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1 BACKGROUND

In fluid mechanics the widely accepted boundary condition for viscous flows is the no‐

slip condition. When applied to fluid‐structure interaction (FSI) problems this condition

states that the fluid velocity at the moving boundary is equal to the velocity of the

boundary itself. If the boundary is rigid and fixed, the no‐slip condition states that the

fluid velocity at the boundary is zero. This condition is justified only when molecular

viscosity is considered. Requiring that the normal component of fluid velocity is zero at

the boundary (the non‐penetration condition) is reasonable (for impermeable solids):

(\partial_{t} $\eta$-\mathrm{u})\cdot n=0 . (1)

However, for the tangential component of fluid velocity Navier claimed that there should

be a slip, and that the slip velocity should be proportional to shear stress [57].
For moving boundaries this conditions reads:

(\partial_{t} $\eta$-\mathrm{u})\cdot $\tau$= $\alpha \sigma$ n\cdot $\tau$ , (2)

where \partial_{t} $\eta$ is the fluid boundary (structure) velocity,  u is the fluid velocity at the bound‐

ary,  $\sigma$ is the fluid Cauchy stress tensor,  $\tau$ and  n are the tangent and normal vectors to the

boundary, respectively, and  $\alpha$ is the proportionality constant known as the slip length.
Indeed, kinetic theory calculations have confirmed the Navier slip condition, but they
gave the slip length proportional to the mean free path divided by the continuum length,
which for practical purposes means zero slip length ( $\alpha$=0) justifying the use of no‐slip
condition.

Recent advances in technology, biomedical engineering, mathematical analysis and

scientific computing have re‐iterated the need for further studies involving the slip bound‐

ary condition. Indeed, recent studies have shown that the no‐slip condition is not ad‐

equate to model contact between smooth rigid bodies immersed in an incompressible,
viscous fluid since contact in such scenarios is not possible [64, 40, 41, 67]. A resolution

to this no‐collision paradox is to employ a different boundary condition, such as

the Navier slip boundary condition, which allows contact between smooth rigid bodies

[58]. Problems of this type arise, e.g., in modeling elastic heart valve closure, where dif‐

ferent kinds of ad hoc �gap� conditions have been used to get around this difficulty [26].
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By using the Navier slip boundary condition near the closure, a more realistic model of

this FSI problem would be provided.
Another example where the Navier slip boundary condition is appropriate is the in‐

teraction between an incompressible, viscous fluid and elastic structures with�rough�
boundaries. Such problems arise, e.g, in studying the interaction between blood flow

and bio‐artificial tissue constructs, which involve cells seeded on elastic tissue scaffolds

with grooved microstructure. To filter out the small scales (small oscillations) of the

rough fluid domain boundary, effective boundary conditions based on the Navier slip
condition have been used in various application involving rigid boundaries [49, 50]. In‐

stead of using the no‐slip condition at the groove‐scale, the Navier slip condition is

applied at the corresponding�(groove‐free� smooth boundary [49, 50].
Other examples where the slip boundary condition should be used to accurately

approximate the physics of the problem include the flow of water over hydrophobic
surfaces (e.g., spray fabricated liquid repellent surfaces [68]), where it is known that

there is an especially large slip at the fluid‐solid interface. As an example we show in

Figure 1 (left) a classical� Ketchup flow, and in the middle panel we show the Ketchup
flow in a bottle that had been treated with a no‐stick coating. The two snap‐shots
were taken at the same time after the bottled had been tilted downwards. One can

see significant difference in the flow characteristics. The panel on the right shows our

numerical simulation of the Ketchup flow with the Navier‐slip boundary condition, using
a methodology based on Smooth Particle Hydrodynamics.

FIGURE 1: Hydrophilic vs. hydrophobic surfaces: no‐slip vs. slip condition. Left: Classical

Ketchup flow. Middle: Ketchup flowing in a bottle treated with a no‐stick coating. Right:
Our numerical simulation of flow with slip boundary condition. The pictures were taken at the

same moment in time after the bottle throat started pointing downward,

In addition to considering the Navier slip as a boundary condition for fluid flows,
various slip conditions have also been considered to model composite structures that

experience sliding between different layers [38, 39, 6]. It has been shown that laminated

beams [39] and multi‐layered plates with slip at the interface between two layers [38, 6]
provide structural damping in the oscillations of the composite, laminated structure.

To the best of our knowledge, no studies of the interaction between such laminated

structures and the flow of an incompressible, viscous fluid have been performed. Studying
the interaction between these laminated materials with fluids is important in many
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applications including, e.g., the stability of oil rigs [70] and in cardiovascular science. In

cardiovascular science, for example, it is well known that arterial walls are composite
structures consisting of several layers, each with different mechanical characteristic and

thickness. Recent experimental studies performed by Cinth,io et al. [20, 21, 1] report
that in high adrenaline situations caused by emotional stress, the steep pressure wave

fronts generated by the heart cause a significant shear strain between different layers of

arterial walls. It was pointed out in [1] that the role of this phenomenon in atherogenesis
is completely unexplored. To study this problem a model that describes vascular wall

as a laminated structure with interfacial slip should be used.

The current mathematical literature on FSI with slip concerns studies involving rigid
bodies [58, 32, 33, 17, 55, 63, 69]. To the best of our knowledge, there have been no

general existence \cdot results or partitioned computational schemes for problems describing
FSI between an incompressible, viscous fluid and an elastic solid satisfying the Navier slip
boundary condition. The main mathematical difficulties stem from the fact that in FSI

problems with slip the regularizing effects by the viscous fluid dissipation are no longer
transmitted to the structure through the continuity of fluid and structure velocities, as

is the case with the no‐slip condition. This partial loss of information in the interaction

between the fluid and structure is the main source of difficulties in the analysis and

numerical method development for this class of problems. New compactness arguments
need to be designed to study existence and well‐posedness, and new ideas are needed to

design a class of stable partitioned numerical schemes for this class of problems.
A recent work by Muha and Čanič [56] sheds light on the existence of weak solu‐

tions to fluid‐structure interaction problems between incompressible, viscous fluids and

linearly elastic shells or plates interacting via the Navier slip boundary condition. The

existence proof is constructive: a sequence of approximate solutions to the coupled prob‐
lem is obtained by semi‐discretizing the problem in time via the Lie operator splitting
strategy, as we explain below in Sec. 4. At every time step a fluid and a structure

sub‐problems are �solved�� with boundary conditions that reflect two‐way coupling be‐

tween the fluid and structure, which includes the Navier slip boundary condition. This

sequence of approximate solutions is then shown to converge to a weak solution to the

coupled problem by designing clever compactness arguments.
Motivated by the main steps in this existence proof [56] in the present manuscript

we propose a partitioned numerical scheme that can be used to solve fluid‐structure

interaction problems where the coupling between the fluid and structure incorporates
the Navier slip boundary condition, and, additionally, the structure is composed of sev‐

eral layers, which are coupled through a slip condition. The fluid is modeled by the

Navier‐Stokes equations for an incompressible, viscous fluid, and two classes of struc‐

ture models are considered. They include the equations of  3\mathrm{D} or 2\mathrm{D} elasticity, and

reduced structure models such as the linearly and nonlinearly elastic membrane and

Koiter shell equations. The fluid and structure, as well as the thin and thick structure,
are coupled via two coupling conditions: the kinematic coupling condition describing
slip in the tangential velocity components together with the non‐penetration condition,
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and the dynamics coupling condition describing balance of forces at the fluid‐structure

and structure‐structure interface, see Sec. 3.

To solve this problem numerically, we propose here a partitioned, loosely coupled
scheme. Partitioned schemes separate between different physics in the problem and

allow the re‐use of the already available computational solvers for the solution of the

corresponding sub‐problems. In this work the fluid and structure sub‐problems are

separated in a way so that the resulting scheme is unconditionally stable with just one

calculation of the fluid and structure sub‐problems at every time step. This avoids the

expensive sub‐iterations associated with the classical partitioned schemes such as the

Dirichlet‐Neumann schemes. Our simulations and uniform energy estimates support
the claim of unconditional stability even when the fluid and structure have comparable
densities, which is known to be a critical regime for the instabilities due to the added mass

effect [15]. The coupling via the Navier slip condition introduces additional challenges
in the design of such schemes. This is because in FSI problems with slip the regularizing
effects by the viscous fluid dissipation are no longer transmitted to the structure directly
through the continuity of fluid and structure velocities, as is the case with the no‐slip
condition. This partial loss of information due to the jump in the tangential components
of velocities is the main source of difficulties in the analysis and numerical method

development for this class of problems. Based on the knowledge gained from our recent

existence result for an FSI problem with the Navier slip condition [56] we introduce here

a partitioned, loosely coupled scheme that gets around these difficulties by separating the

fluid from structure sub‐problems using the time‐discretization via Lie operator splitting,
where the splitting is performed in such a way that: (1) the semi‐discretized energy

approximates well the continuous energy of the coupled problem, thereby getting around

the difficulties associated with the added mass effect, and (2) the viscous dissipation due

to slip is cleverly distributed between the fluid and structure sub‐problems providing a

tight coupling that compensates for the lack of direct smoothing by the fluid viscosity
in the no‐slip condition.

