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Abstract

Preliminary results on the convergence to the Vlasov‐Navier‐Stokes equations of a

system of particles interacting with a fluid are announced. Main emphasis is given to

the difficulties that arise and hints for solutions are given.

1 Introduction

The aim of this work is to investigate a fluid‐particle system which seems to converge, in

the hmit of infinitely many particles, to a Vlasov‐Navier‐Stokes (VNS) system. We restrict

this preliminary investigation mainly to dimension d=2 and \mathrm{W} shall assume to be on a

torus $\Gamma$^{2} with periodic boundary conditions. The facts described in this note have only the

character of a preliminary investigation and announcement of partial results.

Let  $\epsilon$\in (0,1) and N\in \mathrm{N} be given, where N is the number of particles; consider the

system:

\displaystyle \frac{\partial u^{N}}{\partial t}= $\Delta$ u^{N}-u^{N} . \displaystyle \nabla u^{N}-\nabla$\pi$^{N}-\frac{c_{0}}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t, X_{t}^{i})-V_{t}^{i})$\delta$_{X_{\mathrm{t}}^{i}}^{ $\epsilon$}
\displaystyle \frac{d}{dt}X_{t}^{i}=V_{t}^{i}

\displaystyle \frac{1}{N}dV_{t}^{i}=\frac{c_{0}}{N}(u_{ $\epsilon$}^{N}(t, X_{\mathrm{t}}^{i})-V_{t}^{i})dt+\frac{1}{N^{2}}\sum_{j=1}^{N}K(X_{t}^{i}-X_{t}^{j})dt+\frac{$\sigma$_{p}}{N}dW_{t}^{i}.
The first equation is the usual Navier‐Stokes system for the velocity and pressure (u^{N}, $\pi$^{N})
of a fluid, �forced� by the presence of N particles; a precise description of the interaction

between particles and fluid is a difficult topic (just as an instance, see [2], [5], [8], [9], [16]),
outside the scope of this preliminary note, hence we adopt a partially phenomenological
description, where particles act as delta Dirac forces, with intensity proportional to the

velocity difference between fluid and particle. For technical reasons, but also as a trace of

the fact that particles occupy a volume, we use a smoothed delta Dirac $\delta$_{X_{t}^{i}}^{ $\epsilon$} to describe the

数理解析研究所講究録
第2058巻 2017年 43-59

43



force; and analogously the velocity difference is computed between the particle velocity V_{\mathrm{t}}^{i}
and a local average at particle center X_{t}^{i} of the fluid velocity, u_{ $\epsilon$}^{N}(t, X_{t}^{i}) .

The smoothings used in the first equation above are given by classical mollifiers of the

form $\theta$_{ $\epsilon$}^{0}(x)=$\epsilon$^{-d}$\theta$^{0}($\epsilon$^{-1}x) , where $\theta$^{0} is a smooth prObability density with compact support
which includes a neighbor of the origin, and are defined as

$\delta$_{X_{t}^{i}}^{ $\epsilon$}(x)=($\theta$_{ $\epsilon$}^{0}*$\delta$_{X_{t}^{i}})(x)=$\theta$_{ $\epsilon$}^{0}(x-X_{t}^{i}) , u_{ $\epsilon$}^{N}=$\theta$_{ $\epsilon$}^{0}*u^{N}.
The last two equations of the system above describe the Newtonian dynamics of parti‐

cles and we assume the velocity V_{t}^{i} satisfies a stochastic differential equation driven by the

Brownian motion W_{t}^{i} in \mathbb{R}^{d} ; the Brownian motions W_{t}^{i}, i= 1, N are independent and

defined on a probability space ( $\Omega$, \mathcal{F}, P) .

We assume the particles have mass \displaystyle \frac{1}{N} ; the force acting on particle i has three compo‐

nents: the Stokes drug force due to the fluid, an interaction force given by the interaction

kernel K and a noise perturbation.

Remark 1 Recall that Stokes drag force is given by 6 $\pi$ r $\mu$ \mathrm{v} where r is particle radius, \mathrm{v} is

the relative velocity of particle and  $\mu$ is viscosity. Hence the interpretation of the scalings
in  N chosen above is: the particle mass is of order \displaystyle \frac{1}{N} ; the particle radius is of order \displaystyle \frac{1}{N}
and  c_{0}\sim 6 $\pi \mu$ . Particles with a mass density similar to the fluid should have mass of the

order \displaystyle \frac{1}{N^{\mathrm{d}}} , while here we assume it of order \displaystyle \frac{1}{N} , much bigger. This corresponds to a regime
of sparse heavy partides.

Example 2 The interaction kernel is usually absent in classical formulations of VNS sys‐

tem. We include it here since it may be interesting in some applications. For instance,
think to metastatic cancer cells flowing in the blood stream, an example where the condition

of sparse heavy particles may be realistic. These cells do not only interact with the fluid
but also between themselves and possibly with other special cells.

Example 3 Having in mind applications to biological fluids, an interesting variations

could be to introduce a death‐rate of the form $\lambda$_{t}^{i}=g(u_{ $\epsilon$}^{N}(t,X_{t}^{i})-V_{t}^{i}) , motivated by the fact
that stress may induce cell death. Such additional term lead to the term-g(u(t,x)-v)F(t, x, v)
in the limit. PDE.

As we said above, our aim is proving convergence to a Vlasov‐Navier‐Stokes system.We
would hke to prove that, as  N\rightarrow\infty and  $\epsilon$\rightarrow 0 with appropriate link between them, the

pair

u^{N}(t,x) , S_{t}^{N}=\displaystyle \frac{1}{N}\sum_{i=1}^{N}$\delta$_{X_{\mathrm{t}}^{i},V_{\mathrm{r}^{i}}}
(S_{\mathrm{t}}^{N} (dx, dv) is a time‐dependent random probability measure, called empirical measure of

the particle system) converges to the solution (u, F) of

\displaystyle \frac{\partial u}{\partial t}= $\Delta$ u-u\cdot\nabla u-\nabla $\pi$-\int(u(t,x)-v)F(x,v)dv (1)
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\displaystyle \frac{\partial F}{\partial t}+v\cdot\nabla_{x}F+\mathrm{d}\mathrm{i}\mathrm{v}_{v}((u-v)F+(K*F)F)=\frac{$\sigma$_{p}^{2}}{2}$\Delta$_{v}F (2)

Remark 4 The term

-\displaystyle \int(u(t,x)-v)F(x,v)dv=\int vF(x,v) dv ‐ u (t,x)\displaystyle \int F(x,\prime v)dv
is the so called Brinkman�s force, usually denoted in the physical literature by

�

 j-u $\rho$
�

We shall see that proving this hmit result is a difficult problem. Let us preliminarily
describe a technical difficulty with the Navier‐Stokes part.

