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Abstract

Local stability analysis is made of axisymmetric rotating flows of a per‐

fectly conducting fluid and resistive flows with viscosity, subjected to exter‐

nal azimuthal magnetic field B_{ $\theta$} to non‐axisymmetric as well as axisymmet‐
\mathrm{r}\mathrm{i}\mathrm{c} perturbations. For perfectly conducting fluid (ideal MHD), we use the

Hain‐Lüst equation, capable of dealing with perturbations over a wide range
of the axial wavenumber k to take short wavelength approximation. When

the magnetic field is sufficiently weak, the maximum growth rate is given
by the Oort \mathrm{A}‐value |Ro| , where  $\Omega$(r) is the angular velocity of the rotating
flow as a function only of r, the distance from the axis of symmetry, and the

prime designates the derivative in r . As the magnetic field is increased, the

keplerian flow becomes unstable to waves of short axial wavelength when

Rb=r^{2}(B_{ $\theta$}/r)'/(2B_{ $\theta$})>-3/4 with growth rate proportional to |B_{ $\theta$}| . We

also incorporate the effect of the viscosity and the electric resistivity and ap‐

ply the WKB method in the same way as we do to the perfectly conducting
fluid. In the inductionless limit,i.e. when the magnetic diffusivity is much

larger than the viscosity, Keplerian‐rotation flow of arbitrary distributions of

the magnetic field, including the Liu limit, becomes unstable.
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1 Introduction

Since rediscovery of Velikhov and Chandrasekhar�s result [1, 2] by Balbus and

Hawley [3]\prime , the magnetorotational instability (MRI) has attracted great attention

as a plausible mechanism for triggering turbulence in the flow of an accretion disk,
for promoting outward transport of angular momentum, while the matter accretes

the center. There is a well known Rayleigh�s criterion for stability of a rotating
flow of circular streamlines [4]. Given the angular velocity  $\Omega$(r) as a function only
of the distance r from the rotation axis, define the local Rossby number by Ro=

\displaystyle \frac{1}{2} dlog  $\Omega$/\mathrm{d}\log r=r$\Omega$'/(2 $\Omega$)[5 , 6] . Here the prime designates the derivative with

respect to r . In terms of the epicyclic frequency $\kappa$^{2}=($\Omega$^{2}r^{4})'/r^{3} , it is expressed
as Ro=\mathrm{K}^{2}/(4$\Omega$^{2})-1 . If $\kappa$^{2}\geq 0 or Ro\geq-1 everywhere, such a rotating flow

is linearly stable against axisymmetric disturbances [4, 6]. For an accretion disk,
the angular velocity could satisfy the Keplerian law:  $\Omega$(r)^{2}r=-\nabla $\Phi$ ;  $\Phi$=1/r,
for which Ro=-3/4 . Rayleigh�s criterion may suggest that Keplerian rotation

 $\Omega$\propto r^{-3/2} is hydrodynamically stable.

The magnetic field parallel to the rotation axis drastically alters the stability
characteristics. If the axial magnetic field is applied, however weak it is, a rotat‐

ing flow suffers from instability if Ro<0[1 , 2] , implying that an accretion disk

with Keplerian flow is unstable. We refer this instability to the standard mag‐
netorotational instability (SMRI). The maximum growth rate at a local portion
was found to be 3| $\Omega$|/4 for a Keplerian rotation [7]. Foì} a general rotating flow

of differential rotation  $\Omega$(r) satisfying Ro<0, the most unstable local instability
mode of the SMRI is the axisymmetric one, with the maximum growth rate being
v_{A}/ $\Omega$=\displaystyle \frac{1}{2}|\mathrm{d}\log $\Omega$/\mathrm{d}\log r| , the Oort A‐value [7]. A distinguishing feature is that

this growth rate is independent of the applied field strength.
When the magnetic field is frozen into the fluid, the differential rotation of the

flow generates the azimuthal component of the magnetic field once the magnetic
field acquires the radial component which is possibly created by perturbing the

axial field [8, 9]. Hence, it is worthwhile to look into the stability of a rotating flow

applied by the azimuthal magnetic field and by a combination of the azimuthal and

the axial magnetic field. The instability of the former case is called the azimuthal

MRI or the AMRI, and the latter is called the helical MRI or the HMRI [5]. The

HMRI has been extensively studied for a fluid of very low conductivity, called the

inductionless limit [10, 5], because this is relevant to the experimental setting of

using a liquid metal of very low conductivity [11]. Recently, an elaborate analysis
has also been made for the AMRI in the regime of very low conductivity [12, 13].

