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Abstract

We show asymptotic, exponential stability of the equilibrium configuration, \mathrm{c},
of a hollow physical penduIum with its inner part entirely filled with a viscous

liquid, corresponding to the center of mass being in the lowest position. Moreover,
we prove that every weak solution with initial data possessing finite total initial

energy and belonging to a �laxge� open set, becomes eventually smooth and decays
exponentially fast to the equilibrium L . These results are obtained also as byprod‐
uct of a �generalized linearization principle�� that we show for evolution equations
with non‐empty �slow� center manifold.

Keywords: Liquid‐filled cavity— Rigid Body— Stability—Navier‐Stokes equations— Center

Manifold

Introduction

The motion of a rigid body with an interior cavity entirely filled with a viscous liquid
represents one of the most important problems in the area of fluid‐structure interac‐

tions. In addition to its substantial relevance in many applications, such as aerospace

engineering and geophysics (see, e.g., the comprehensive monograph [2]) it presents a

number of intriguing questions of great appeal to the applied mathematician. Thus, it is

not surprising that this area of research has collected hundreds of remarkable dedicated

papers and a few monographs that would be too long to list here, and for which we

refer the reader to [2, pp. \mathrm{x}‐xxxi].
One of the main characteristics of the evolution of such coupled systems is that the

presence of the liquid can affect in a substantial way the motion of the rigid body, and

may eventually produce a ‐sometimes unforeseen‐ stabilizing effect. More precisely, after
an initial �chaotic� behavior, whose duration, t_{0} , depends on the �size� of the initial
data as well as on the relevant physical parameters involved (viscosity and density of the

liquid, mass distribution of the rigid body, etc.) [16, 17], the system reaches a steady‐
state, where the liquid is motionless (relative to the body), while the body executes a

time‐independent motion. In some cases, the latter may even reduce to an equilibrium
configuration, namely, in other words, the effect of the liquid is to bring the whole

coupled system to the terminal state of rest.
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A most significant example where the latter situation occurs is a hollow physical
pendulum with its inner part completely filled with a viscous liquid. The study of

the motion of such a system has been carried out all along by several authors under

different simplifying assumptions; we refer, among others, to [15, 19, 1, 21]. However,
it was only recently that the present authors provided a rigorous mathematical analysis
of the problem on the full set of equations, without recurring to any simplification or

approximation [6]. Their study, based on an appropriate adaptation of classical dynamic
system theory, shows, among other things, that a pendulum having its interior entirely
filled with a Navier‐Stokes liquid reaches, eventually, an equilibrium configuration where

the liquid is at relative rest and the center of mass of the coupled system body‐liquid
is either in its higher ( \mathcal{H} ) or lower (L) ppsition. This result only requires that the total

initial energy of the coupled system is finite but, otherwise, of arbitrary magnitude.
Moreover, the c‐configuration is stable and attainable from a �large� class of initial

data, while the \mathcal{H}‐configuration is unstable.

At this point we wish to emphasize another not less significant phenomenon, which

mostly motivates the writing of this article. Actually, in both numerical and lab tests

[3, 11], it is observed is that after the time t_{0} has elapsed, the system reaches the

steady‐state configuration in a rather abrupt fashion. This seems to suggest that, after

a sufficiently large time that allows the liquid to be almost at rest, the whole system
approaches the terminal state at an exponentially fast rate. One of the main objectives
of this paper is to show that this is indeed the case for the system constituted by a

physical pendulum with an interior cavity entirely filled with a viscous liquid.
Seemingly, in order to achieve our goal, the method used in [6] is not particularly

effective, and we have to resort to a different one. To this end, also motivated by
the results obtained in [5] for questions of similar nature, in Section 1 we propose a

general approach in a class of nonlinear evolution problems with a �slow� (local) center