Concerning the hterature, there are results on particle systems related to VNS equations
but only under special conditions, caused by the fact that a true fluid‐particle interaction

is imposed, see [1], [2], [6], [15]; and there are results on convergence of PDEs to PDEs,
although motivated by particle arguments, see [7], [10], [11].

1.1 Difficulty with the Navier‐Stokes forcing

Let us restrict here to  d=2 . The equation

\displaystyle \frac{\partial u^{N}}{\partial t}= $\Delta$ u^{N}-u^{N} . \displaystyle \nabla u^{N}-\nabla$\pi$^{N}-\frac{c_{0}}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t, X_{t}^{i})-V_{t}^{i})$\delta$_{X_{\mathrm{t}}^{i}}^{ $\epsilon$}
còntains a subtle difficulty. If we put  $\epsilon$=0 , we force Navier‐Stokes equations with an input
which is worse than H^{-1} (recall that in two dimensions the delta Dirac is only in H^{-1- $\gamma$}
for every  $\gamma$>0) and we pretend to speak of u^{N}(t, X_{t}^{i}) (for  $\epsilon$=0 ) which requires u^{N} to be

continuous.

For  $\epsilon$>0 we do not see this regularity issue; but we need uniform estimates in ( $\epsilon$, N)
to pass to the limit, and thus, sooner or later, we meet the difficulty just described.

Remark 5 The need for continuous‐in‐space velocity field in this area has been recognized
also dealing with other questions, see l141 who assumes u\in L^{2}(0, T;C(D)) .

Let us explain this difficulty also with the following argument. To simplify, assume we

have the heat equation in place of the Navier‐Stokes one and we have only one fixed point
particle at position X_{0} :

\displaystyle \frac{\partial u}{\partial t}=\frac{1}{2} $\Delta$ u+(u_{ $\epsilon$}(t, X_{0})-V_{0})$\delta$_{X_{0}}^{ $\epsilon$}
The solution with u_{0}^{N}=0 is

u(t, x)=\displaystyle \int_{0}^{t}(\int p_{t-s}(x-y)$\delta$_{X_{0}}^{ $\epsilon$}(y)dy)(u_{ $\epsilon$}(s, X_{0})-V_{0})ds
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where p_{t}(x) is the heat kernel. If we take the hmit as  $\epsilon$\rightarrow 0 we have

u(t, x)=\displaystyle \int_{0}^{t}\frac{1}{(2 $\pi$(t-s))^{d/2}}e^{-\frac{|x-X_{\mathrm{f}1}|^{2}}{2(t- $\epsilon$)}}(u(s, X_{0})-V_{0})ds.
Already in d=2 , for x=X_{0} , we see that |u(t, X_{0})|=+\infty!

1.2 Why the problem should be solvable

Notice however that the conjectured limit equation, the Valsov‐Navier‐Stokes system is

better: no delta Dirac appear there.

What is meaningless, as remarked in the previous section, is the model with a finite

number N_{0} of point particles of mass \displaystyle \frac{1}{N_{0}} , if we take the limit  $\epsilon$\rightarrow 0 . But this is not what

we want to do: we want to take the limit of infinitely many particles, with infinitesimal

interaction strength. We may hope that, in the limit as  $\epsilon$\rightarrow 0 , we may control the quantities

\displaystyle \frac{\mathrm{b}\mathrm{e}1}{N}.cause
we also take  N\rightarrow\infty and the intensity of fluid‐particle interaction is rescaled by

However, to realize this program, it is essential to prove that particles do not concentrate

too much, otherwise we take the risk to have again, in the limit, cơńcentrated masses of

particles with finite interaction strength. Therefore, a main purpose of the estimates below

is proving a form of non concentration.

2 Energy balance

Lemma 6 Setting

\displaystyle \mathcal{E}_{t}=\frac{1}{2}\int|u^{N}(t, x)|^{2}dx+\frac{1}{2N}\sum_{i=1}^{N}|V_{t}^{i}|^{2}
if u^{N} is a regular solution then we have

d\displaystyle \mathcal{E}_{t}+(\int|\nabla u^{N}(t, x)|^{2}dx+\frac{1}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t, X_{t}^{i})-V_{t}^{i})^{2})dt
= (\displaystyle \frac{1}{N^{2}}\sum_{i,j=1}^{N}V_{t}^{i}K(X_{t}^{i}-X_{t}^{j})+\frac{$\sigma$_{p}^{2}}{2}) dt+\frac{$\sigma$_{p}}{N}\sum_{i=1}^{N}V_{t}^{i}dW_{\mathrm{t}}^{i}.

The proof is elementary by Itô formula. Notice that the previous result also gives us a

control on

\displaystyle \frac{1}{N}\sum_{i=1}^{N}u_{ $\epsilon$}^{N}(t, X_{t}^{i})^{2}

46



because it is bounded (up to constants) by \displaystyle \frac{1}{N}\sum_{i=1}^{N}|V_{t}^{i}|^{2} plus \displaystyle \frac{1}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t, X_{t}^{i})-V_{t}^{i})^{2}
that are both controlled (the second one integrated in time).

Using the previous a priori estimates one can prove, under the assumptions

u_{0}\in \mathrm{L}_{ $\sigma$}^{2}($\Gamma$^{2})

E[\displaystyle \frac{1}{N}\sum_{i=1}^{N}(|X_{0}^{i}|^{2}+|V_{0}^{i}|^{2})] \leq C
( \mathrm{L}_{ $\sigma$}^{2}($\Gamma$^{2}) is the usual space of divergence free periodic zero mean vector fields on $\Gamma$^{2} )
existence and uniqueness of solutions (for finite N) such that

E[\displaystyle \sup_{t\in[0,T]}\int|u^{N}(t, x)|^{2}dx] \leq C
E[\displaystyle \int_{0}^{T}\int|\nabla u^{N}(t, x)|^{2}dxdt] \leq C

E[\displaystyle \sup_{t\in[0,T]}\frac{1}{N}\sum_{i=1}^{N}(|X_{t}^{i}|^{2}+|V_{t}^{i}|^{2})] \leq C
E[\displaystyle \int_{0}^{T}\frac{1}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t, X_{\mathrm{t}}^{i})-V_{t}^{i})^{2}dt] \leq C