For the perfectly conducting case, the AMRI and the HMRI to three‐dimensional
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disturbances of short wavelength were both examined numerically by Balbus and

Hawley [8]. They showed occurrence of the instability by conducting numer‐

ical computation of linearized equations made simplified by leaving out, by a

physical intuition, terms which appeared to be less important when the spatial
variation of the basic magnetic field is slow. But they did not give the values of

the growth rate or the parameter region for instability. Define magnetic Rossby
number Rb=r^{2}(B_{ $\theta$}/r)'/(2B_{ $\theta$}) [14] . Ogilvie and Pringle [15]�addressed three‐

dimensional AMRI by not only the short‐wavelength but also the global analyses.
By the former analysis, they showed that, in the limit of the axial wavenumber

 k\rightarrow\infty , the maximum growth rate approaches the Oort \mathrm{A}‐value in the weak‐field

.regime, while that, in the same limit, the instability occurs for magnetic Rossby
number Rb>-3/4 in the strong‐field regime. We point out that the traditional

treatment of the short‐wave stability analysis is liable to miss some terms if a

WKB‐form of the solution is substituted at an early stage. For a circular symmet‐
ric flow, the equation for the radial displacement field is known as the Hain‐Lüst

equation [16, 17]. We resort to the Hain‐Lüst equation, as augmented with the

terms of the basic flow, in its full form, for the AMRI to non‐axisymmetric as

well as axisymmetric disturbances. With this equation at hand, we are capable of

exploring the local instability over a wide range of k . And the same idea is used

when the viscosity and electric resistivity are included.

2 Equations and short‐wavelength approximation
We consider a circular symmetric flow of an incompressible inviscid fluid with

infinite electric conductivity, subjected to a steady extemal magnetic field, and

the linear stability of a localized disturbance along one of the streamlines. We

assume that the radial wavelength is mùch small compared with the radius r of

the streamline, being a sort of the WKB approximatiotì. We introduce global
cylindrical coordinates (r,  $\theta$,z) with the z‐axis lying on the symmetric axis. The

basic state is a rotating flow in equilibrium, with the angular velocity  $\Omega$(r) , subject
to a magnetic field having the azimuthal and the axial components B_{ $\theta$}(r)=r $\mu$(r)
and B_{z}.

U=r $\Omega$(r)e_{ $\theta$}, B=r $\mu$(r)e_{ $\theta$}+B_{z}e_{z} , (1)

where e_{ $\theta$} and e_{z} are the unit vectors in the azimuthal and the axial directions,

respectively. We mainly focus on the azimuthal field.

Denote \tilde{ $\lambda$}= $\lambda$+im $\Omega$ . Assume disturbance of velocity, magnetic field and

pressure to be ũ, \tilde{B} and \tilde{p} and a new variable  $\chi$=-ru_{r}/\tilde{ $\lambda$} associated with the
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radial Lagrangian displacement [16]. We have the Hain‐Lüst equation [17],

\displaystyle \frac{\mathrm{d}}{\mathrm{d}r}(f\frac{\mathrm{d} $\chi$}{\mathrm{d}r}) =g $\chi$ , (2)

where, by use of the definition  h^{2}=m^{2}/l^{2}+k^{2},

f = \displaystyle \frac{1}{h^{2_{ $\gamma$}}}(\tilde{ $\lambda$}^{2}+\frac{F^{2}}{p$\mu$_{0}}) ,

g = \displaystyle \frac{\mathrm{d}}{\mathrm{d}r}[\frac{2im}{h^{2}r^{2}}( $\Omega$\tilde{ $\lambda$}-\frac{i $\mu$ F}{p$\mu$_{0}})]+\frac{1}{r}(\tilde{ $\lambda$}^{2}+\frac{F^{2}}{p$\mu$_{0}}) .