2 LITERATURE REVIEW AND STATE‐OF‐THE‐ART

Classical FSI problems between an incompressible, viscous fluid and an elastic structure

assuming the no‐slip boundary condition have been extensively studied since the 1980 �s

(see e.g. [4, 5, 45, 7, 47, 48, 23, 43, 66, 16, 35, 61, 62, 28, 36, 37, 25, 42, 65, 2, 44, 22,
31, 13, 51] and the references therein). The state‐of‐the art in the well‐posedness theory
includes results on global existence of weak solutions for FSI problems with various elastic

structures [35, 51, 52, 53], and local existence of strong unique solutions for various elastic

structures immersed in a viscous, incompressible fluid [23, 24, 19, 18, 4, 5, 45, 43]. All

the global existence results involving elastic structures hold until the structure(s) are

about to �touch� each other, i.e., until a contact. In [64, 40, 41, 67] it was shown,
however, that such a contact is not possible when rigid balls with smooth boundaries

interact with an incompressible viscous fluid, indicating that the no‐slip condition may

4



not be a good physical model for FSI dynamics near a contact. In 2010 Nestupa and

Penel proved that if the no‐slip boundary condition is replaced with the slip boundary
condition, collision can occur between two rigid bodies [58]. This sparked recent activity
in the area of existence results for FSI problem involving rigid solids and slip boundary
conditions [32, 33, 17, 55, 63, 69]. In particular, Gerard‐Varet and Hillairet considered

a FSI problem involving a rigid solid immersed in an incompressible Navier‐Stokes flow

with the slip boundary condition, and proved the existence of a weak solution up to

collision [32]. In a subsequent work [33] they proved that prescribing the slip boundary
condition allows collision between the immersed solid and the boundary. The most recent

work in this area is a global existence results for a weak solution permitting collision of

\mathrm{a}^{(} smooth� rigid body \mathrm{w}\mathrm{i}^{\wedge}\mathrm{t}\mathrm{h} a smooth� fluid domain boundary, proved in [17].
Recent results by Muha and Čanič address existence of weak solutions to fluid‐

structure interactions problems involving incompressible, viscous fluids interacting with

elastic shells in 2\mathrm{D}[56] , incorporating the Navier slip boundary condition. The existence

proof was based on a robust strategy recently developed by Muha and Čanič, published
in the Arch. Rat. Mech. Anal. [51] and in the J. Dffi. Eq. [53], where two types
of FSI problems with elastic structures satisfying the no‐slip boundary� condition were

considered. The techniques developed in [51, 53] were constructive, and based on an

operator splitting approach (Lie operator splitting [34]), which was then extended to

problems with the Navier slip condition, in [56].
This robust strategy for analyzing fluid‐structure interaction problems using the

time‐discretization via operator splitting was then used in the design a family of novel

partitioned, loosely coupled schemes for numerical solution of FSI problems with elastic

structures and no‐slip condition [10, 9, 11, 8]. The partitioned, loosely coupled scheme

presented in [10] deals successfully with the ínstabilities associated with the added mass

effect, and it was shown in [14, 12] that the scheme is unconditionally stable. The main

ideas behind the scheme were based on the existence proof by Muha and Čanič [51].
Regarding the literature on the interaction between elastic structures with slip, we

mention the results by Hansen et al. [38, 39], where control of laminated structures with

slip was studied, and the engineering literature based on the works of Bears at al. see

e.g. [6] and the references therein, discussing damping by laminated structures due to

slip. Problems with slip between multi‐layered structures have also been considered in

biology to model cells, such as, e.g., in [59, 60, 60] where a multiscale model for red blood

cell was proposed, in which the lipid bilayer and the cytoskeleton were considered as two

distinct layers of shells with sliding‐only interaction. Furthermore, bilayer membrane

models with interlayer slide have been proposed to model a lipid membrane in [71, 3]
and interleaflet sliding in lipidic bilayers was studied in [27].

In the current work we propose a partitioned numerical scheme for FSI problems
between viscous, incompressible fluids and multi‐layered structures, where the coupling
across the fluid‐structure interface, and between different layers in the multi‐layered
structures satisfies a slip condition. Our ideas related to the numerical method develop‐
ment are deeply rooted in the knowledge we gained from the mathematical analysis of
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the underlying problem.

3 PROBLEM DEFINITION

We begin by describing a benchmark problem for the interaction between an incompress‐
ible, viscous fluid and an elastic composite structure consisting of two layers, allowing
slip between the fluid and composite structure, and between the two structural layers.
The flow of an incompressible, viscous fluid is modeled by the Navier‐Stokes equations
in a time‐dependent domain $\Omega$_{F}(t) ,

see Fig. 2:

FLUID :
$\rho$_{F}(\partial_{t}u+u\cdot\nabla u) = \nabla\cdot$\sigma$^{F}(u,p) ,

in $\Omega$_{F}(t) ,  t\in (0, T) , (3)
\nabla\cdot u = 0,

where $\rho$_{F} denotes fluid density, u is the fluid velocity, $\sigma$^{F} is the fluid Cauchy stress

tensor, $\sigma$^{F} = -p\mathrm{I}+2$\mu$_{F}\mathrm{D}(u) for Newtonian fluids, p is the fluid pressure,  $\mu$ is the

kinematic viscosity coefficient, and \mathrm{D}(u) = \displaystyle \frac{1}{2}(\nabla u+\nabla^{ $\tau$}u) is the symmetrized gradient
of fluid velocity u.

FIGURE 2: Example of fluid and structure domains.

To simplify presentation, we assume that the reference fluid domain is a cylinder of

radius R and length L
, denoted by $\Omega$_{F} , with the lateral boundary denoted by  $\Gamma$ . We

assume that the cylinder wall is compliant and that it consists of two layers: a thin layer,
whose location at time \mathrm{t} is denoted by  $\Gamma$(t) ,

and a thick structural layer, whose location

at time \mathrm{t} is denoted by $\Omega$_{S}(t) ,
as shown in Figure 2.

We explain the main ideas for the case when the thin structure is modeled as a

linearly elastic membrane or shell, described by the following general equations:

THIN STRUCTURE : $\rho$_{S}h\partial_{tt} $\eta$+\mathcal{L}_{e} $\eta$=f ,
on  $\Gamma$, t\in(0, T) , (4)

where  $\eta$ is a vector function describing the displacement of the membrane/shell from its

reference configuration  $\Gamma$, \mathcal{L}_{e} is a coercive and continuous differential operator on the

function space specified later, derived from the elastic energy of the thin structure, f is

force density (load), and $\rho$_{S} and h are the structure density and thickness, respectively.
The elastodynamics of the thick structural layer will be governed by the equations

of linear elasticity. In Lagrangian coordinates, they describe the displacement \mathrm{d} of the
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thick elastic structure with respect to a fixed, reference configuration $\Omega$_{S} :

THICK STRUCTURE : $\rho$_{T}\partial_{tt}\mathrm{d}=\nabla\cdot$\sigma$^{S}(\mathrm{d}) in $\Omega$_{S}, t\in(0, T) . (5)
Here $\sigma$^{S}(\mathrm{d}) is the first Piola‐Kirchhoff stress tensor given by $\sigma$^{s}(\mathrm{d})=2$\mu$_{S}\mathrm{D}(\mathrm{d})+$\lambda$_{S}(\nabla.
\mathrm{d})\mathrm{I} for a linearly elastic material, and $\rho$_{T} is the thick structure density. Coefficients $\mu$_{S}

and $\lambda$_{S} are the Lamé constants describing the material properties of the structure.