E[\displaystyle \int_{0}^{T}\frac{1}{N}\sum_{i=1}^{N}u_{ $\epsilon$}^{N}(t,X_{t}^{i})^{2}dt] \leq C.
From these bounds, with relatively classical compactness theorems, one can show that

the family of laws of (u^{N}, S^{N}) are tight and thus there exist subsequences which converge
in law; changing probability space it is possible to assume a.s. convergence in appropriate
topologies. In the sequel, to understand the difficulties, we assume for simplicity such

a.s. convergence. We do not want to give the details here, which will be included in a

forthcoming technical work. Let us only mention that subsequences (u^{N_{k}}, S^{N_{k}}) , on the

new probability space, will have the property that

\bullet  u^{N_{k}} converges strongly in L^{2}(0, T;L^{2}($\Gamma$^{2}))
\bullet  u^{N_{k}} converges weakly in L^{2}(0, T;W^{1,2}($\Gamma$^{2})) and weak star in L^{\infty}(0,T;L^{2}($\Gamma$^{2}))
\bullet  S^{N_{k}} converges in the weak topology of measures uniformly in time.

In the sequel, when we informally discuss questions of convergence, we replace the

subsequence (u^{N_{k}}, S^{N_{k}}) with the full sequence (u^{N}, S^{N}) for notational simplicity.
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3 A difficulty about passage to the limit in the Navier‐Stokes

system

Let us stress that the existence of a convergent subsequence (u^{N_{k}}, S^{N_{k}}) (denoted below by

(u^{N}, S^{N}\backslash in the topologies indicated at the end of the previous section, is trUe both if

we keep  $\epsilon$>0 unchanged with N , or if we hnk it to N by choosing  $\epsilon$= $\epsilon$ N\rightarrow 0 . However,
in the first case we can pass to the hmit, in the second one we meet a relevant techmical

difficulty, that we now explain.
In weak form on divergence free smooth test vector fields  $\phi$ , the Navier‐Stokes system

reads

\displaystyle \langle u^{N}(t) ,  $\phi$\rangle_{x}-\{u_{0},  $\phi$\rangle_{x}+\int_{0}^{t}\langle\nabla u^{N}, \nabla $\phi$\rangle_{x}ds
=\displaystyle \int_{0}^{t}\langle u^{N}\cdot\nabla $\phi$, u^{N}\rangle_{x}ds-\{\frac{1}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t,X_{t}^{i})-V_{t}^{i})$\delta$_{X_{t}^{i}}^{ $\epsilon$} \mathrm{V}\mathrm{q}1), \mathrm{X}, $\phi$(\cdot)\}_{x}

where \{f, g\displaystyle \rangle_{x}=\int_{$\Gamma$^{d}}f(x)\cdot g(x)dx for suitable vector fields f, g , and \cdot denotes scalar product
in \mathbb{R}^{d} . The difficulty is only in the convergence of the last term, when u^{N} converges only
in the usual topologies of weak solutions mentioned at the end of last section. What about

the convergence of

u_{ $\epsilon$}^{N}(t, X_{t}^{i})=($\theta$_{ $\epsilon$}^{0}*u_{t}^{N})(X_{t}^{i}) ?

It seems necessary to prove some convergence of u^{N} in the uniform topology. But uniform

estimates are not among the a priori bounds.

Although not being the only one, a natural way to prove bounds in the uniform topology
for u_{t}^{N} is by Sobolev embedding, hence investigating bounds on derivatives of u_{t}^{N} . Since

we are on a torus and we restrict to d=2 , we use vorticity. The question then is: can

we prove enstrophy type bounds? Consider thenthe vorticity equation, which in the case

d=2 , for the vorticity function $\omega$^{N}=\nabla^{\perp}\cdot u^{N} , is

\displaystyle \frac{\partial$\omega$^{N}}{\partial t}= $\Delta \omega$^{N}-u^{N} . \displaystyle \nabla$\omega$^{N}-\frac{\mathrm{c}_{0}}{N}\sum_{i=1}^{N}\nabla^{\perp}. ((u_{ $\epsilon$}^{N}(t,X_{t}^{i})-V_{t}^{i})$\delta$_{x_{t^{\dot{\mathrm{a}}}}^{N}}^{ $\epsilon$}) . (3)

A main conceptual remark is that particles create vorticity. Terms hke \partial_{i}$\delta$_{X_{{\$}}^{i}}^{$\epsilon$_{N}} contribute

diverging terms in N for  $\epsilon$= $\epsilon$ N\rightarrow 0 and thus vorticity does not seem to be under control.

4 Summary of results

After this long introduction, let us state the two directions discussed below.
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\bullet First we develop a �two steps approach which consists in two separate hmit theo‐

rems.

1. The first one is only the hmit as  N\rightarrow\infty , given a constant value of  $\epsilon$\in(0,1) ; it

identifies a hmit \mathrm{P}\mathrm{D}\mathrm{E}_{ $\epsilon$} ;

2. The second one is the limit PDE_{ $\epsilon$}\rightarrow PDE as  $\epsilon$\rightarrow 0.

Linking artificialy ( $\epsilon$, N) , there are sequences ( $\epsilon$ k, N_{k}) where Particles ($\epsilon$_{k},N_{k})\rightarrow PDE
as  k\rightarrow\infty . This is not the solution we were looking for, but it is important to know

that at least this relatively simple two‐step approach works.

\bullet Second, we conjecture a local in time result of the form Particles ($\epsilon$_{N},N) \rightarrow PDE as

N \rightarrow \infty . It is based on local‐in‐time uniform‐in‐x estimates on  u^{N} , jointly with

estimates on no concentration of particles (these two facts proceed together). A full

proof still requires to solve \mathrm{t}\mathrm{e}\mathrm{c}\mathrm{b}\mathrm{u}\mathrm{c}\mathrm{s}^{\mathrm{R}}\mathrm{J} problems, so we limit ourselves to express a

reasonable conjecture.

5 Two‐steps approach

5.1 Preliminaries

The advantage of the �two‐steps� or
��

separate limit� strategy is that it works with minimal

ingredients: we do not need to prove no‐concentration of particles; we do not need the noise

to regularize; we can say something also in the case d=3 (always on a torus $\Gamma$^{3} , to simplify)
We assume, for simplicity of notations, K=0, $\sigma$_{p}=0, c_{0}=1 . However the result remains

true when $\sigma$_{p} \neq  0 and when K is bounded Lipschitz continuous and presumably also in

some cases when K=K_{N} is rescaled in a proper way.

