (89) gives
_ @y D" 2
Py(z) = exp [;(mn k) - D™| N(m,o°) (124)

But for a Gaussian, there are only two nonzero cumulants, k; = m, k; = 02, and therefore
y 7 b b

Py(z) = exp [—(n?) —m)D + %(n?) o*)D?* + Z (2)( D“ N(m,0o?) (125)

n=3

which is the standard Edgeworth series [18].
If we consider the standardized Gaussian, where m = 0 and ¢ = 1, then
N(0,1) (126)

Py(z) = exp —/-c( D+ ((2) 1)D2+Z @) n) D"

n=3

Furthermore, if we want P»(z) to be standardized, that is, to have zero mean and unit

standard deviation,
KD =0 P =1 (127)

then

n=3

Py(z) = exp [i nﬁ?%m] N(0,1) (128)

15



and
po @)?
10
1 @ps kP Dh - L@ ps +()s
~1=2 — "7 ps...[N(O1) (12
Py(z) ~ |1 shs D* + 24 D 120 Db+ 0 D (0,1) (129)
Since
D"e %)% = (—1)"e */?He,(z) (130)
we have
1
Py(z) ~ [1+ ﬁ(z)Heg(x)—l- &P Hey(z) + — 5 k2 Hes(z)
) @
55 ( #67+10 (n3) Heg(z) +--- | N(0,1) (131)

which is a well known result [18].

5.4 Generalized Gram-Charlier

We expand Q(6) as given by Eq. (72) in terms of some complete set of functions, say v,(z)

Q) = Z nn(0) (132)
n=0
If v,(6) are orthonormal, then
M2(0) o
However that does not have to be the case, for example, we can expand (f) in a power
series
M) &
Q6 134
O =3 ~ 2 (139
in which case My(6)
2
L= — D" 135
I =0 M6) | (135)
Using Eq. (132) we have, for Eq. (68)
) =Y gavn(iD)Py(z) (136)
n=0

We call this the generalized Gram-Charlier. For the specific case of a power series we have

Py(z) =Y _ ani"D"Py(z) (137)

n=0

16



5.4.1 Gaussian case

To obtain the standard Gram Charlier we take P; to be the the normal distribution

P, = N(m,0%) = 57 CXP [—@;7—';”)2] (138)
Using Eq. (132) we then have
Py(z) = i ani"D"N(m, o*) (139)
n=0
Using the fact that
i"D"N(m, 0?) = (—ia)"H,(a(x — m))N(m,o?) (140)

where for convenience we have set

1 , 1
RS - 141
o 20 7 T o (141)

Py(z) = N(m,0?) Y (~ia)"anHa(a(z — m)) (142)

n=0

Now the characteristic function of the Gaussian is

M;(6) = emi=o70/2 = ¢imé—6%/(4a?) (143)
giving
26) - %jgz; — My(§)e=mo+6*/(ta?) (144)
in which case 1 My(6) 1 . imf—62/(4a?)
"= D M@)o~ MO -
One can show that H,(a(x —m))
L ACCEL) (146)

Substituting a, in Eq. (142) we have

Py(a) = N(m, %) 3 5o (Ha(alz = m))) sH(a(z — m)) (147)

n=0



If we specialize to the standardized Gaussian (m = 0,02 = 1) we obtain

Poa) = NO,1) Y. s (Ha(2/ VD)oo /) (143)
Using
Ho(z/V?2) = 2"2He,(z) (149)
results in
Pyz) = NO,1) 3~ (Hen(&))2Hen(@) (150)
n=0
=N(0,1) {1 + i %(Hen(x)hHen(x)} (151)

which is the standard Gram-Charlier series. This is traditionally derived by different methods
[18].

6 Generalization two: the relation between two distri-

butions involving an arbitrary Hermitian operator
We now show that any two densities P»(z) and Pi(z) can be related by
Py(z) = Q(A)Pi(z) (152)

where A is an arbitrary Hermitian operator, and where now Q(A) is given by Eq. (161)
below.

For the eigenvalue problem
Aug(z) = Qup(zx) (153)

the eigenfunctions ug(z) form a compete orthogonal set. Hence, any function, and in par-

ticular, any probability distribution may be expanded it as
P(z) = / N(8)us(x) db (154)

with

N@)= / P@)uy(z) dz (155)

18



Here N(6) can be thought of as a generalized characteristic function. The case where A =iD
and ug(x) = e % gives the standard characteristic function.
For two probability densities P; and P, densities with corresponding generalized charac-

teristic functions N, and Ny,

Ny(8)= / Pi(z)u}(z) dz Ny(6) = / Py(z)ul(z) dz (156)
the distributions are obtained from
Py(a) = / M@us(z)dd  Pya) / No(6) uo() d (157)
Consider Py(z),
Py(z) = / Ny (0)ug(z)d6 (158)
= %fgi Ny (6)ug(z)do (159)
_ / Q(8) N1 (6) o () d8 (160)
where Na(0)
Q) = 0 (161)
Using
Q(0)up(z) = Q(A)ug(z) (162)
we have
Py(z) = / uo(2)Q0) N, (6)d0 (163)
= Q(A) / Ny (6)ug(z)db (164)

which gives Eq. (152).