The fluid, the thin structure and the thick structure are coupled via two sets of

coupling conditions: the dynamic and kinematic coupling conditions. Denote by  $\xi$ the

thin structure velocity,  $\xi$ = \partial_{t} $\eta$ , and by  v the thick structure velocity, v = \partial_{t}\mathrm{d} . The

coupling we consider in this work is given by:
\bullet DYNAMIC COUPLING CONDITION:

$\rho$_{S}h\partial_{t} $\xi$+\mathcal{L}_{e} $\eta$=-J$\sigma$^{F}n^{F}|_{ $\Gamma$(t)}-$\sigma$^{S}n^{s} , on  $\Gamma$\times(0, T) , (6)

stating that the thin structure elastodynamics is driven by the jump in the nor‐

mal stress across the interface. The term J is the Jacobian of the transformation

between the Eulerian and Lagrangian formulations of the fluid and structure prob‐
lems, respectively.

\bullet KINEMATIC COUPLING CONDITION (including the Navier slip condition):

 $\xi$\cdot n^{F} = u\cdot n^{F}|_{ $\Gamma$(t)} on  $\Gamma$\times(0, T) (the non‐penetration condition)
 $\eta$\cdot n^{S} = d\cdot n^{S} on  $\Gamma$\times (0, T) (continuity of normal displacement)

( $\xi$-u)\cdot$\tau$^{F} = $\alpha$^{fs}J$\sigma$^{F}n^{F}\cdot$\tau$^{F}|_{ $\Gamma$(t)} on  $\Gamma$\times (0, T) (slip between fluid and structure)
( $\xi$-v)\cdot$\tau$^{S} = $\alpha$^{SS}$\sigma$^{S}n^{S}\cdot$\tau$^{S} on  $\Gamma$\times(0, T) (slip between structures)

Here, n and  $\tau$ denote the outward normal and tangental unit vectors to the structure

(superscript  S) and fluid (superscript F ) domains. This problem is supplemented with

initial and boundary data defined on the portion of the boundary that is fixed, e.g., on

the inflow and outflow boundaries shown in Fig. 2.

3.1 ENERGY ESTIMATE

One can show that the following formal energy inequality holds for this problem:

\displaystyle \frac{1}{2}\frac{d}{dt}($\rho$_{F}\Vert u\Vert_{L^{2}($\Omega$^{F}(t))}^{2}+$\rho$_{S}h\Vert\partial_{\mathrm{t}} $\eta$\Vert_{L^{2}( $\Gamma$)}^{2}+$\rho$_{T}\Vert\partial_{t}\mathrm{d}\Vert_{L^{2}($\Omega$^{S})}^{2}+c\Vert $\eta$\Vert_{H^{2}( $\Gamma$)}^{2}+2$\mu$_{\mathcal{S}}\Vert \mathrm{D}(\mathrm{d})\Vert_{L^{2}($\Omega$^{S})}^{2}
+$\lambda$_{S}\displaystyle \Vert\nabla\cdot \mathrm{d}\Vert_{L^{2}($\Omega$^{S})}^{2})+$\mu$_{F}\Vert \mathrm{D}(u)\Vert_{L^{2}($\Omega$^{F}(t))}^{2}+\frac{1}{$\alpha$^{fs}}\Vert u_{ $\tau$}-$\xi$_{ $\tau$}\Vert_{L^{2}( $\Gamma$)}^{2}+\frac{1}{$\alpha$^{ss}}\Vert$\xi$_{ $\tau$}-v_{ $\tau$}\Vert_{L^{2}( $\Gamma$)}^{2}\leq \mathrm{C},

(7)
where the subscript  $\tau$ denotes the tangential component of the vector function. In this

estimate \mathrm{C} depends on the initial and boundary data, and constant c in front of the

H^{2}‐norm of  $\eta$ is associated with the coercivity of the structure operator \mathcal{L}_{e} . This energy
estimate shows that the proposed model is reasonable in the sense that the total kinetic

and elastic energy of the coupled problem, plus dissipation due to fluid viscosity and slip
friction are all bounded by a constant depending only on the initial and boundary data.
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3.2 THE ALE FRAMEWORK

To deal with the difficulty associated with the fact that the fluid domain changes in

time, we adopt the Arbitrary Lagranian Eulerian (ALE) framework [42, 25]. The ALE

approach is based on introducing a family of arbitrary, smooth, homeomorphic mappings
A_{t} defined on the reference domain $\Omega$^{F} such that, for each t \in (t_{0}, T) , A_{t} maps the

reference domain $\Omega$^{F} into the current domain $\Omega$^{F}(t) :

\mathcal{A}_{t}:$\Omega$^{F}\rightarrow$\Omega$^{F}(t)\subset \mathbb{R}^{n}, n=2 , 3, x=\mathcal{A}_{t}(\hat{x})\in$\Omega$^{F}(t) , for \hat{x}\in$\Omega$^{F}.

Written in ALE framework, system (5) reads as follows: Find u and p , with û (x\hat{}, t)=
u(A_{\mathrm{t}}(\hat{x}), t) such that

$\rho$_{F}(\displaystyle \frac{\partial u}{\partial t}|_{\hat{x}}+(u-w)\cdot\nabla u) =\nabla\cdot$\sigma$^{F}(u,p) , in $\Omega$^{F}(t)\times(0, T) , (8)

\nabla\cdot u=0 in $\Omega$^{F}(t) \times(0, T) , (9)

where

w=\displaystyle \frac{\partial A_{t}(\hat{x})}{\partial t} (10)

denotes the domain velocity. Note that \displaystyle \frac{\partial f}{\partial t}|_{\hat{x}} denotes the time derivative of f evaluated

on the reference domain.

4 NUMERICAL SCHEME

Our goal is to design a stable, partitioned scheme, which would separate the fluid from

the composite structure, and at every time step require only one solution of the fluid

and structure sub‐problems, avoiding expensive sub‐iterations typically associated with

Dirichlet‐Neumann partitioned FSI schemes [46]. Schemes that require only one sub‐

iteration between sub‐probems at every time step are called loosely coupled.
There are many different ways the coupled FSI problem can be split into a fluid

and a structure sub‐problems. Our strategy is to semi‐discretize our coupled evolution

problem in time using the Lie operator splitting scheme [34]. The scheme is applied to

our coupled problem which can be written, in general terms, as an evolution problem

\displaystyle \frac{dU}{dt}=AU=(A_{1}+A_{2})U, t\in(0, T) , with U(0)=U_{0}.

The time interval is divided into N sub‐intervals, and at every sub‐interval (t_{n}, t_{n+1})
the coupled problem is semi‐discretized in time and solved by splitting the problem
into two sub‐problems, defined by the operators A_{1} and A_{2} , following the Lie‐Trotter

formula [34]. More precisely, the sub‐problem determined by the operator A_{1} is solved

(dU/dt=A_{1}U) with the initial data given by the solution from the previous time step,
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i.e., the solution at t = t_{n} . Then, the sub‐problem determined by the operator A_{2} is

solved (dU/dt=A_{2}U) over (t_{n}, t_{n+1}) with the initial data given by the just calculated

solution of the sub‐problem A_{1} . Using this approach our coupled problem is split into

two sub‐problems, the fluid and structure sub‐problems, which communicate via the

initial data. To obtain a stable scheme, the trick is to perform the splitting, i.e., to

define the operators A_{1} and A_{2} in such a way that the semi‐discretized energy of the

split problem approximates well the energy of the continuous problem. Based on our

recent experience with partitioned schemes [51, 53, 54], we propose to split the dynamic
coupling condition (6) into two parts, one serving as a boundary condition for the fluid

sub‐problem, and the other in the structure sub‐problem, such that both parts include

the time‐derivative term (as defined by the Lie splitting):

structure structure structure

\hat{\mathrm{L}^{s^{h\underline{\partial_{t} $\xi$}}}}+ \hat{L_{e} $\eta$} \hat{$\sigma$^{S}n^{S}} on  $\Gamma$ . (11)
fluid

Here we note that  n^{F} and n^{S} are outward normals to the fluid and thick structure

domains, respectively, i.e., they point in opposite directions.