For sake of clarity (also because here there is no average over the randomness), we

restate the well posedness mentioned above for finite N and the energy bounds.

Lemma 7 For every  $\epsilon$\in(0,1) and N\in \mathrm{N} , the system

\displaystyle \frac{\partial u^{N}}{\partial t}= $\Delta$ u^{N}-u^{N}\cdot\nabla u^{N}-\nabla$\pi$^{N}-\frac{1}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t, X_{\mathrm{t}}^{i})-V_{t}^{i}).$\delta$_{X_{\mathrm{t}}^{i}}^{ $\epsilon$}
\displaystyle \frac{d}{dt}X_{t}^{i}=V_{t}^{i}, \frac{d}{dt}V_{\mathrm{t}}^{i}=u_{ $\epsilon$}^{N}(t, X_{t}^{i})-V_{t}^{i}

has a unique solution such that

\displaystyle \sup_{t\in[0,T]}\int|u^{N}(t,x)|^{2}dx+\int_{0}^{T}\int|\nabla u^{N}(t,x)|^{2}dxdt\leq C.
\displaystyle \sup_{t\in[0,T]}\frac{1}{N}\sum_{i=1}^{N}(|X_{t}^{i}|^{2}+|V_{t}^{i}|^{2}) \leq C.

49



5.2 First limit: N\rightarrow\infty,  $\epsilon$\in(0,1) given

We now consider the following mollified VNS system

\displaystyle \frac{\partial u}{\partial t}= $\Delta$ u-u\cdot\nabla u-\nabla $\pi-\theta$_{ $\epsilon$}^{0}*\int(u_{ $\epsilon$}(t, \cdot)-v)F(\cdot, dv) (4)

\displaystyle \frac{\partial F}{\partial t}+v\cdot\nabla_{x}F+\mathrm{d}\mathrm{i}\mathrm{v}_{v}((u_{ $\epsilon$}-v)F)=0 (5)

where

u_{ $\epsilon$}=$\theta$_{ $\epsilon$}^{0}*u.
Thanks to the mollification, we are allowed to investigate this system and convergence of

the particle system when the density of particles is treated just as a measure, not as a

density function. Let us give the appropriate definition. Denote by \mathrm{P}\mathrm{r}_{1}($\Gamma$^{d}\times \mathbb{R}^{d}) the set

of all Borel probability measures  $\mu$ on  $\Gamma$^{d}\times \mathbb{R}^{d} such that

\displaystyle \int_{$\Gamma$^{d}}\prime\int_{\mathbb{R}^{d}}|v| $\mu$ (dx,  dv)<\infty

we endow \mathrm{P}\mathrm{r}_{1}($\Gamma$^{d}\times \mathbb{R}^{d}) with the weak topology, with convergence of first moment. The

notation $\theta$_{ $\epsilon$}^{0}*\displaystyle \int(u_{ $\epsilon$}(t, \cdot)-v) F. (dv), when F \in  C([0, T];\mathrm{P}\mathrm{r}_{1}($\Gamma$^{d}\times \mathbb{R}^{d})) and \mathrm{u}_{ $\epsilon$}(t, \cdot) is

measurable and bounded, stands for

($\theta$_{ $\epsilon$}^{0}*\displaystyle \int(u_{ $\epsilon$}(t, \cdot)-v)F(\cdot, dv))(x)=\int_{$\Gamma$^{\mathrm{d}}}\int_{\mathbb{R}^{d}}$\theta$_{ $\epsilon$}^{0}(x-x')(u_{ $\epsilon$}(t, x')-v')F(t, dx', dv') .

Beside the notation \langle f, g\}_{x} already introduced above, here we also write ( $\mu$, f\}_{x,v} for

\displaystyle \{ $\mu$, f\}_{x,v}=\int_{$\Gamma$^{d}}^{\backslash }\int_{\mathbb{R}^{\mathrm{d}}}f(x, v) $\mu$ (dx , dv) .

Definition 8 Let u_{0} \in \mathrm{L}_{ $\sigma$}^{2}($\Gamma$^{2}) and F_{0} \in \mathrm{P}\mathrm{r}_{1}($\Gamma$^{d}\times \mathbb{R}^{d}) be given. A pair (u, F) is a

solution of system (4)‐(5) with initial condition (u_{0}, F_{0}) if

u\in L^{\infty}(0, T;L^{2}($\Gamma$^{d}))\cap L^{2}(0, T;W^{1,2}($\Gamma$^{d}))
F\in C([0, T] ; Pr_{1}($\Gamma$^{d}\times \mathbb{R}^{d}))

\displaystyle \{u(t),  $\phi$\}_{x,\backslash }-\{u_{0},  $\phi$)_{x}+\int_{0}^{t}\langle\nabla u, \nabla $\phi$\}_{x}ds
=\displaystyle \int_{0}^{t}\{u\cdot\nabla $\phi$, u\rangle_{x}ds-\int_{0}^{t}\langle$\theta$_{ $\epsilon$}^{0}*\int(u_{ $\epsilon$}(s, \cdot)-v)F(s, \cdot, dv) ,  $\phi$\rangle_{x}ds

\{F(t) ,  $\varphi$\rangle_{x,v}=\{F_{0},  $\varphi$\displaystyle \rangle_{x,v}+\int_{0}^{t}\{F(s) , v\displaystyle \cdot\nabla_{x} $\varphi$\rangle_{x,v}ds+\int_{0}^{t}\{F(s), (u_{ $\epsilon$}(s)-v)\cdot\nabla_{v} $\varphi$\}_{x,v}ds
for all divergence free smooth fields  $\phi$:$\Gamma$^{d}\rightarrow \mathbb{R}^{d} and all smooth functions  $\varphi$ :  $\Gamma$^{d}\times \mathbb{R}^{d}\rightarrow \mathbb{R}.
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Theorem 9 Let  $\epsilon$\in(0,1) be given. Assume u_{0}\in \mathrm{L}_{ $\sigma$}^{2} (T2), \displaystyle \frac{1}{N}\sum_{i=1}^{N}(|X_{0}^{i}|^{2}+|V_{0}^{i}|^{2}) \leq C,

and S_{0}^{N}\rightarrow F_{0} in the weak sense of probability measures.