7 Manifestly positive distributions

If one truncates the series previously derived, then generally speaking, the truncated series
will not be manifestly positive. We now derive relations between probability densities that

even after truncation the series are manifestly positive.

19



Since Eq. (68), holds for any pair of functions, say F} and F,, we can write
Fy(z) = Q(D)Fi(z)

However, here (D) is not the ratio of characteristic functions but is given by

_ Ry(9)
*0 =R
where
R.1(9) = /ew“Fl(x)dx
Ro(6) = / €% Fy(2)do
and

1 X
Fi(@) = 5- / =2 2, (6)d6

1 ,
Fz(.’L') = '2—7;/6_20:”1'{2(0)(10
We now define F; and F; by

Fy(z) = v/Pi(z)e"®
Fy(z) = /Py(x)e’>@

(165)

(166)

(167)

(168)

(169)

(170)

(171)
(172)

where () and p,(z) are real functions whose significance will be discussed later. The

probability distributions are obtained from the F' functions by

Pi(z) = |Fy(x))?
Py(z) = |Fa(z)

We also have that

Fi(z) = P(z)e™0@
Fi(z) = Py(x)e 2@

From Eq. (165) we have

Py(z) = |Fa(a)* = |@(iD) Fi(2)|*

or
2

Py(z) = ’<I>(z'D) VP (@)@

(173)
(174)

(175)
(176)

(177)

(178)

20



We also have
F}(z) = (2(iD)Fi(x))*
Pz(x) = e—2z'<p2(z) (@(’LD) \/}:71—(56_)-31‘?1(1))2

which relates the probability distributions and their respective phases.

7.1 Edgeworth type series

We expand R(0) as

[ oo n
R@®)=exp | kn’—,an]
Ln=1

n!

but, we emphasize, that the k,’s are not cumulants. We thus have that

_ RO _ [ g
¥6) = 55 = =P ;(kn kD) =0

Therefore
- @ _ 0y D" 5
and ) . )
oo —l)n n
i) = o |5 (2 K S0 )
Now, if the series is truncated
o ) N
2 — n
Py(z) ~ |exp ;(ki,)—kg”)TD Fy(2)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

we still have a manifestly positive approximate distribution. The interpretation of the k,

and the evaluation of Eq. (185) will be discussed in a forthcoming paper.

7.2 Gram-Charlier type series

Similar considerations can be applied to the Gram-Charlier series. The approach is to define

oo

Ri(8) =) aPu()

n=0

Ry(6) = alPul? ()

n=0

(186)

(187)
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and expand
R()

2(6) = F2g = 2 0wtnl0)

and therefore we have
Py(z) = |) _ guva(iD)+/Pi ()@
n=0

If the series is truncated

N
Py(z) ~ anvn(iD) VP (z)e @)

n=0

we still have a manifestly positive probability density.

7.3 Generalizing to an arbitrary operator

One can generalize the above consideration to an arbitrary operator. Writing
Fy(z) = Q(A)Fi(z)

Now §(A) is given by

°0- 5@
where
Ry(8) = /u}(x) Fi(z)dz
Ra(6) = / w(2) Fy(x)dz
Also,

Fi(z) = % / wo(z) Ra(6)d8

1
Fi(o) = o [ ua()Ra(0)ds
As before we define F; and F, by

Fi(z) = v/Pi(z)e@
Fy(z) = \/Py(x)e@®

(188)

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)
(198)
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The probability distributions are

Pi(z) = |F () (199)
Py(z) = |Fy(z)® (200)
and we also have that
FX(z) = Pi(x)e 2@ (201)
FX(z) = Py(x)e %% (202)
We therefore have
Py(z) = |Ba(a)* = |B(A)Fi(z)|* (203)
or
Pyfa) = |#() Vi@ )| (204)
We also have
F3(z) = (3(A)Fi(x))® (205)

giving )
Py(z) = e 2@ (@(A)\/Pl (x)ewlw) (206)
which relates the probability distributions and their respective phases involving an arbitrary

operator.