Although the Lie splitting scheme is generally first‐order accurate in time, it has

been shown that direct application of Lie scheme to FSI problems results in sub‐optimal
accuracy [12]. To increase the accuracy, we modify the Lie splitting in such a way that

the structure�feels� the fluid not only via the initial data, but also through the loading
exerted by the fluid onto the structure, given by J$\sigma$^{F}n^{F} . For this purpose, we rewrite

the dynamic coupling condition (11) by adding and subtracting the normal fluid stress

obtained at the previous time step J$\sigma$^{F}n^{F} , and use one part in the fluid and the other

in the structure sub‐problem:

structure structure structure structure

L_{\leftarrow}^{\hat{s^{h\partial_{t} $\xi$+}}} \hat{L_{e} $\eta$} =-J$\sigma$^{F}n^{F}-\hat{$\sigma$^{S}n^{S}}+J$\sigma$^{F}n^{F}\overline{-J$\sigma$^{F}n^{F}} on  $\Gamma$ . (12)
fluid fluid fluid

This way the structure sub‐problem �feels� the fluid not only via the initial data but

also via the newly added term  J$\sigma$^{F}n^{F}.
Based on these ideas, we propose here the following scheme. First, on each time

interval (t_{n}, t_{n+1}) a structure problem is solved for the thick structure, modeled by (13)
below, with boundary conditions at the thin‐thick structure interface incorporating the

slip, the non‐penetration condition and the dynamic coupling condition. This boundary
condition is obtained from the�structure part� of the dynamic coupling condition (12):

$\rho$_{S}h\partial_{t} $\xi$+L_{e} $\eta$=-$\sigma$^{S}n^{S}-J$\sigma$^{F}n^{F} \mathrm{o}\mathrm{n}  $\Gamma$,

by first writing this condition in components: the tangential and normal component.
Then, the non‐penetration condition between the thin and thick structure is taken into
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account in the normal direction, giving rise to (14), while in the tangential direction, the

forcing by the fluid Cauchy stress onto the thin structure J^{n}$\sigma$^{F}(u^{n},p^{n})n^{F}\cdot$\tau$^{S} is replaced

by friction due to slip between the thin \mathrm{a}_{-}\mathrm{n}\mathrm{d} thick structure: − \displaystyle \frac{1}{$\alpha$^{fs}}($\xi$^{n+1}-u^{n})\cdot $\tau$ ,
ob‐

tained from the Navier slip condition. Similarly, the forcing by the first Piola‐Kirchoff

stress coming from the thick structure acting on the thin structure is replaced by friction

due to slip between the thin and thick structure, giving rise to (15). Thus, the elasto‐

dynamics of the thin fluid‐structure interface in tangential direction is entirely driven

by the jump in friction across the interface itself. The initial data for the thin structure

velocity is given by (u\cdot n^{S},  $\xi$\cdot$\tau$^{S}) obtained from the previous time step. This explains
the derivation of the boundary conditions (14) and (15) below.

Next, a fluid sub‐problem is solved for the Navier‐Stokes equations defined on the

fluid domain  $\Omega$(t^{n}) , with a Robin‐type boundary condition at the fluid‐structure interface

 $\Gamma$(t^{n}) . The normal component of this Robin condition is given by the three fluid terms

in (12):
$\rho$_{S}h\partial_{t} $\xi$\cdot n^{F}=-J$\sigma$^{F}n^{F}\cdot n^{F}+(J$\sigma$^{F}n^{F})^{n}\cdot n^{F} ,

on  $\Gamma$,

where the acceleration term on the left hand‐side is discretized in time ($\xi$^{n+1}-$\xi$^{n})\cdot n^{F}/ $\Delta$ t
and the term $\xi$^{n+1}\cdot n^{F} is replaced by u^{n+1}\cdot n^{F} due to the non‐penetration condition,
while the initial data term $\xi$^{n}\cdot n^{F} is taken to be the just calculated velocity of the

thin structure from the structure sub‐problem, which we denoted by $\xi$^{n+1}\cdot n^{F} . The

tangential component of the Robin condition for \mathrm{u}^{n+1} on  $\Gamma$(t^{n}) is determined from the

Navier slip condition. This explains the derivation of condition (18) below.

After the fluid and structure sub‐problems are calculated, the fluid domain is updated
via an ALE mapping, as we specify below.

To present details of the scheme, we introduce the following notation for the first

order discrete time derivative:

d_{t}$\varphi$^{n+1}:=($\varphi$^{n+1}-$\varphi$^{n})/ $\Delta$ t.

STEP AI (STRUCTURE). Given u^{n} and p^{n} from the previous time step, calculate

$\xi$^{n+1}\cdot $\tau$, \mathrm{d}^{n+1} and v^{n+1} such that

v^{n+1}=d_{t}\mathrm{d}^{n+1}, $\xi$^{n+1}=d_{t}$\eta$^{n+1}

and the thick structure equations hold:

$\rho$_{T}d_{t}v^{n+1}=\nabla\cdot$\sigma$^{s}(\mathrm{d}^{n+1}) in $\Omega$^{s} (13)

with the following boundary conditions at the thin‐thick structure interface  $\Gamma$

 $\rho$_{S}h\displaystyle \frac{v^{n+1}-u^{n}}{ $\Delta$ t}\cdot n^{S}+\mathcal{L}_{e}\mathrm{d}^{n+1}\cdot n^{s}=-J^{n} $\sigma$(u^{n},p^{n})n^{F}\cdot n^{S}-$\sigma$^{S}(\mathrm{d}^{n+1})n^{S}\cdot n^{s} (14)

$\rho$_{S}h\displaystyle \frac{$\xi$^{n+1}-$\xi$^{n}}{ $\Delta$ t}\cdot$\tau$^{S}+\mathcal{L}_{e}$\eta$^{n+1}\cdot$\tau$^{S}=-\frac{1}{$\alpha$^{fs}}($\xi$^{n+1}-u^{n})\cdot$\tau$^{S}-\frac{1}{$\alpha$^{ss}}($\xi$^{n+1}-v^{n+1})\cdot$\tau$_{(15)}^{\mathcal{S}}
($\xi$^{n+1}-v^{n+1})\cdot$\tau$^{S}=$\alpha$^{ss}$\sigma$^{S}(\mathrm{d}^{n+1}).n^{S}\cdot$\tau$^{S}
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From here we can calculate the thin structure displacement via

$\eta$^{n+1}\cdot n^{S}=\mathrm{d}^{n+1}\cdot n^{S}, $\eta$^{n+1}\cdot$\tau$^{S}= $\Delta$ t$\xi$^{n+1}\cdot$\tau$^{S}+$\eta$^{n}\cdot$\tau$^{S}.

STEP A2 (FLUID). Given the thin structure location $\eta$^{n+1} and velocity $\xi$^{n+1} , calcu‐

late (u^{n+1},p^{n+1}) such that:

$\rho$_{F}d_{t}u^{n+1}|_{$\Omega$^{F}}+$\rho$_{F} ((u^{n}-w^{n}) . \nabla)u^{n+1} = \nabla .  $\sigma$(u^{n+1},p^{n+1}) in $\Omega$^{F}(t^{n}) (16)\nabla .  u^{n+1} = 0

with the following boundary data at the fluid‐structure interface  $\Gamma$(t^{n}) :

$\rho$_{S}h\displaystyle \frac{u^{n+1}-$\xi$^{n+1}}{ $\Delta$ t} . n^{F}+J^{n} $\sigma$(u^{n+1},p^{n+1})n^{F} . n^{F}=J^{n} $\sigma$(u^{n},p^{n})n^{F} . n^{F} , (17)

u^{n+1} . $\tau$^{F}+$\alpha$^{fs}J^{n} $\sigma$(u^{n+1},p^{n+1})n^{F} . $\tau$^{F}=$\xi$^{n+1} . $\tau$^{F} . (18)

FLUID DOMAIN UPDATE. Given the displacement $\eta$^{n+1} of the boundary  $\Gamma$ , we

update the fluid domain  $\Omega$^{F}(t^{n+1}) in a classical way by using the harmonic extension

\mathrm{E}\mathrm{x}\mathrm{t}($\eta$^{n+1}) of the boundary data $\eta$^{n+1} onto the entire domain, and compute the ALE

velocity w^{n+1} which is defined as the time derivative of the ALE mapping More

precisely, calculate the ALE mapping as:

\mathcal{A}_{t^{n+1}}(\hat{x})=\hat{x}+\mathrm{E}\mathrm{x}\mathrm{t}($\eta$^{n+1}) \forall\hat{x}\in$\Omega$^{F},

and update

$\Omega$^{F}(t^{n+1})=\displaystyle \mathcal{A}_{t^{n+1}}($\Omega$^{F}) , w^{n+1}=\frac{d\mathcal{A}_{t^{n+1}}}{dt}=\frac{x^{n+1}-x^{n}}{ $\Delta$ t} , (19)

where x^{n+1}=\mathcal{A}_{t^{n+1}}^{-1}(\hat{x}) \in$\Omega$^{F}(t^{n+1}) and x^{n}=\mathcal{A}_{t^{n}}^{-1}(\hat{x}) \in$\Omega$^{F}(t^{n}) , for \hat{x}\in$\Omega$^{F}.

SET n=n+1 AND RETURN TO STEP Al.