1) Let d=3 . Given  $\epsilon$\in (0 , 1 ) , there exists a subsequence  N_{k}\rightarrow\infty such that the pair

(u^{N_{k}}, S^{N_{k}}) converges (in the sense described at the end of section 2) to a solution (u, F)
of system (4)‐(5) with initial condition (u_{0}, F_{0}) .

2) Let d = 2 . System (4)‐(5), with initial condition (u0, F_{0}) , has a unique solution

(u, F) and, as  N\rightarrow\infty , the pair (u^{N}, S^{N}) converges to (u, F) .

Remark 10 In d=3 obviously we do not know uniqueness due to the Navier‐Stokes part;
hence the convergence holds only for certain subsequences (for every subsequence there is

a sub‐subsequence which converges).

Remark 11 Existence of a solution (u, F) of the limit system (with given  $\epsilon$ \in (0,1))
either can be proved directly or it follows from the convergence result itself,, being based on

a compactness argument. Uniqueness of (u, F) (for d=2) has to be proved directly.

Let us give a few elements of the proof. From the estimates

\displaystyle \sup_{t\in[0,T]}\int|u^{N}(t,x)|^{2}dx+\int_{0}^{T}\int|\nabla u^{N}(t,x)|^{2}dxdt\leq.C
it is classical (cf. [17]) to apply the compactness Aubin‐Lions lemma. Due to the estimate

\displaystyle \sup_{t\in[0,T]}\frac{1}{N}\sum_{i=1}^{N}(|X_{t}^{i}|^{2}+|V_{t}^{i}|^{2}) \leq C
one can use a criterion based on Wasserstein distance to prove compactness of S^{N_{k}^{(0)}}
in C([0,T];\mathrm{P}\mathrm{r}_{1}($\Gamma$^{d}\times \mathbb{R}^{d} From these fact one has the existence of a subsequence

(u^{N_{k}}, S^{N_{k}}) which converges as described at the end of section 2. Call (u, F) the limit

of such subsequence.
Taking the limit in the first four terms of the weak formulation of Navier‐Stokes equa‐

tions (see Definition 8) is classical (cf. [17]). Concerning the last term, we have to prove

that

k\displaystyle \rightarrow\infty \mathrm{h}\mathrm{m}\{\frac{1}{N_{k}}\sum_{i=1}^{N_{k}}(u_{ $\epsilon$}^{N_{k}}(t,X_{t}^{i,N_{k}})-V_{t}^{i,N_{k}})$\delta$_{X_{t}^{i,N_{h}}}^{ $\epsilon$},  $\phi$\}_{x}
=\displaystyle \langle\int_{$\Gamma$^{\mathrm{d}}}\int_{\mathbb{R}^{\mathrm{d}}}$\theta$_{ $\epsilon$}^{0}(\cdot-x')(u_{ $\epsilon$}(t,x')-v')F(t, dx',dv') ,  $\phi$\rangle_{x}
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The term on the left‐hand side is equal to

\displaystyle \int_{$\Gamma$^{d}}\frac{1}{N_{k}}\sum_{i=1}^{N_{k}}(u_{ $\epsilon$}^{N_{k}}(t, X_{t}^{i,N_{k}})-V_{t}^{i,N_{k}})$\theta$_{ $\epsilon$}^{0}(x-X_{t}^{i,N_{k}}) $\phi$(x)dx
=\displaystyle \int_{$\Gamma$^{d}}\int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}(u_{ $\epsilon$}^{N_{k}}(t, x')-v')$\theta$_{ $\epsilon$}^{0}(x-x') $\phi$(x)S^{N_{k}} (dx�, dv')dx

=\displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}(($\theta$_{ $\epsilon$}^{0}*u^{N_{k}}(t))(x')-v')($\theta$_{ $\epsilon$}^{0-}* $\phi$)(x')S^{N_{k}} (dx�, dv')

where $\theta$_{ $\epsilon$}^{0-}(x) =$\theta$_{ $\epsilon$}^{0}(-x) . The term $\theta$_{ $\epsilon$}^{0}*u^{N_{k}}(t) converges‐ uniformly to $\theta$_{ $\epsilon$}^{0}*u(t) for a.e.

t (passing to a subsequence). With httle additional care we can take the limit as  k\rightarrow\infty

and get

\displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}(($\theta$_{ $\epsilon$}^{0}*u(t))(x')-v')($\theta$_{ $\epsilon$}^{0-}* $\phi$)(x')F(t, dx', dv')
=\displaystyle \langle\int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}$\theta$_{ $\epsilon$}^{0}(\cdot-x')(u_{ $\epsilon$}(t, x')-v')F(t, dx', dv') ,  $\phi$\rangle_{x}

To prove that F satisfies the weak identity in Definition 8 we have first to derive an

identity for S^{N_{k}} . By chain rule applied to  $\varphi$(X_{t}^{i,N_{k}}, V_{t}^{i,N_{k}}) we get

\langle S_{t}^{N_{k}},  $\varphi$\rangle_{x,v}=\langle S_{0}^{N_{h}},  $\varphi$\displaystyle \rangle_{x,v}+\int_{0}^{t}\langle S_{8}^{N_{k}}, v\displaystyle \cdot\nabla_{x} $\varphi$\rangle_{x,v}ds+\int_{0}^{t}\langle S_{8}^{N_{k}}, (u_{ $\epsilon$}(s)-v)\cdot\nabla_{v} $\varphi$\rangle_{x,v}ds

(in the deterministic case it is a well known fact that the empirical measure is already a

solution of the limit PDE; in the stochastic case, $\sigma$_{p}\neq 0 , one has to apply Itô formula and

an additional martingale term appears, which however, converges to zero). Then one can

pass to the limit.