manifold, that is, the spectrum,  $\sigma$ , of the relevant linear (time‐independent) operator,  L,
is discrete with  $\sigma$\cap\{\mathrm{i}\mathbb{R}\}=\{0\} . Actually, as directly or indirectly showed in [14, 3, 5, 8],
the existence of such a manifold appears to be a basic characteristic of this kind of fluid‐

structure interaction problems. This is due to the fact that, for obvious physical reasons,

the set of steady‐state solutions does not reduce to a singleton, and may even form a

continuum, either in absence or presence of a driving force. In this sense, we believe

that the approach here presented might be useful also in other circumstances as, for

example, those analyzed in [8].
In addition to those mentioned above, the main assumptions we impose on L are,

basically, that it is Fredholm of index 0 , sectorial, with \Re[ $\sigma$\backslash \{0\}] > 0 . Moreover,
null and range spaces of L share only the zero element. Under these hypotheses, and

some other technical ones on the nonlinear operator −compatible with the existence of

multiple steady‐state solutions‐we show that for sufficiently �small� initial data the

generic corresponding solution to the relevant evolution problem (see (1.1)) will tend

to an element of the null space of L exponentially fast; see Theorem 1.1. This result

is in the spirit of �generalized linearization principles� like, for example, that of [22,
Theorem 2.1], even though some of our assumptions and method of proof (fractional
powers) are different and specifically aimed at treating the above type of fluid‐structure

interaction problems.
The general theory developed in Section 1 is then applied, in Section 2, to study the

stability of L‐ and n‐ equilibria of the pendulum with a liquid‐filled cavity. We thus

show, at first, that the problem can be formulated in a suitable Hilbert space where
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linear and nonlinear operators satisfy all the assumptions of the theory. As a result,
we prove in Theorem 2.2 that the \mathcal{L}‐equilibrium is asymptotically exponentially stable,
whereas the \mathcal{H}‐equilibrium is unstable. Successivelyl in the final Section 3, we address
the problem of �abrupt� decay to (stable) equilibrium mentioned earlier on, in the very

general class of weak solution (à la Leray‐Hopf). By combining Theorem 1.1 with [6,
Theorem 1.4.4] we thus show that for every weak solution corresponding to a �large� set

of data with finite total (kinetic and potential) energy, there exists a time, t_{0} , such that,
after t_{0} , the solution becomes smooth and, together with its first time derivative and up
to second spatial derivatives, must decay exponentially fast to the stable equilibrium;
see Theorem 3.1.

We conclude this introductory section by some remarks about the notation used. We

shall adopt standard symbols for Lebesgue, Sobolev and Bochner spaces; see, e.g., [4].
Moreover, by the letters/symbols c, C, c_{1}, c_{2}, C_{1}, C_{2} , etc., we denote positive constants

whose specific value is irrelevant, and may vary from a line to the next. If we want to

emphasize the dependence on the quantity  $\xi$ , we shall write  c( $\xi$) , etc.

1. A General Approach

Let X be \mathrm{a} (real) Banach space. We consider in X the following evolution problem

\displaystyle \frac{du}{dt}+Lu+N(u)=0 , u(0)\in X , (1.1)

where the involved operators satisfy certain appropriate conditions that we are about to

state. To this end, let A:X\mapsto X be a linear, sectorial operator with compact inverse

and \Re[ $\sigma$(A)] >0 : For  $\alpha$\in[0, 1 ] , set

X_{ $\alpha$}=\{u\in X : \Vert u\Vert_{ $\alpha$} :=\Vert A^{ $\alpha$}u\Vert<\infty\} ; X_{0}\equiv X, \Vert u\Vert_{0}\equiv\Vert u\Vert.