Remark 1. We remark that in this scheme the kinematic coupling condition describing
continuity of the normal components of the velocity between the fluid and thin structure

is satisfied asynchronously, and not identically. It is, in general, not true in this scheme

that \mathrm{u}^{n}\cdot n^{F}=$\xi$^{n}\cdot n^{F} . Only in the limit as  $\Delta$ t\rightarrow 0 , this will be satisfied. In fact, we

show below that this condition is satisfied to the second‐order accuracy in  $\Delta$ t.

Remark 2. We further remark that the splitting proposed here is slightly different from

the splitting discussed in the existence proof in [56], and it is significantly different

from the splitting schemes proposed by the authors in [10, 51] to solve FSI problems
with the no‐slip kinematic toupling condition. One important difference is the form of

the Robin boundary condition for the fluid sub‐problem. In contrast with the earlier
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works [10, 51, 9, 11, 8, 56], the Robin boundary condition (17), (18) ties the fluid and

structure inertia implicitly only in the normal component of the inertia. The lack of

implicit coupling between the fluid and structure inertia in loosely coupled schemes for

problems with no‐slip condition typically leads to instabilities due to the added mass

effect. We show below that this is not the case here. Our energy estimate for the

semi‐discretized problem, presented in (38) and (39) below, shows that the energy of

the semi‐discretized problem is bounded, uniformly in  $\Delta$ t , indicating that this scheme

is also unconditionally stable. This is interesting because it says that in FSI problems
with slip, the normal and tangential components of the velocity do not play equal roles

in the stability of numerical schemes. Normal displacement influences volume change
and tangential displacement only

( reshuMes� the points within the elastic structure. In

the tangential direction dissipation due to slip friction is sufficient to provide stability
of our scheme. This is new. It is because of friction due to slip that our scheme does

not require implicit coupling between the fluid and structure inertia in both the normal

and tangential direction, and still provides an unconditionally stable partitioned scheme

without the need for sub‐iterations at every time step.

4.1 FULLY DISCRETIZED SCHEME IN WEAK FORM

We discretize problem (13)-(19) in space using a finite element method approach. Let

V^{F}(t) = \{ $\varphi$:$\Omega$^{F}(t)\rightarrow \mathbb{R}^{d}| $\varphi$=\hat{ $\varphi$}\circ(\mathcal{A}_{\mathrm{t}})^{-1}, \hat{ $\varphi$}\in(H^{1}($\Omega$^{F}))^{d}\} , (20)
Q(t) = \{ $\psi$:$\Omega$^{F}(t)\rightarrow \mathbb{R}| $\psi$=\hat{ $\psi$}\circ(\mathcal{A}_{t})^{-1}, \hat{ $\psi$}\in L^{2}($\Omega$^{F})\} , (21)

V^{T} = {  $\varphi$\in(H^{1}($\Omega$^{S}))^{d}| $\varphi$=0 on $\Gamma$_{in/out}^{s} }, (22)
V^{s} = {  $\chi$\in(H^{1}( $\Gamma$))^{d}| $\chi$=0 at x=0, L}, (23)

for all t \in [0, T] , where d stands for the dimension of the problem. These are the

spaces associated with the fluid, pressure, thick structure problem, and the thin structure

problem.
We recall here that the thin structure operator \mathcal{L}_{E} , obtained from the elastic energy

of the thin structure, is coercive and continuous on the space V^{S} , which defines a bilinear

form on V^{s} :

a_{E}( $\chi$,  $\eta$)=\displaystyle \int_{ $\Gamma$}\mathcal{L}_{E} $\chi$\cdot $\eta$,
and the norm

\Vert $\eta$\Vert_{E}^{2}:=a_{E}( $\eta$,  $\eta$) . (24)
We will use this norm in the energy estimate below.

The finite element spaces are then defined as the subspaces V_{h}^{f}\subset V^{f}, Q_{h}\subset Q,  V_{h}^{T}\subset
 V^{T} and V_{h}^{s} \subset  V^{S} based on a conforming finite element triangulation with maximum

triangle diameter h= $\Delta$ x . We assume that spaces V_{h}^{f} and Q_{h}^{f} are inf‐sup stable. The

main steps of the scheme are given as follows:
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STEP Al (STRUCTURE): Given u_{h}^{n} and p_{h}^{n} from the previous time step, calculate

$\xi$_{h}^{n+1}\cdot $\tau$, \mathrm{d}_{h}^{n+1} and v_{h}^{n+1} such that

v_{h}^{n+1}=d_{t}\mathrm{d}_{h}^{n+1}, $\xi$_{h}^{n+1}=d_{t}$\eta$_{h}^{n+1}

and the following weak form of problem (13)‐(15) holds for all ($\varphi$_{h}^{s}, $\chi$_{h}) \in V_{h}^{T}\times V_{h}^{S} :

$\rho$_{T}\displaystyle \int_{$\Omega$^{\mathrm{S}}}d_{t}v_{h}^{n+1}\cdot$\varphi$_{h}^{s}+2$\mu$_{S}\int_{$\Omega$^{\mathcal{S}}}\mathrm{D}(\mathrm{d}_{h}^{n+1}):\mathrm{D}($\varphi$_{h}^{S})+$\lambda$_{S}\int_{$\Omega$^{s}}(\nabla\cdot \mathrm{d}_{h}^{n+1})(\nabla\cdot$\varphi$_{h}^{s})
+\displaystyle \frac{$\rho$_{S}h}{ $\Delta$ t}\int_{ $\Gamma$} (v_{h}^{n+1} . n^{S})($\varphi$_{h}^{s} . n^{\mathcal{S}})+$\rho$_{S}h\displaystyle \int_{ $\Gamma$}(d_{\mathrm{W}}$\xi$^{n+1} . $\tau$^{S})($\chi$_{h} . $\tau$^{S})+\int_{ $\Gamma$}(\mathcal{L}_{e}\mathrm{d}_{h}^{n+1} . n^{S})($\varphi$_{h}^{s} . n^{\mathcal{S}})

+\displaystyle \int_{ $\Gamma$} (\displaystyle \mathcal{L}_{e}$\eta$_{h}^{n+1} . $\tau$^{S})($\chi$_{h} . $\tau$^{S})+\frac{1}{$\alpha$^{ss}}\int_{ $\Gamma$}(v_{h}^{n+1}-$\xi$_{h}^{n+1}) . $\tau$^{S}($\varphi$_{h}^{S}-$\chi$_{h}) . $\tau$^{S}

+\displaystyle \frac{1}{$\alpha$^{fs}}\int_{ $\Gamma$} ($\xi$^{n+1} . $\tau$^{S})($\chi$_{h} . $\tau$^{S})=\displaystyle \frac{$\rho$_{S}h}{ $\Delta$ t}\int_{ $\Gamma$}(u_{h}^{n} . n^{S})($\varphi$_{h}^{S} . n^{S})+\frac{1}{$\alpha$^{fs}}\int_{ $\Gamma$}(u^{n} . \dot{ $\tau$}^{S})($\chi$_{h} . $\tau$^{S})
-\displaystyle \int_{ $\Gamma$}J^{n}( $\sigma$(u_{h}^{n},p_{h}^{n})n^{F}|_{ $\Gamma$}\cdot n^{s})($\varphi$_{h}^{s}\cdot n^{S}) (25)

STEP A2 (FLUID): Given the thin structure location $\eta$_{h}^{n+1} and velocity $\xi$_{h}^{n+1} , calcu‐

late (u_{h}^{n+1},p^{n+1}) such that for all ($\varphi$_{h}^{F}, $\psi$_{h})\in V_{h}^{F}\times Q_{h}

$\rho$_{F}\displaystyle \int_{$\Omega$^{F}(t^{n})}d_{t}u_{h}^{n+1} . $\varphi$_{h}^{F}+$\rho$_{F}\displaystyle \int_{$\Omega$^{F}(\mathrm{t}^{\mathfrak{n}})} ((u_{h}^{n}-w_{h}^{n}) . \nabla)u_{h}^{n+1} . $\varphi$_{h}^{F}

+2$\mu$_{F}\displaystyle \int_{$\Omega$^{F}(t^{n})}\mathrm{D}(u_{h}^{n+1}):\mathrm{D}($\varphi$_{h}^{F})-\int_{$\Omega$^{F}(t^{n})}p_{h}^{n+1}\nabla . $\varphi$_{h}^{F}+\displaystyle \int_{$\Omega$^{F}(t^{n})} $\psi$\nabla .  u_{h}^{n+1}