Finaly, for d=2 we have to prove uniqueness for the limit system (4)-(5) . In principle,
one of the difficulties is that we deal with solutions F which are only measures. However, we

may use a well known method (see for instance [3]) based on Wasserstein distance d_{1} (  $\mu$ , iỷ)
between  $\mu$, \mathrm{v}\in \mathrm{P}\mathrm{r}_{1}($\Gamma$^{d}\times \mathbb{R}^{d}) . Assume that (u, F) , (u', F') are two solutions. One has

d_{1}(F(t), F'(t))\leq E[|X_{t}-X_{t}'|+|V_{t}-V_{t}
where (X_{t}, V_{t}) satisfies

\displaystyle \frac{d}{dt}X_{t}=V_{t}
\displaystyle \frac{d}{dt}V_{t}=u_{ $\epsilon$}(t, X_{t})-V_{t}

52



where u is the first component of the solution (u, F) , and similarly for (Xt�, V_{t}') (with respect
to (u', F The initial conditions for these two problems are the same, (X_{0}, V_{0} with law

F_{0} . One can easily prove that

E[|X_{t}-X_{t}^{l}|+|V_{t}-V_{t} \displaystyle \leq C\int_{0}^{t}E[|X_{s}-X_{s}|+|V_{s}-\acute{V}_{s}'|]ds
+C\displaystyle \int_{0}^{t}|u_{ $\epsilon$}(s, X_{s})-u_{ $\epsilon$}'(s, X_{s})|ds.

Then one has to repeat classical energy type computations of the 2‐dimensionaì theory
of Navier‐Stokes equations (cf. [17]) to control u-u' in the norms  L^{\infty}(0, T;L^{2}($\Gamma$^{d}))\cap
 L^{2}(0, T;W^{1,2}($\Gamma$^{d})) , bounds to be used jointly with the previous one. The only non clas‐

sical term is

|\displaystyle \langle$\theta$_{ $\epsilon$}^{0}*\int(u_{ $\epsilon$}(t, \cdot)-v)F(\cdot, dv) , u(t)\displaystyle \rangle_{x}-\langle$\theta$_{ $\epsilon$}^{0}*\int(u_{ $\epsilon$}'(t, \cdot)-v)F'(\cdot, dv) , u'(t)\rangle_{x}|
which is controlled by the previous norms of u-u' plus the term

|\displaystyle \langle$\theta$_{ $\epsilon$}^{0}*\int(u_{ $\epsilon$}(t, \cdot)-v)(F(\cdot, dv)-F'(\cdot, dv)) , u(t)\rangle_{x}|
=|\displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}($\theta$_{ $\epsilon$}^{0-}*u(t))(x)(u_{ $\epsilon$}(t, x)-v)(F (dx, dv)-F' (dx, dv))|
\leq C\cdot d_{1}(F(t), F'(t))

(the last bound requires some work, omitted here).These recursive estimates aJlow one to

apply Gronwall lemma and prove that (u, F)=(u', F') .

5.3 Second limit:  $\epsilon$\rightarrow 0

Until now we have proven that the fluid, coupled with the particles, converges, as  N\rightarrow\infty

to system (4)-(5) , where the molhfication with  $\epsilon$ \in (0,1) survives. Called (u^{ $\epsilon$}, F^{ $\epsilon$}) the

solution in d=2 (or a solution in d=3) of (4)-(5) , it remains to investigate the hmit as

 $\epsilon$\rightarrow 0.

The hmit cannot be taken at the�level of measure solutions F
,

or at least this looks

very difficult. Ońe can give a meaning to the weak formulation of the VNS (1)-(2) when F

is only measure‐valued, but at the price of imposing a priori that u is continuous bounded.

This direction could be investigated but requires a fully original approach to VNS system
which is beyond the scope of this note. And in addition, as remarked below, one should

expect only local‐in‐time solutions.

Therefore let us consider the modified VNS system and the true one when F is a

fmction. First, one has to prove that the modified VNS system has a solution (u^{ $\epsilon$}, F^{ $\epsilon$}) in

appropriate function spaces; by the uniqueness result for measures proved above, it should
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be umique also in the weaker class of measure valued solutions. Then one should prove

convergence of (u^{ $\epsilon$}, F^{ $\epsilon$}) to a solution (u, F) of system (1)-(2) . We have checked that both

these steps are plausible following the approach of [18]; see also [4]; however there are

several details and results will appear in a forthcoming work.

When this is done, it is possible to extract suitable sequences ( $\epsilon$ N) such that

(u^{N_{k}}, S^{N_{k}}) converges to (u, F) as  k\rightarrow\infty . Here, by (u^{N_{k}}, S^{N_{k}}) , we mean those obtained

by the fluid‐particle system with  $\epsilon$= $\epsilon$ k.

6 Joint limit

6.1 Introduction

As described in Sections 1.1 and 3, uniform estimates on the velocity are required to pass

to the hmit simultaneously in  N\rightarrow\infty and  $\epsilon$\rightarrow 0 . A natural approach to prove uniform

bounds on u^{N} is to get W^{ $\epsilon$,2} (for  $\epsilon$ > 0) bounds on the vorticity $\omega$^{N} =\nabla^{\perp}\cdot \mathrm{u}^{N} , which

satisfies equation (3): Bounds on the enstrophy are not sufficient, since they are bounds

on the W^{1,2}‐norm of u^{N} which do not imply uniform bounds on u^{N} . Hence we work with

semigroups and look for bounds in more regular topologies. Notice however that enstrophy
bounds meet the same difficulties we have with semigroups.

Denoting by e^{t $\Delta$} the semigroup associated to the Laplacian operator in Ư or C^{ $\alpha$} spaces

on the torus, we have

\displaystyle \frac{\partial$\omega$^{N}}{\partial t}= $\Delta \omega$^{N}-u^{N} . \displaystyle \nabla$\omega$^{N}-\frac{c_{0}}{N}\sum_{i=1}^{N}\nabla^{\perp}. ((u_{ $\epsilon$}^{N}N(t, X_{t}^{i})-V_{t}^{i})$\delta$_{X_{t}^{i}}^{$\epsilon$_{N}}) .

$\omega$^{N}(t)=e^{t $\Delta$}$\omega$^{N}(0)-\displaystyle \int_{0}^{t}e^{(t-s) $\Delta$}u^{N}(s) \nabla$\omega$^{N}(s)ds
-\displaystyle \int_{0}^{t}e^{(t- $\epsilon$) $\Delta$}\nabla^{\perp}. \frac{c_{0}}{N}\sum_{i=1}^{N}(u_{$\epsilon$_{N}}^{N}(s, X_{s}^{i})-\dot{ $\psi$}_{s})$\delta$_{X_{s}^{i}}^{ $\epsilon$}ds.