8 Expansion of the probability distribution in orthog-

onal polynomials

We now present a different approach to approximating probability distributions which is an
extension of the standard way that the Gram-Charlier series is obtained [10, 19]. For an

orthogonal set of polynomials, L,(z), with corresponding weighting function, w(z), one has
Jw@ L @Lu(a) e = Nota (207)

where N, are normalization constants. The weighting function is taken to be real. Although
the standard polynomials are real we shall assume that they may be complex as that adds

to clarity in the sense of Hilbert space notation.
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One can define an orthonormal set of functions by

w(z)Ln(2)

in which case,
[ @un(e) do = b
One can expand any function by
f@) =) cattn(2)
n=~0

where the coefficients, c,, are given by
= [ Ho)usa) da

We now expand, not the probability distribution, but P(z)//w(z) as

PE) )
Ja 2

The ¢,’s are then given by
_P(x)

o

P(z) 1
Vu(z) VN,

)L, (z)dz

un(z) dz

VL5 (z)dz

and therefore the coefficients are essentially the expectation value of L¥(z),

= 3 (L3(a)
where

(Li@) = [ P@)Iia)ds
The distribution is then

P(a) = V@) 3_ —= (L)) )

n=0

(208)

(209)

(210)

(211)

(212)

(213)

(214)

(215)

(216)

(217)

(218)
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Substituting v, (z) as given by Eq. (208) we have
w(z) Z 7, (Ln(@)) Ln(2)

We now write Eq. (219) for two different distributions

oo

= w(z) E 1\}" (Ly(x)); Ln()
Po@) = w(@) Y 3 (E (@) L)

where
L@ = [ P
(L2 (@), / Pu(z) L (2)dz

Subtracting one distribution from the other in Egs. (220) and Eq. (221) we have

Py(z) — Pi(z) = w(x)ZFKL* = (Ln(@))] Ln(2)
n=0
or
Py(z) = Pl(w)+w(w)z v, [(Ln(@)s = (La(@)h] Ln(2)

If we assume that
Ly(z) =1

then

By(z) = +W(w)z ~ ({La(@)s = (La(2)1) Lal)

The L,(z) are polynomials and hence (Ln(;c)) can be constructed from the moments.

If we truncate the series

Py(z) = Py(z) +w(z) ) Nin (L7(2))y = (Ln(2)1] Ln(2)

then P»(z) may not be manifestly positive.

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)
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8.1 Example: Hermite functions

Using
(@M, @) = ﬁf[n(a(aﬂ — m))e—oemm)?/2 (229)
the weighting function is
w(z) = e~ Em? (230)
and therefore
_ _az(z_m)z ad 1
Py(z) = Pi(z) +e > ~- [(Hn(a(z —m))); — (Hu(a(z — m))),] Ha(e(z —m))
=1 n
" (231)
with
N, = V/72"n!/a (232)
Explicitly,
— 1

[(Hn(e(z = m))), ~ (Hu(a(z — m))),] Ha(a(z —m))
(233)

This is a general expression and is true for any two densities and where o and m are arbitrary.
If we take Pi(z) to be a Gaussian

P2(z) = P1 (x) + %e—aﬁ(z—m)z Z

T |
n=12 n!

1

2702 e/t (234)

P1($) =

we then have

1
Py@) = \/5— e~ (emm?/20 (235)

4 SLemtteony? i L {(Ha(a(z — m)), — (Hala(z - m),] Ha(alz —m))

T 2rn!
(236)
Note that a and m are still arbitrary.
If we take 1
then
Py(z) = 4/ — g~(a=w?/20?

2mo?
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W L (o (7)), (= (52 ) - (57)

(238)

(o S (200, (- (532) (2]

H,(x/V2) = 2"/?He, ()

1
Py(z) = 1| mgem@/20"

{1558 (e (E522)) ~ (mn (52)) e (€52} 0

For the standardized the Gaussian,

p=0 o=1 (241)
Eq. (240) b
Py(a) = %e-w{w = [(Hew (@), — (Hen (@))] Hen(x>} (242)
Sin
(Hen()), = 0
we hav

Py(z) = \/7 {1+Z (Hey (), He (:c)} (243)

which is the same as Eq. (151) and which is the standard Gram-Charlier series [18] but
derived in a different way.
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Now if we take Py(z) to be standardized, then

(Hey(z))y =
(Hes(z)), =
(Hes(z)), = <$3>2
)2 =
)2 =

2

(Hea(z))y = <z4>2 —-6+3= <z4> -3

(Hes(z)), = <x5>2 —10 <x3>2
(Heg(z)), = (2%),—15 (z*), + 45 — 15 = (%), —15 (z*), + 30

then

T %0

15 (z

Py(z) ~ \/2_%_-6 {1 + = (2%), Hes () + <4)22—43
D+

P 1 N e e

720

Using the relation between moments and cumulants

<x3> - m(2)
<x4> - (2)
(®), = <2> + 10/$(2)

(@),

one obtains

2
= k241562 + 10 (Kg”) +15

Hey(z)

Heg (2) }

1
Py(z) ~ {1 + gﬂgz)Heg,(z) 2—54 P Hey(z) + — 12 0 «? Hes(x)

1
+o5 (mg2)+10 (=) ) Heg(z) +

which is the same as Eq. (131).