+\displaystyle \frac{1}{$\alpha$^{fs}}\int_{ $\Gamma$} (u_{h}^{n+1} . $\tau$^{F})($\varphi$_{h}^{F} . $\tau$^{F})+\frac{$\rho$_{S}h}{ $\Delta$ t}\int_{ $\Gamma$}(u_{h}^{n+1} . n^{F})($\varphi$_{h}^{F} . n^{F})
=\displaystyle \frac{1}{$\alpha$^{fs}}\'{I}_{ $\Gamma$} ($\xi$_{h}^{n+1} . $\tau$^{F})($\varphi$_{h}^{F} . $\tau$^{F})+\frac{$\rho$_{S}h}{ $\Delta$ t}\int_{ $\Gamma$}($\xi$_{h}^{n+1} . n^{F})($\varphi$_{h}^{F} . n^{F})

+\displaystyle \int_{ $\Gamma$}J^{n} ( $\sigma$(u_{h}^{n},p_{h}^{n})n^{F}|_{ $\Gamma$} . n^{F})($\varphi$_{h}^{F} . n^{F})-\displaystyle \int_{$\Gamma$_{in/\mathrm{o}u\mathrm{t}}}p_{in/o\mathrm{u}t}(t^{n})$\varphi$_{h}^{F} . n^{f}dx . (26)

4.2 STABILITY ENERGY ESTIMATE

dThe main goal is to show that the splitting scheme (25), (26) is designed in such a

way that the energy of the discretized problem approximates well the energy of the

continuous problem. To simplify calculations and focus on the issues related to the

splitting strategy, we introduce the following simplifying assumptions:

\bullet Fluid domain is fixed ( \mathrm{i}.\mathrm{e}. , geometric nonlinearities are neglected).

\bullet Fluid advection is neglected.
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These two issues are related since.energy estimates for the problem with advection must

include moving domain in order to control the cubic terms that arise in the corresponding
energy [51, 56]. These simplifying assumptions are normally used in stability analysis of

FSI partitioned schemes [12, 29, 30].
We first derive an energy equality with the assumption that the pressure driving the

problem is zero, and then obtain an energy inequality assuming that the inlet and outlet

pressure are not necessarily equal to zero.

We start by obtain the energy of the fluid and structure sub‐problems by replacing
the test functions in (25) by: $\varphi$_{h}^{s}=v_{h}^{n+1}, $\chi$_{h} =$\xi$_{h}^{n+1} , and the test function in (26) by:
$\varphi$_{h}^{F}=u_{h}^{n+1},  $\psi$=p_{h}^{n+1} . Adding the resulting equations together and multiplying by  $\Delta$ t

one gets the following:

$\alpha$_{2}(s
+$\mu$_{S}(\Vert \mathrm{D}(\mathrm{d}_{h}^{n+1})\Vert_{L^{2}($\Omega$^{S})}^{2}-\Vert \mathrm{D}(\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{S})}^{2}+\Vert \mathrm{D}(\mathrm{d}_{h}^{n+1}-\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{S})}^{2})

+\displaystyle \frac{$\lambda$_{S}}{2}(||\nabla\cdot \mathrm{d}_{h}^{n+1}\Vert_{L^{2}($\Omega$^{S})}^{2}-\Vert\nabla\cdot \mathrm{d}_{h}^{n}\Vert_{L^{2}($\Omega$^{S})}^{2}+\Vert\nabla\cdot(\mathrm{d}_{h}^{n+1}-\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{3})}^{2})
+\displaystyle \frac{$\rho$_{S}h}{2}(\Vert$\xi$_{h}^{n+1}\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}-\Vert$\xi$_{h}^{n}\cdot$\tau$^{s}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert($\xi$_{h}^{n+1}-$\xi$_{h}^{n})\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2})

+\displaystyle \frac{1}{2}(\Vert$\eta$_{h}^{n+1}\Vert_{E}^{2}-||$\eta$_{h}^{n}\Vert_{E}^{2}+\Vert$\eta$_{h}^{n+1}-$\eta$_{h}^{n}\Vert_{E}^{2})+\frac{ $\Delta$ t}{$\alpha$^{s\mathrm{s}}}\Vert(v_{h}^{n+1}-$\xi$_{h}^{n+1})\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}

+\displaystyle \frac{$\rho$_{s}h}{2}( ( $\Gamma$))
+\displaystyle \frac{ $\Delta$ t}{2$\alpha$^{f\mathrm{s}}}| ( $\Gamma$))

+\displaystyle \frac{$\rho$_{F}}{2} (\Vert u_{h}^{n+1}\Vert_{\mathrm{j}}' n+1h)\Vert_{L^{2}($\Omega$^{F})}^{2}
+\displaystyle \frac{$\rho$_{S}h}{2}(\Vert $\tau$ [.( $\Gamma$)2_{2})
+\displaystyle \frac{ $\Delta$ t}{2$\alpha$^{fs}} L^{2}( $\Gamma$)2)

= (27)

 $\tau$

To express the right hand‐side in terms of the  L^{2} norms of the fluid and structure

quantities we notice that (17) implies:

u^{n+1}\displaystyle \cdot n^{S}-$\xi$^{n+1}\cdot n^{S}=-\frac{ $\Delta$ t}{$\rho$_{S}h}J^{n}( $\sigma$(u^{n+1},p^{n+1})n^{F}|_{ $\Gamma$}- $\sigma$(u^{n},p^{n})n^{F}|_{ $\Gamma$})\cdot n^{s} on  $\Gamma$.

This is interesting not only because we will use this in the energy estimate, but also

because it shows that the kinematic coupling condition in the normal direction (the
non‐penetration condition) is satisfied in our scheme to the second‐order accuracy in

 $\Delta$ t , namely:

u^{n+1}\displaystyle \cdot n^{S}=$\xi$^{n+1}\cdot n^{S}+\frac{( $\Delta$ t)^{2}}{$\rho$_{S}h}d_{t} $\sigma$(u^{n},p^{n})n^{F}|_{ $\Gamma$}\cdot n^{S}.
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With this observation the integral \mathcal{I} on the right hand‐side of (27) becomes:

\mathcal{I} = \displaystyle \int_{ $\Gamma$}J^{n}( $\sigma$(u_{h}^{n},p_{h}^{n})n^{F}|_{ $\Gamma$}\cdot n^{S})(u_{h}^{n+1}\cdot n^{S}-v_{h}^{n+1}\cdot n^{s})
= \displaystyle \frac{ $\Delta$ t}{2$\rho$_{S}h}\Vert J^{n} $\sigma$(u^{n},p^{n})n^{F}|_{ $\Gamma$}\cdot n^{S}\Vert_{L^{2}( $\Gamma$)}^{2}-\frac{ $\Delta$ t}{2$\rho$_{S}h}\Vert J^{n} $\sigma$(u^{n+1},p^{n+1})n^{F}|_{ $\Gamma$}\cdot n^{S}\Vert_{L^{2}( $\Gamma$)}^{2}

 $\Delta$ t

+_{\overline{2$\rho$_{S}h}}\Vert J^{n}( $\sigma$(u^{n+1},p^{n+1})n^{F}|_{ $\Gamma$}- $\sigma$(u^{n},p^{n})n^{F}|_{ $\Gamma$})\cdot n^{S}\Vert_{L^{2}( $\Gamma$)}^{2}
= \displaystyle \frac{ $\Delta$ t}{2$\rho$_{S}h}\Vert J^{n} $\sigma$(u^{n},p^{n})n^{F}|_{ $\Gamma$}\cdot n^{s}\Vert_{L^{2}( $\Gamma$)}^{2}-\frac{ $\Delta$ t}{2$\rho$_{S}h}\Vert J^{n} $\sigma$(u^{n+1},p^{n+1})n^{F}|_{ $\Gamma$}\cdot n^{S}\Vert_{L^{2}(\mathrm{r})}^{2}

+\displaystyle \frac{$\rho$_{S}h}{2 $\Delta$ t}\Vert(u^{n+1}-v^{n+1})\cdot n^{S}\Vert_{L^{2}( $\Gamma$)}^{2} . (28)

Now, the last term in (28) cancels out the same term on the left hand‐side in (27) (where
we recall that v^{n+1}\cdot n^{S}=$\xi$^{n+1}\cdot n^{s} ), and we obtain the following energy equality;

\displaystyle \frac{$\rho$_{T}}{2}(\Vert v_{h}^{n+1}\Vert_{L^{2}($\Omega$^{S})}^{2}+\Vert v_{h}^{n+1}-v_{h}^{n}\Vert_{L^{2}($\Omega$^{S})}^{2})
+ $\mu$ s(\Vert \mathrm{D}(\mathrm{d}_{h}^{n+1})\Vert_{L^{2}($\Omega$^{S})}^{2}+\Vert \mathrm{D}(\mathrm{d}_{h}^{n+1}-\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{S})}^{2})