We want to estimate $\omega$^{N}(t) in W^{2 $\alpha$,2} (Td), hence we use the inequality

\Vert(I- $\Delta$)^{a}$\omega$^{N}(t)\Vert_{L^{2}($\Gamma$^{d})} \leq \Vert(I- $\Delta$)^{ $\alpha$}$\omega$^{N}(0)\Vert_{L^{2}($\Gamma$^{d})}

+\displaystyle \int_{0}^{t}\Vert(I- $\Delta$)^{ $\alpha$}e^{(t-s) $\Delta$}u^{N}(s) . \nabla$\omega$^{N}(s)\Vert_{L^{2}($\Gamma$^{d})}ds

+\displaystyle \int_{0}^{t}\Vert(I- $\Delta$)^{\frac{1}{2}+ $\alpha$}e^{(t-s) $\Delta$}\nabla^{\perp}(I- $\Delta$)^{-\frac{1}{2}}\cdot\frac{\mathrm{c}_{0}}{N}\sum_{i=1}^{N}(u_{$\epsilon$_{N}}^{N}(s, X_{s}^{i})-V_{8}^{i})$\delta$_{X_{8}^{i}}^{ $\epsilon$}\Vert_{L^{2}('$\Gamma$^{d})^{ds}} . (6)
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Let us only concentrate on the term (6) without V_{8}^{i} , which is the sóurce of the main

difficulty. For every T> 0 , denote by \Vert\cdot\Vert_{T,\infty} the supremum norm over [0, T] \times$\Gamma$^{d} . We

have

|\displaystyle \frac{1}{N}\sum_{i=1}^{N}u_{$\epsilon$_{N}}^{N}(s, X_{s}^{i})$\delta$_{X_{s}^{i}}^{ $\epsilon$}(x)|\leq\Vert u_{$\epsilon$_{N}}^{N}\Vert_{T,\infty}F_{S}^{0,N}(x)
where F_{t}^{0,N}=$\theta$_{$\epsilon$_{N}}^{0}*(\displaystyle \frac{1}{N}\sum_{i=1}^{N}$\delta$_{X_{t}^{i}}) and therefore the term (ô) without V_{ $\epsilon$}^{i} is bounded above

by ( \nabla^{\perp}(I- $\Delta$)^{-\frac{1}{2}} is a bounded operator in L^{2}(.$\Gamma$^{d}) )

\displaystyle \Vert\nabla^{\perp}(I- $\Delta$)^{-\frac{1}{2}}\Vert_{L^{2}($\Gamma$^{d})\rightarrow L^{2}($\Gamma$^{d})}\Vert u_{$\epsilon$_{N}}^{N}\Vert_{T,\infty}\int_{0}^{t})
\leq C\Vert u_{$\epsilon$_{N}}^{N}\Vert_{T,\infty}T^{\frac{1}{2}- $\alpha$} \displaystyle \sup \Vert F^{0,N}\Vert_{L^{2}($\Gamma$^{d})} (7)

t\in[0,T]

because

\displaystyle \Vert(I- $\Delta$)^{\frac{1}{2}+ $\alpha$}e^{(t-s) $\Delta$}\Vert_{L^{2}('$\Gamma$^{d})\rightarrow L^{2}($\Gamma$^{d})} \leq\frac{C}{(t-s)^{\frac{1}{2}+ $\alpha$}}
by well known analytic semigroup estimates.

We need an estimate on \Vert F^{0,N}\Vert_{L^{2}( $\Gamma$)^{d}} : this is the property of no concentration of

particles, as announced in Section 1.2.

6.2 No concentration of particles

Set F_{t}^{N}=$\theta$_{$\epsilon$_{N}}*(\displaystyle \frac{1}{N}\sum_{i=1}^{N}$\delta$_{X_{\mathrm{t}}^{l},V_{\mathrm{r}^{i)}}} , where now $\theta$_{ $\epsilon$}=$\theta$_{ $\epsilon$}(x, v) are sm
\cdot

table molhfiers in both

variables, related to $\theta$_{ $\epsilon$}^{0} . Here we need $\sigma$_{p}\neq 0 . One has

dF_{t}^{N}= (\displaystyle \frac{$\sigma$_{p}^{2}}{2}$\Delta$_{v}F_{t}^{N}-\nabla_{x} . $\theta$_{$\epsilon$_{N}}*(vS_{\mathrm{t}}^{N}))dt
-(\nabla_{v}\cdot$\theta$_{$\epsilon$_{N}}*((u_{$\epsilon$_{N}}^{N}(t, x)-v)S_{t}^{N}))dt+dM_{t}^{N}

where

M_{t}^{N}(x, v)=\displaystyle \frac{1}{N}\sum_{i=1}^{N}\int_{0}^{t}\nabla_{v}$\theta$_{$\epsilon$_{N}}(x-X_{s}^{i}, v-V_{s}^{i})$\sigma$_{p}dB_{s}^{i}.
Hence
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\displaystyle \frac{1}{2}d\int_{$\Gamma$^{\mathrm{d}}}\int_{\mathbb{R}^{d}}(F_{t}^{N})^{2}dxdv+\frac{$\sigma$_{p}^{2}}{2}\int_{$\Gamma$^{\mathrm{d}}}\int_{\mathbb{R}^{d}}|\nabla_{v}F_{t}^{N}|^{2} dxdvdt

=\displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}($\theta$_{$\epsilon$_{N}}*(vS_{t}^{N}))\nabla_{x}F_{t}^{N}dxdvdt

+\displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}($\theta$_{$\epsilon$_{N}}*((u_{$\epsilon$_{N}}^{N}(t, x)-v)S_{t}^{N}))\nabla_{v}F_{t}^{N} dxdvdt

plus terms related to the martingale part that we do not discuss explicitly here. Let us see

how to treat the most difficult term: since

|($\theta$_{$\epsilon$_{N}}*(u_{$\epsilon$_{N}}^{N}(t, x)S_{t}^{N}))(x, v)|

=|\displaystyle \int_{$\Gamma$^{\mathrm{d}}}\int_{\mathbb{R}^{d}}$\theta$_{$\epsilon$_{N}}(x-x', v-v')u_{$\epsilon$_{N}}^{N}(t, x')S_{t}^{N} (dx�, dv')|
\displaystyle \leq\int_{\mathrm{N}^{d}}\'{I}_{\mathbb{R}^{d}}$\theta$_{$\epsilon$_{N}}(x-x', v-v')|u_{$\epsilon$_{N}}^{N}(t, x')|S_{t}^{N}(dx', dv')
\leq\Vert u_{$\epsilon$_{N}}^{N}\Vert_{T,\infty}($\theta$_{$\epsilon$_{N}}*S_{t}^{N})(x, v)

we have

|\displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{\mathrm{d}}}($\theta$_{$\epsilon$_{N}}*(u_{$\epsilon$_{N}}^{N}(t, x)S_{t}^{N}))\nabla_{v}F_{t}^{N}dxdv|
\displaystyle \leq\Vert u_{$\epsilon$_{N}}^{N}\Vert_{T,\infty}\int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}F_{t}^{N}|\nabla_{v}F_{t}^{N}|dxdv