(3)

+\displaystyle \frac{\mathrm{d}$\Omega$^{2}}{\mathrm{d}r}-\frac{1}{p$\mu$_{0}}\frac{\mathrm{d}$\mu$^{2}}{\mathrm{d}r}+\frac{4k^{2}( $\Omega$\tilde{ $\lambda$}- $\mu$ iF/(\sqrt{}$\mu$_{0}))^{2}}{h^{2}r(\tilde{ $\lambda$}^{2}+F^{2}/(p$\mu$_{0}))},
Here thé magnetic permeability $\mu$_{0} the density p are assumed to be constant, and

F=m $\mu$+B_{z}k . We seek the solution of (2) in the WKB approximation. For

this purpose, we substitute into (2) the form  $\chi$(r)=p(r)\displaystyle \exp[i\int q(r)\mathrm{d}r] with the

constraint that the radial wavelength 2 $\pi$/q is assumed to be much shorter than

the characteristic length L, a measure for radial inhomogeneity, namely, qL\gg 1..
Neglecting the second‐order terms in qL\gg 1 , the dispersion relation is gained�
from (2) as q^{2}=-g/f, producing

(h^{2}+q^{2})(\displaystyle \tilde{ $\lambda$}^{2}+\frac{F^{2}}{\sqrt{}$\mu$_{0}})^{2}+4k^{2}( $\Omega$\tilde{ $\lambda$}-\frac{i $\mu$ F}{p$\mu$_{0}})^{2}
+4h^{2}[\displaystyle \frac{imr}{2}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{ $\Omega$\tilde{ $\lambda$}-\frac{i $\mu$ F}{p$\mu$_{0}}}{h^{2}r^{2}})+$\Omega$^{2}Ro-.\frac{$\mu$^{2}}{\sqrt{}$\mu$_{0}}Rb] \times (\displaystyle \tilde{ $\lambda$}^{2}+\frac{F^{2}}{p$\mu$_{0}}) =0. (4)

Including kinematic viscosity v and electric resistivity  $\eta$ , repeating the pre‐
vious procedure and applying the short‐wavelength approximation, we obtain the

following algebraic dispersion equation

(h^{2}+q^{2})\displaystyle \tilde{ $\lambda$}_{ $\eta$}^{2}$\Lambda$^{2}+4k^{2}( $\Omega$\tilde{ $\lambda$}_{ $\gamma$}-\frac{iF $\mu$}{p$\mu$_{0}}) \times [ $\Omega$ Ro(c\displaystyle \mathrm{o}_{ $\eta$}-$\omega$_{\mathrm{v}})+( $\Omega$\tilde{ $\lambda$}_{ $\eta$}-\frac{iF $\mu$}{p$\mu$_{0}})]
+4 $\Lambda$ h^{2}\tilde{ $\lambda$}, [($\Omega$^{2}Ro-\displaystyle \frac{$\mu$^{2}}{\sqrt{}$\mu$_{0}}Rb)+\frac{imr}{2}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{ $\Omega$\tilde{ $\lambda$}_{ $\eta$}-\frac{i $\mu$ F}{p$\mu$_{0}}}{h^{2}r^{2}}\mathrm{I}] =0 , (5)

where  $\Lambda$=\tilde{ $\lambda$}_{v}+F^{2}/\tilde{ $\lambda$}_{r}r , \tilde{ $\lambda$}_{v}= $\lambda$+im $\Omega$+$\omega$_{v}, \tilde{ $\lambda$}_{ $\eta$}= $\lambda$+im $\Omega$+$\omega$_{ $\eta$} , with use of

$\omega$_{\mathrm{v}}=|k|^{2}v and $\omega$_{ $\eta$}=|k|^{2} $\eta$.
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For our purpose of stability analysis, it is expedient to define two kinds of

Alfvén frequency $\omega$_{A} and $\omega$_{A $\theta$} , along with their ratio  $\beta$(r) representing the helical

geometry of the magnetic field,

q)A=\displaystyle \frac{kB_{z}}{\sqrt{p$\mu$_{0}'}} $\omega$_{A $\theta$}=\frac{ $\mu$}{\sqrt{p$\mu$_{0}}},  $\beta$=\frac{$\omega$_{A $\theta$}}{$\omega$_{A}} . (6)

In addition, we introduce three dimensionless parameters, namely, the magnetic
Prandtl number Pm, the Reynolds number Re and the Hartmann number Ha

Pm=\displaystyle \frac{$\omega$_{v}}{$\omega$_{ $\eta$}}, Re=\frac{ $\Omega$}{$\omega$_{\mathrm{v}}}, Ha=\frac{$\omega$_{A}}{\sqrt{$\omega$_{v}$\omega$_{ $\eta$}}} . (7)