+_{2}^{$\lambda$_{S}}\rightarrow(\Vert\nabla\cdot \mathrm{d}_{h}^{n+1}\Vert_{L^{2}($\Omega$^{S})}^{2}+\Vert\nabla\cdot(\mathrm{d}_{h}^{n+1}-\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{S})}^{2})
+\displaystyle \frac{$\rho$_{F}}{2}(\Vert u_{h}^{n+1}\Vert_{L^{2}($\Omega$^{F})}^{2}+\Vert u_{h}^{n+1}-u_{h}^{n}\Vert_{L^{2}($\Omega$^{F})}^{2})+2 $\Delta$ t$\mu$_{F}\Vert \mathrm{D}(u_{h}^{n+1})\Vert_{L^{2}($\Omega$^{F})}^{2}

+\displaystyle \frac{$\rho$_{S}h}{2}(\Vert$\xi$_{h}^{n+1}\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert u_{h}^{n+1}\cdot n^{F}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert($\xi$_{h}^{n+1}-$\xi$_{h}^{n})\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert($\xi$_{h}^{n+1}-u_{h}^{n})\cdot n^{S}\Vert_{L^{2}( $\Gamma$)}^{2})
+\displaystyle \frac{1}{2}(\Vert$\eta$_{h}^{n+1}\Vert_{E}^{2}+\Vert$\eta$_{h}^{n+1}-$\eta$_{h}^{n}\Vert_{E}^{2})+\frac{ $\Delta$ t}{$\alpha$^{\^{o} S}}\Vert(v_{h}^{n+1}-$\xi$_{h}^{n+1})\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}

+\displaystyle \frac{ $\Delta$ t}{2$\alpha$^{fs}}(\Vert u_{h}^{n+1}\cdot$\tau$^{F}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert($\xi$_{h}^{n+1}-u_{h}^{n})\cdot$\tau$^{s}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert(u_{h}^{n+1}-$\xi$_{h}^{n+1})\cdot$\tau$^{F}\Vert_{L^{2}( $\Gamma$)}^{2})
+\displaystyle \frac{(\triangle t)^{2}}{2$\rho$_{S}h}\Vert J^{n} $\sigma$(u^{n+1},p^{n+1})n^{F}|_{ $\Gamma$}\cdot n^{\mathcal{S}}\Vert_{L^{2}( $\Gamma$)}^{2}

=\displaystyle \frac{$\rho$_{T}}{2}\Vert v_{h}^{n}\Vert_{L^{2}($\Omega$^{S})}^{2}+ $\mu$ s\Vert \mathrm{D}(\mathrm{d}^{n}h)\Vert_{L^{2}( $\Omega$)}^{2}s+\frac{ $\lambda$}{2}\mathrm{Z}\Vert\nabla\cdot \mathrm{d}_{h}^{n}\Vert_{L^{2}($\Omega$^{S})}^{2}+\frac{$\rho$_{F}}{2}\Vert u_{h}^{n}\Vert_{L^{2}($\Omega$^{F})}^{2}

+\displaystyle \frac{$\rho$_{S}h}{2}(\Vert$\xi$_{h}^{n}\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert u_{h}^{n}\cdot n^{F}\Vert_{L^{2}( $\Gamma$)}^{2})
+\displaystyle \frac{1}{2}\Vert$\eta$_{h}^{n}\Vert_{E}^{2}+\frac{\triangle t}{2$\alpha$^{fs}}\Vert u_{h}^{n}\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}+\frac{(\triangle t)^{2}}{2$\rho$_{S}h}\Vert J^{n} $\sigma$(u^{n},p^{n})n^{F}|_{ $\Gamma$}\cdot n^{S}\Vert_{L^{2}( $\Gamma$)}^{2} (29)

To make sense of the terms in this estimate we introduce the following notation. First,
introduce the kinetic and elastic energy of the dìscretized coupled problem, respectively:

\mathcal{E}_{k}^{n} = \displaystyle \frac{$\rho$_{F}}{2}\Vert u_{h}^{n}\Vert_{L^{2}($\Omega$^{F})}^{2}+\frac{$\rho$_{T}}{2}\Vert v_{h}^{n}\Vert_{L^{2}($\Omega$^{S})}^{2}+\frac{$\rho$_{s}h}{2}(\Vert$\xi$_{h}^{n}\cdot$\tau$^{S}||_{L^{2}( $\Gamma$)}^{2}+\Vert u_{h}^{n}\cdot n^{F}\Vert_{L^{2}( $\Gamma$)}^{2}),(30)
\mathcal{E}_{e}^{n} = $\mu$_{S}\displaystyle \Vert \mathrm{D}(\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{S})}^{2}+\frac{$\lambda$_{S}}{2}\Vert\nabla\cdot \mathrm{d}_{h}^{n}\Vert_{L^{2}($\Omega$^{S})}^{2}+\frac{1}{2}\Vert$\eta$_{h}^{n}\Vert_{E}^{2} , (31)

and denote the total energy of the discretized problem at time t^{n} by

\mathcal{E}^{n}=\mathcal{E}_{k}^{n}+\mathcal{E}_{e}^{n} . (32)
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Next, introduce a discrete analogy of physical dissipation due to fluid viscosity and due

to slip between the fluid and thin structure and between the thin and thick structure:

D^{n} =  $\Delta$ t(2$\mu$_{F}\displaystyle \Vert \mathrm{D}(u_{h}^{n})\Vert_{L^{2}($\Omega$^{F})}^{2}+\frac{1}{$\alpha$^{ss}}\Vert(v_{h}^{n}-$\xi$_{h}^{n}) . $\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}

+\displaystyle \frac{1}{$\alpha$^{fs}} (\frac{1}{2} (\Vert($\xi$_{h}^{n}-u_{h}^{n-1}) . $\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert(u_{h}^{n}-$\xi$_{h}^{n}) . $\tau$^{F}\Vert_{L^{2}( $\Gamma$)}^{2}))) . (33)

Notice how the contribution due to friction in the slip between the fluid and the thin

structure, i.e., the two terms in the last line above, is obtained from both the fluid and

structure sub‐problems, and it contributes to the energy via the average between the

two: \displaystyle \frac{1}{2}(\Vert($\xi$_{h}^{n}-u_{h}^{n-1})\cdot$\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}+\Vert(u_{h}^{n}-$\xi$_{h}^{n})\cdot$\tau$^{F}\Vert_{L^{2}( $\Gamma$)}^{2}) .

Finally, we introduce the notation for the terms in the energy equality (29) that are

due to numerical dissipation. These terms will all tend to zero as  $\Delta$ t\rightarrow 0 :

\mathcal{E}_{ $\Delta$ t}^{n} = \displaystyle \frac{\triangle t}{2$\alpha$^{fs}}\Vert u_{h}^{n} . $\tau$^{F}\displaystyle \Vert_{L^{2}( $\Gamma$)}^{2}+\frac{( $\Delta$ t)^{2}}{2$\rho$_{S}h}\Vert J^{n} $\sigma$(u^{n},p^{n})n^{F}|_{ $\Gamma$} . n^{S}\Vert_{L^{2}( $\Gamma$)}^{2} , (34)

D_{\triangle t}^{n+1,n} = \displaystyle \frac{$\rho$_{F}}{2}\Vert u_{h}^{n+1}-u_{h}^{n}\Vert_{L^{2}($\Omega$^{F})}^{2}+\frac{$\rho$_{T}}{2}\Vert v_{h}^{n+1}-v_{h}^{n}\Vert_{L^{2}($\Omega$^{9})}^{2}+\frac{$\rho$_{s}h}{2}\Vert($\xi$_{h}^{n+1}-$\xi$_{h}^{n}) . $\tau$^{S}\Vert_{L^{2}( $\Gamma$)}^{2}

+ $\mu$_{S}\displaystyle \Vert \mathrm{D}(\mathrm{d}_{h}^{n+1}-\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{S})}^{2}+\frac{$\lambda$_{S}}{2}\Vert\nabla . (\displaystyle \mathrm{d}_{h}^{n+1}-\mathrm{d}_{h}^{n})\Vert_{L^{2}($\Omega$^{\mathcal{S}})}^{2}+\frac{1}{2}\Vert$\eta$_{h}^{n+1}-$\eta$_{h}^{n}\Vert \mathrm{a}\mathrm{e}5)
PROPOSITION 1 (Energy Equality) Let p_{in/out}=0 . Then the following energy equal‐
ity holds:

\mathcal{E}^{n+1}+\mathrm{S}_{\triangle t}^{n+1}+\mathcal{D}^{n+1}+\mathcal{D}_{ $\Delta$ t}^{n+1,n}=\mathcal{E}^{n}+\mathrm{S}_{ $\Delta$ t}^{n} , (36)
where \mathcal{E}^{n}, \mathcal{D}^{n}, \mathcal{E}_{ $\Delta$ t}^{n} , and D_{\triangle t}^{n+1,n} are defined in (32), (33), and (35).