8.2 Example: Laguerre polynomials

The Laguerre polynomials are defined by

Lu(z) = Z

n

k=0

( l)n kn] n—k

Hn—k)E

e* dk

———z"
n! dz*

n

—

--}N(O,l)

(244)
(245)
(246)
(247)
(248)
(249)

(250)

(251)
(252)
(253)

(254)

(255)

(256)
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The weighting function for the Laguerre polynomials is
w(z)=e"
and the normalization is
/ooe_an(x)Lk(m) dz = 6
Therefore for the Laguerre polynzmials
N, =1
We use the following orthonormal set

un(; 8) = V/BVw(Bz)Ln(Bz) = v/ Be /Lo (Bz)

where 3 is a positive number. From Eq. (258) we have

/%mmwmm=m

with weighting function
w(z) = Be P
Using Eq. (227) we may write

Py(2) = Pi(2) + fe™® Y [(La(B2)); — (Lu(B)),] Lu(B2)

n=1

This is general. If we take the exponential probability distribution for P;(z)

Pi(z) = Be~Pe

then

Py(z) = /Be_ﬂz {1 + E n(ﬁz ~ (Ln(B2)),] Ln(ﬂx)}

which allows one to correct the exponential distribution, Eq. (131).

(257)

(258)

(259)

(260)

(261)

(262)

(263)

(264)

(265)
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8.3 Legendre Polynomials

The Legendre polynomials allow one to correct distributions which are uniform in an interval.

The Legendre polynomials are

fn/2] n
_ (-DF2n -2k | o 1 d B
Falz) = kz:; R Bl —2h° i \ag) @ (266)
and the orthogonality condition is
1
2
/_ Pu(0)Pila)ds = 3= (267)
The normalization constant are therefore
2
" om41 (268)
We define the complete set of functions by
2n + 11
uy(z; B) = —P,(z/f 269
(z; 8) — 7 n(z/B) (269)
so that the u,(z; B) are orthonormal in the interval —3 to
B
[ untas By Bydo = oo (270)
Using Eq. (227) we have
1en 1
(@) = i@ + 53 5 (Pale/B)y = (Pala/ B Palw/B)  —B<z<B (27)
n=1""

where we have used f(z) for the probability density to avoid confusion with the Legendre
polynomials.
If we take the uniform probability distribution for f;(z)

filz) = -f<z<p (272)

1
28
then

folz) = 3773 Z N [(Pa(z/B))g — (Palz/B)),] Pu(z/B) -f<xz<p (273)

or

F) = 55 {1 +2Y 3 [(Pa(o/8), = (Pala/ )] Pn(x/ﬂ)} _p<z<p (274)
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8.4 Obtaining manifestly positive distributions by expanding the

state function

Eq. (227) holds for any two functions Fy(z) and Fi(z), not just probability distributions.
Hence we may write

oC

Fe) = Ri@) + 0@ 3 - (L@, — (@) (o) (275)

where now -
(L@ = [ A Lo (276)
Ly, = [ Falo) Lifa)da (277)

and we note that (L} (z)) are not expectation values since the F’s are not probability density
functions.
As before, we define

Fi(z) = /Pi(z)e® (278)
Fy(z) = /Pa(x)e*® (279)
Therefore
Py(z) = |\/Pi(2)e"@ + w(z) Y Ni ({L7(2)y — (Lp(2))y) Ln(z) (280)
n=0" "
and
Pa(o) = e75or <\/P1<x>ew> (@) 5 (L)), = (L)) Ln(x>) (281)

If we truncate the series we still have a manifestly positive expression.

9 Conclusion

We have generalized the Edgeworth and Gram-Charlier types of series in a number of ways,
and have also shown how to modify these series so that even after truncation the series

remain manifestly positive. What we have not shown is the physical meaning of the phases
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as defined in Eq. (171) and Eq. (172). We believe that we can relate these phases to the
moments and cumulants and other expectation values and this is currently being investigated

along the lines of Davidson and Loughlin [11, 12, 14].
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