The dispersion relation for non‐dimensional variables, with the derivative terms

in (5) being expanded out, leads to

($\Lambda$_{1}$\Lambda$_{2}+\displaystyle \overline{Ha}^{2})^{2}+4\frac{h^{2}($\Lambda$_{1}$\Lambda$_{2}+\overline{Ha}^{2})}{h^{2}+q^{2}}(Re^{2}PmRo-$\beta$^{2}Ha^{2}Rb)
+\displaystyle \frac{4im($\Lambda$_{1}$\Lambda$_{2}+\tilde{Ha}^{2})}{r^{2}(h^{2}+q^{2})}[ReRo\sqrt{Pm}($\Lambda$_{2}+imRe\sqrt{Pm})-i(2m\sqrt{}+1) $\beta$ Ha^{2}Rb
+(i\displaystyle \overline{Ha} $\beta$ Ha-Re\sqrt{Pm}$\Lambda$_{2})\frac{k^{2}}{h^{2}}]+4$\alpha$^{2}[(Re$\Lambda$_{2}\sqrt{Pm}-i\overline{Ha} $\beta$ Ha)
\times(Re$\Lambda$_{2}\sqrt{Pm}-i\overline{Ha} $\beta$ Ha+RoRe(1-Pm))] =0

, (8)

where

$\Lambda$_{1} = \displaystyle \frac{ $\lambda$}{ $\Omega$}Re\sqrt{Pm}+imRe\sqrt{Pm}+\sqrt{Pm},

$\Lambda$_{2} = \displaystyle \frac{ $\lambda$}{ $\Omega$}Re\sqrt{Pm}+imRe\sqrt{Pm}+\frac{1}{\sqrt{Pm}},
\overline{Ha} = Ha(1+m $\beta$) ,

k^{2}
$\alpha$^{2} = (9)\overline{h^{2}+q^{2}}.
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3 Axisymmetric perturbations for perfectly conduct‐

ing fluid

For the SMRI, the dispersion relation (4) simplifies, when m=0 , to

\displaystyle \frac{$\lambda$^{2}}{$\Omega$^{2}}+Ro(\frac{$\lambda$^{2}}{$\Omega$^{2}}+\frac{$\omega$_{A}^{2}}{$\Omega$^{2}})+\frac{1}{4$\alpha$^{2}}(\frac{$\lambda$^{2}}{$\Omega$^{2}}+\frac{$\omega$_{\mathcal{A}}^{2}}{$\Omega$^{2}})^{2}=0 , (10)

where  $\alpha$=k/\sqrt{q^{2}+k^{2}} . We read off from (10) limited to  $\lambda$=0 the stability
boundary as

Ro_{c}=-\displaystyle \frac{$\omega$_{A}^{2}}{4$\alpha$^{2}$\Omega$^{2}}(<0) , or \displaystyle \frac{$\omega$_{A}}{ $\Omega$}=0 . (11)

For the azimuthal MRI (AMRI), for which the magnetic field has an azimuthal

component B=r $\mu$(r)e_{ $\theta$} only. For the axisymmetric case (m=0) , the growth rate

calculated from (4) is

 $\lambda$=\pm 2 $\Omega \alpha$\sqrt{-1-Ro+Rb$\omega$_{A $\theta$}^{2}/$\Omega$^{2}},  $\lambda$=0 , (12)

where $\omega$_{A $\theta$}= $\mu$/\sqrt{\sqrt{}$\mu$_{0}} , and  $\lambda$=0 is a double root. The instability region is Ro<

Rb $\omega$_{A $\theta$}^{2}/$\Omega$^{2}-1 , i.e., the critical Rossby number Ro_{c}=Rb$\omega$_{A $\theta$}^{2}/$\Omega$^{2}-1 , which

recovers Michael�s criterion [19] (See also refs [2, 20 Recently, this criterion is

extended to include the viscosity and the electric resistivity [13].

4 Non‐axisymmetric perturbations: weak magnetic
field

Hereafter we restrict to azimuthal magnetic field B=r $\mu$(r)e_{ $\theta$} . We start with the

case of a very weak magnetic field. By trial and error of numerical calculation, it

is probable that the maximum growth rate is attained in the limit of  k\rightarrow\infty . The

dispersion relation (4) reduces, in the limit of  k^{2}+q^{2}\rightarrow\infty and $\omega$_{A}\rightarrow 0 , to

4(\displaystyle \tilde{ $\lambda$} $\Omega$-im$\omega$_{A $\theta$}^{2})^{2}+\frac{1}{$\alpha$^{2}}(\tilde{ $\lambda$}^{2}+m^{2}0\mathrm{J}_{A $\theta$}^{2})^{2}
+(\tilde{ $\lambda$}^{2}+m^{2}$\omega$_{A $\theta$}^{2})(4$\Omega$^{2}Ro-4Rb$\omega$_{A $\theta$}^{2})=0 . (13)

Equation (13), which is valid for a strong magnetic field as well, was derived by
Ogilvie and Pringle [15], and coincides with the dispersion relation of the work

[13] if the viscous and resistive terms are dropped off.