If we sum all the terms as n=0 ,
. . .

, N-1 on both sides, there will be cancellations

in all the terms corresponding to \mathcal{E}^{n+1} and \mathcal{E}_{ $\Delta$ t}^{n+1} except for the 0‐th term corresponding
to the initial data, and the N‐th term, giving rise to the following estimate:

COROLLARY 1 Let p_{in/o\mathrm{u}t}=0 . Then the following energy inequality holds:

\mathcal{E}^{N}+\mathcal{E}_{\triangle t}^{N}\leq \mathcal{E}^{0}+\mathcal{E}_{ $\Delta$ t}^{0} . (37)

In the continuos case when  $\Delta$ t\rightarrow 0 , the terms due to numerical dissipation in (37) will

approach zero since they each contain the factor  $\Delta$ t . This means that estimate (37)
approximates well the physical energy of the continuous coupled problem, since it states

that the sum of the kinetic and elastic energy is bounded by a constant that depends
only on the initial data.

We now consider the case when p_{in/o\mathrm{u}t} is not necessarily equal to zero. The pressure

is assumed to be discretized in time by a piecewise constant function so that

p_{in/}\displaystyle \ovalbox{\tt\small REJECT} u\mathrm{t}(t^{n})=\frac{1}{ $\Delta$ t}\int_{\triangle t}^{n+1\triangle t}p_{in/out}(t)dt.
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The non‐zero inlet and outlet pressure contribute to the energy estimate via the last

term in (26). By replacing the test function with fluid velocity, after using the trace

inequality and Korn inequality one obtains the following estimate:

|P_{in/o\mathrm{u}t}(t)\displaystyle \int_{$\Gamma$_{in/o\mathrm{u}t}}u_{z}|\leq C|p_{in/out}|\Vert \mathrm{u}\Vert_{H^{1}($\Omega$^{F}(t^{n}))}\leq\frac{C}{2 $\epsilon$}|p_{in/out}|^{2}+\frac{ $\epsilon$ C}{2}\Vert \mathrm{D}(\mathrm{u})\Vert_{L^{2}($\Omega$^{F}(t^{n}))}^{2}.
By choosing  $\epsilon$ such that \displaystyle \frac{ $\epsilon$ C}{2} \leq 2$\mu$_{F} term on the right is �swallowed� by the viscous term

on the left hand‐side in the energy equality (29) to obtain:

THEOREM 1 (Energy Inequality) The following energy inequality holds for the fully
discretized problem (25)2 (26):

\mathcal{E}^{n+1}+\mathcal{E}_{ $\Delta$ t}^{n+1}+\mathcal{D}^{n+1}+D_{\triangle t}^{n+1,n}\leq \mathcal{E}^{n}+\mathcal{E}_{\triangle t}^{n}+ $\Delta$ tC((p_{in}^{n})^{2}+(p_{ou\mathrm{t}}^{n})^{2}) , (38)

where C is a constant that depends only on the parameters in the problem.

Similarly as before, we can show that this estimate approximates well the continuous

energy of the coupled problem by summing both the left and the right hand‐sides with

respect to n=1 ,
. . .

, N-1
,

to obtain:

COROLLARY 2 The following uniform energy estimate hold for the solution of the dis‐

cretized problem (25), (26):

\mathcal{E}^{N}+\mathcal{E}_{ $\Delta$ t}^{N}\leq \mathcal{E}^{0}+\mathcal{E}_{\triangle t}^{0}+\tilde{C}(\Vert p_{in}^{n}\Vert_{L^{2}(0,T)}^{2}+\Vert p_{out}^{n}\Vert_{L^{2}(0,T)}^{2}) , (39)

where constant \tilde{C} only depends on the parameters in the problem.

The pressure terms on the right hand‐side were obtained after using Hölder�s inequality
from:

 $\Delta$ t\displaystyle \sum_{n=0}^{N-1}(p_{in}^{n})^{2}= $\Delta$ t\sum_{n=0}^{N-1}(\frac{1}{ $\Delta$ t}\int_{n $\Delta$ t}^{(n+1)\triangle t}p_{in}(t)dt)^{2}\leq\Vert p_{in}\Vert_{L^{2}(0,T)}^{2}.
Again, we see that estimate (39) implies a good discrete approximation of the energy

estimate at the continuous level. Estimate (39) implies that as  $\Delta$ t\rightarrow 0 , the kinetic en‐

ergy and the elastic energy of the coupled problem are uniformly bounded by a constant

on the right hand‐side, which depends only on the initial data and on the parameters in

the problem.

4.3 NUMERICAL RESULTS

Two sets of simulations were performed to test the proposed strategy. One is a fluid‐

thin structure interaction problem with the Navier slip boundary condition at the fluid‐

structure interface, and the other is a structure‐structure interaction problem with slip
at the structure‐structure interface.
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FLUID‐STRUCTURE INTERACTION WITH SLIP

FIGURE 3: Flow through an elastic tube with a throat: slip v.s. no‐slip. The two figures on the

left show axial velocity. The two figures on the right show displacement: red line corresponds
to slip, blue line to no‐slip.

Fluid‐structure interaction with slip. Motivated by the Ketchup example, we

calculated the flow of an incompressible, viscous fluid through an elastic tube with a

throat, see Fig. 3, driven by the normal stress inlet/outlet data. The flow is moving
from left to right, and it gets faster as it passes though the throat. The fluid domain is

moving and a full two‐way coupling is considered. By comparing the flow through the

throat in both cases we see that the flow with the Navier slip condition (no‐stick coating)
is significantly faster than the flow when the no‐slip condition is used, as expected. One

can also see from the colors depicting the axial component of velocity that the velocity
profiles are different.

Structure‐structure interaction with slip. We considered two structures of

finite thickness interacting with each other through a slip condition. See Figs. 4 and 5.

Equations of 2\mathrm{D} elasticity were used to describe the elastodynamics of each structure.

The elasticity properties of both structures were identical. The structures were clamped
at the end points and a symmetric, continuous external force (normal stress) was applied
at the bottom boundary causing bending, with zero values at the end points, and a

maximum value in the middle. Zero normal stress was assigned at the top boundary. The

response of the laminated structure with slip was compared to the laminated structure

with no‐slip (or, equivalently, a single structure with double thickness). The simulations

were performed in 2\mathrm{D} . Figs. 4 and 5 show the magnitude of displacement, the tangential
displacement of the structure‐structure interface, and 2\mathrm{D} tangential displacement.

We see that the top and bottom structures that are connected via the slip condition

stretch in opposite direction at the structure‐structure interface while the combined

structure bends slightly in the middle. See Figs. 4 right, and 5. The top structure at the

interface is stretched from left to right, then in the middle the tangential displacement
is zero, and then at the right half the top structure is stretched from right to left. The

opposite is true for the bottom structure at the structure‐structure interface.

One can clearly see sliding between the two structures in the slip case, which is not

present in the no‐slip case.
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LAMINATED STRUCTURE WITH SLIP V.S. NO‐SLIP

TANGENTIAL DISPL. AT INTERFACE

FIGURE 4: Left: Magnitude of displacement for laminated structure with a slip (top)
and no‐slip (bottom) coupling condition. The horizontal interface is in the middle separating
two layers. See Fig. 5 for the corresponding 2\mathrm{D} tangential displacement. Right: Tangential
displacement at the structure‐structure interface. Positive tangential displacement de‐

notes the motion from left to right, and negative from right to left. The blue line corresponds
to the no‐slip case, the yellow line corresponds to the tangential interface displacement of the

top structure slipping over the bottom structure, and the red line corresponds to tangential
interface displacement of the bottom structure with slip.

LAMINATED STRUCTURE WITH SLIP V,S. NO‐SLIP

FIGURE 5: The figures show 2\mathrm{D} plots of tangential displacement for laminated structures

with slip (top) and \mathrm{n} $\sigma$‐slip (bottom). Red denotes positive tangential displacement (from left

to right) and blue negative (from right to left). The arrows in the two figures on the right show

displacement vectors (normalized). One can clearly see sliding between two structures in the

slip case, which is not present in the no‐slip case.
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