\displaystyle \leq $\epsilon$\int_{\mathrm{T}^{d}}\int_{\mathbb{R}^{d}}|\nabla_{v}F_{t}^{N}|^{2}dxdv+\frac{\Vert u_{ $\epsilon$}^{N}N\Vert_{T,\infty}^{2}}{ $\epsilon$}\int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}(F_{t}^{N})^{2}dxdv.
Summarizing,

\displaystyle \frac{1}{2}d\int_{$\Gamma$^{d}}\int_{\mathbb{R}^{\mathrm{d}}}(F_{t}^{N})^{2}dxdv+\frac{$\sigma$_{p}^{2}}{4}\int_{$\Gamma$^{\mathrm{d}}}\int_{\mathbb{R}^{d}}|\nabla_{v}F_{t}^{N}|^{2} dxdvdt

=\displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{\mathrm{d}}}($\theta$_{$\epsilon$_{N}}*(vS_{t}^{N}))\nabla_{x}F_{\mathrm{t}}^{N}dxdvdt

+\displaystyle \frac{\Vert u_{$\epsilon$_{N}}^{N}\Vert_{T,\infty}^{2}}{ $\epsilon$}\int_{$\Gamma$^{d}}\int_{\mathrm{N}^{d}}(F_{t}^{N})^{2}dxdv
plus terms related to the martingale.

Heuristically, it seems that for small T , using (7), the previous estimates �close� and

give a bound on

\Vert u^{N}\Vert_{T,\infty} and \displaystyle \sup_{t\in[0,T]}\Vert F_{t}^{0,N}\Vert_{L^{2}($\Gamma$^{d})}.
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However, there are still several nontrivial technical problems to be overcome. In the previ‐
ous section we needed an estimate on \Vert F_{t}^{0,N}\Vert_{L^{2}($\Gamma$^{d})} . Here, in this section, we have shown

a control on F_{t}^{N} , not F_{t}^{0,N} . One can prove the estimate

\displaystyle \int F_{t}^{0,N}(x)^{2}dx\leq C\int\int|v|^{3}F_{t}^{N}(x, v)dxdv+C\int\int F_{t}^{N}(x, v)^{4}dxdv
(this is a variant of Lemma 1 of [4], which avoids \Vert F_{t}^{N}\Vert_{\infty} , since it looks too difficult to

estimate \Vert F_{t}^{N}\Vert_{\infty} ). But then the two quantities on the right‐hand‐side of this inequality
have to be controlled. We presume that all these steps can be done but due to the com‐

plexity of these estimates, instead of formulating a result, we prefer to limit ourselves to

state a conjecture.

Conjecture 12 Assume d=2, u_{0}\in W^{2 $\alpha$,2}($\Gamma$^{d}) , \displaystyle \int_{$\Gamma$^{d}}\int_{\mathbb{R}^{d}}(F_{0}^{N})^{2}dxdv\leq C . Let (u^{N}, X_{t}^{i}, V_{$\iota$^{i}})
be the solution of the fluid‐particle interacting system, with  $\epsilon$= $\epsilon$ N\rightarrow 0 as  N\rightarrow\infty . Set

 F_{t}^{N}=$\theta$_{$\epsilon$_{N}}*(\displaystyle \frac{1}{N}\sum_{i=1}^{N}$\delta$_{X_{t}^{i},V_{$\iota$^{i}}}) . Then, for small T, (u^{N}, F^{N}) converges to the unique solution

(u, F) of VNS system.

The convergence should holds in several topologies, including the strong topology of

L^{2}(0, T;L^{2}($\Gamma$^{d})) for u^{N} , and of L^{2}(0, T;L^{2}($\Gamma$^{d}\times \mathbb{R}^{2})) for F^{N}.

6.3 Open questions

A first main hmitation of the results described here is the phenomenological description
of the fluid‐body interaction. We have already remarked in the Introduction about the

difficulties met by more reaJistic models.

Thé two‐step approach is complete and extendible to stochastic dynamics. Ón the

contrary, the more interesting joint limit approach, even if true, contains two restrictions:

the short time and the presence of noise in the particles ‐ viscosity in the PDE. The

short time is due, conceptually, to the vorticity produced by the immersed particles, which

increases both with fluid velocity and particle density, therefore introducing a quadratic
term in the equations. Blow‐up due to quadratic terms is prevented by suitable conservation

laws and we have an energy inequality but we miss a conservation law for vorticity, due to

the vorticity production by particles.
Following [18], section 4.1, it could be that uniform‐in‐z estimates on u^{N} can be replaced

by estimates in L^{4}
, which are global; correspondingly, an L^{4}‐control on F^{N} is needed. Here

and for other purposes, we see the importance of a major problem: F^{N} does not satisfy a

continuity equation, but an identity with weaker geometric properties.
As a remark, as soon as we restrict to local in time results, it seems possible to extend

the result of the joint limit to the 3\mathrm{D} case, by working in spaces of sufficiently regular
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solutions u ; see a related problem in [12]. This stresses once more the fact that presumably
we have not taken in full advantage the properties of 2\mathrm{D} fluids.

The viscosity has been used in our approach to obtain an L^{2}‐estimate on F_{t}^{N} , con‐

ceptually fundamental as a mean to prove no concentration of particles. However, for the

limit equation for F , Ư‐estimates are easily obtained in terms of the Ư‐norm of initial

conditions, without need of any Laplacian (see for instance [13]). This could be a signature
of the fact that noise is not needed to prove L^{2}‐estimate on F_{t}^{N}.

Finally, the a priori estimate on

\displaystyle \int_{0}^{T}\frac{1}{N}\sum_{i=1}^{N}(u_{ $\epsilon$}^{N}(t, X_{t}^{i})-V_{t}^{i})^{2}dt=\int_{0}^{T}\int(u_{ $\epsilon$}^{N}(t,x)-v)^{2}S_{t}^{N} (dx , dv)dt

obtained by the energy bound looks promising to control the difficult quadratic terms, but

in all computations they seem to be coupled with other terms not under control.
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