83



Figure 1: The growth rate, in the limit  k\rightarrow\infty with fixing  $\alpha$= 1 , of the non‐

axisymmetric AMRI versus  $\omega$_{A $\theta$}/ $\Omega$ , in the range of small values, for different

azimuthal wavenumbers  m=1 (solid line), 5 (dashed line) and 10 (long dashed

line) for Ro=-3/4 , a Keplerian rotation. The magnetic Rossby number is Rb=

-1.

Given a small value of |$\omega$_{A $\theta$}/ $\Omega$| , the maximum growth rate increases with |m|.
Interestingly, the maximum growth rate approaches, as |m| is increased, the same

value as that of the SMRI as found by Ogilvie and Pringle [15]. Fig. 1 displays the

growth rate  $\sigma$={\rm Re}[$\lambda$_{3,4}] as functions of the Alfvén frequency $\omega$_{A $\theta$} with azimuthal

wavenumbers m= 1
,

5 and 10 for Ro=-3/4 and Rb=-1 . Since the system
is Hamiltonian, to each damping perturbation ( $\sigma$<0) corresponds the growing
perturbation ( $\sigma$>0) and therefore we display only the solution with positive real

part  $\sigma$ . The change of the sign of Rb, namely, the choice of  Rb=1 , does not

change much the growth rate. We observe from Fig. 1 that, as m increases, the

maximum growth rate approaches 3| $\Omega$|/4 , though the width of the instability band

in  $\omega$_{A $\theta$}/ $\Omega$ is narrowed with  m . Indeed, by taking m$\omega$_{A $\theta$}^{2}=0 and Rb$\omega$_{\mathrm{A} $\theta$}^{2}=0 in (13)
as a limit of small values of |$\omega$_{\mathcal{A} $\theta$}/ $\Omega$| with maintaining |m$\omega$_{A $\theta$}/ $\Omega$| finite, we can

show that the maximum growth rate happens to coincides with the Oort \mathrm{A} ‐value

$\sigma$_{\mathrm{A}}/| $\Omega$|=|Ro|.
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5 Non‐axisymmetric perturbations: strong external

field

5.1 Strong fields and ideal AMRI

Here we consider ideal MHD with the case of |$\omega$_{A $\theta$}/ $\Omega$|\sim 1 . In the limit of k\rightarrow\infty,
the maximum value is taken at | $\alpha$|=1 , and at m=0 for Rb\geq 3/4 , but at |m|=1
for -3/4<Rb<3/4 , with the maximum values

\displaystyle \frac{$\sigma$_{\max}}{ $\Omega$}\approx\left\{\begin{array}{l}
2\sqrt{Rb}|$\omega$_{A $\theta$}/ $\Omega$|\\
(Rb\geq 3/4)\\
\sqrt{2Rb-1+2\sqrt{1+Rb^{2}}}|$\omega$_{A $\theta$}/ $\Omega$|\\
(-3/4<Rb<3/4) .
\end{array}\right. (14)

This value decreases to zero as Rb decreases to -3/4.
Fig. 2 shows the growth rate, for m= 1 in the limit of  k\rightarrow\infty , over a wide

range of the Alfven frequency  $\omega$_{A $\theta$}/ $\Omega$ and for typical values of Rb (=0 , 1, 5) in

the range of Rb>-3/4 . The flow is Keplerian (Ro<0) .

5.2 Strong fields and inductionless AMRI

We are concerned with the inductionless limit and rotating flow. Taking the limit

of Pm\rightarrow 0 and Ha\rightarrow 0 in (8), we get

\displaystyle \hat{ $\lambda$}^{2}+\frac{4\hat{ $\lambda$}}{(h^{2}+q^{2})r^{2}}\{Ha_{ $\theta$}^{2}(2m^{2}Rb-h^{2}r^{2}Rb-\frac{k^{2}m^{2}}{h^{2}})+imRe(Ro-\frac{k^{2}}{h^{2}})\}
+4$\alpha$^{2}(Re- imHa_{ $\theta$}^{2})(Re-imHa_{ $\theta$}^{2}+ReRo)=0 , (15)

where \hat{ $\lambda$}=1+Ha_{ $\theta$}^{2}m^{2}+ $\lambda$ Re/ $\Omega$+imRe and we recall $\alpha$^{2}=k^{2}/(k^{2}+q^{2}+m^{2}/r^{2})
and Ha_{ $\theta$}=$\omega$_{A $\theta$}/\sqrt{$\omega$_{\mathrm{v}}$\omega$_{ $\eta$}} . Taking the limit of k\rightarrow 0 , thus  $\alpha$\rightarrow 0 and h\rightarrow m/r, of

(15), the eigenvalues become

\displaystyle \frac{$\lambda$_{1}}{ $\Omega$} = -im-(1+Ha_{ $\theta$}^{2}m^{2})\displaystyle \frac{1}{Re} ,

\displaystyle \frac{$\lambda$_{2}}{ $\Omega$} = -im(1+\displaystyle \frac{4Ro}{m^{2}+q^{2}r^{2}})-[1+Ha_{ $\theta$}^{2}m^{2}(1+\frac{4Rb}{m^{2}+q^{2}r^{2}})]\frac{1}{Re} . (16)
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Figure 2: The growth rate, for m=1 and  k\rightarrow\infty with fixing  $\alpha$=1 , of the non‐

axisymmetric AMRI over a wide range of  $\omega$_{A $\theta$}/ $\Omega$ for negative  Ro=-3/4 and dif‐

ferent non‐negative magnetic Rossby numbers Rb: Rb=0 (solid line), 1 (dashed
line) and 5 (long dashed line).

We immediately find the instability region as

Rb<-\displaystyle \frac{1}{4}(m^{2}+q^{2}r^{2}) and Ha_{ $\theta$}^{2}>\displaystyle \frac{1}{m^{2}(\frac{4|Rb|}{m^{2}+q^{2}r^{2}}-1)} . (17)

We consider the mode of  k\rightarrow\infty
,
for which the eigenvalues are

\displaystyle \frac{$\lambda$_{1,2}}{ $\Omega$} = \displaystyle \frac{2$\alpha$^{2}Ha_{ $\theta$}^{2}Rb-1-m^{2}Ha_{ $\theta$}^{2}}{Re}-im
\displaystyle \pm 2 $\alpha$\{\frac{Ha_{ $\theta$}^{4}}{Re^{2}}(m^{2}+$\alpha$^{2}Rb^{2})-(1+Ro)+im\frac{Ha_{ $\theta$}^{2}}{Re}(2+Ro)\}^{\frac{1}{2}} (18)

The instability occurs when Ro<-1 with growthrate $\lambda$_{R}/ $\Omega$\approx 2 $\alpha$\sqrt{-(1+Ro)}.
This mode pertains to the classical Rayleigh instability since no magnetic field is

required. When Ro>-1 , the instability criterion becomes

2$\alpha$^{2}Rb-m^{2}+\displaystyle \frac{| $\alpha$ m|(2+Ro)}{\sqrt{1+Ro}}>0,
and Ha_{ $\theta$}^{2}>\displaystyle \frac{\sqrt{1+Ro}}{(2$\alpha$^{2}Rb-m^{2})\sqrt{1+Ro}+|\mathrm{a}m|(2+Ro)} . (19)
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In the long‐wave limit of k\rightarrow 0, Rb<-1/4 is necessary for the instability of

\mathrm{m}=1 mode as shown by (17), while in the short‐wave limit of k=\infty, Rb> −25/32
is necessary for the instability that is attained at m/ $\alpha$=\pm 5/4 . Because the, later

one overlaps with the former one, we conclude that the instability exists for arbi‐

trary magnetic Rossby number. Either the mode of k\rightarrow 0 or  k\rightarrow\infty dominate in

large range of Rb, and the maximum growth rate is attained at finite value of  k in a

narrow range of Rb as illustrated by FIG. 3. FIG. 3 draws the growth rate against
the magnetic Rossby number Rb for Re=10^{4}, Ha_{ $\theta$}=100, m=1 and Ro=-3/4.
We observe the crossover of the k=0, q=0 mode to the  k=\infty mode. The range
of small value of Rb is dominated by the  k=0 mode and the one of large values

of Rb is dominated by the  k\rightarrow\infty mode.

Figure 3: the growth rate to magnetic Rossby number Rb for  Re=10^{4}, Ha_{ $\theta$}=
100, m=1 , and Ro=-3/4 . solid line is k=0, q=0 mode, Dotted one is the

 k=\infty mode and dashed line stands for the maximum growth rate, whose left part
coincide with the  k=0 mode and the right part coincides with the k=\infty,  $\alpha$=1

mode.
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