It is well known that X_{ $\alpha$} is a Banach space that, in addition, is compactly embedded in

X for  $\alpha$>0 , e.g., [10, Theorem 1.4.8]. Next, let B:X\mapsto X be a linear operator with

D(B)\supset D(A) , and such that

\Vert Bu\Vert\leq c_{1}\Vert u\Vert_{ $\alpha$} ,  $\alpha$\in[0, 1) . (1.2)

We now define the operator L in (1.1) by setting

L=4+B , (1.3)

with D(L)\equiv D(A) . Since

\Vert u\Vert_{ $\alpha$}\leq c\Vert u\Vert^{1- $\alpha$}\Vert Au\Vert^{ $\alpha$} , (1.4)

and A^{-1} is compact, it follows that B is A‐compact, so that L is an unbounded
Fredholm operator of index 0 [9 , Theorem 4.3]. Also, from [10, Theorem 1.3.2] it

follows, in particular, that L is sectorial. Finally, observing that by (1.4), for any  $\epsilon$>0,

\Vert Bu\Vert\leq c( $\epsilon$)\Vert u\Vert+ $\epsilon$\Vert A $\tau$ \mathrm{r}\Vert

and that, by the properties of  A,

\Vert( $\lambda$-A)^{-1}\}|\leq c_{2}$\lambda$^{-1} , all  $\lambda$>0
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we deduce [12, Theorem 3.17 at p. 214] that L has a compact resolvent and, therefore,
a discrete spectrum.

We shall now make the following further assumptions on the operator L :

\dim \mathrm{N}[L]=m\geq 1 , (H1)

\mathrm{N}[L]\cap \mathrm{R}[L]=\{0\} , (H2)
and

 $\sigma$(L)\cap\{\mathrm{i}\mathbb{R}\}=\{0\} . (H3)

A first important consequence of some of the stated properties of L is derived next.

Lemma 1.1 The space X admits the following decomposition

X=\mathrm{N}[L]\oplus \mathrm{R}[L] . (1.4)

Moreover, denoting by 2 and \mathcal{P} the spectral projections according to the spectral sets

$\sigma$_{0}(L):=\{0\}, $\sigma$_{1}(L):= $\sigma$(L)\backslash $\sigma$_{0}(L) ,

we have

\mathrm{N}[L]=\mathcal{Q}(X) , \mathrm{R}[L]:=P(X) . (1.5)

Finally, (1.4) completely reduces L into L=L_{0}\oplus L_{1} with

L_{0}:=\mathcal{Q}L=L\mathcal{Q}, L_{1}:=PL=LP , (1.6)

and  $\sigma$(L_{0})\equiv$\sigma$_{0}(L) ,  $\sigma$(L_{1})\equiv$\sigma$_{1}(L) .

Proof. Since L is Fredholm of index 0 , from (H1) we deduce \mathrm{c}\mathrm{o}\dim(\mathrm{R}[L])=m . Thus,
there exists at least one S\subset X such that X=S\oplus \mathrm{R}[L] , with S\cap \mathrm{R}[L]=\{0\} . However,
\dim(S)=\dim(\mathrm{N}[L])=rn and (H2) holds, so that we may take S=\mathrm{N}[L] , which proves

(1.4). The remaining properties stated in the lemma are then a consequence of (1.4).
and classical results on spectral theory (e.g., [18, Proposition A.2.2], [23, Theorems

5.7‐A,B])
\square 

We now turn to the assumptions needed on the operator N . We begin to require
the following Lipschitz‐like condition

\Vert N(u_{1})-N(u_{2})\Vert\leq c\Vert u_{1}-u_{2}\Vert_{a} , for all u_{1},u_{2} in a neighborhood of 0\in X . (H4)

Furthermore, we observe that, by (1.4), every u\in X can be written as

u=u^{(0)}+u^{(1)}, u^{(0)}\in \mathrm{N}[L] , u^{(1)}\in \mathrm{R}[L] .

Thus, setting
M(u^{(0)}, u^{(1)}) :=N(u^{(0)}+u^{(1)})

we suppose

\Vert M(u^{(0)}, u^{(1)})\Vert\leq c [(\Vert u^{(0)}\Vert+\Vert u^{(1)}\Vert^{$\kappa$_{1}})||u^{(1)}\Vert^{$\kappa$_{2}}+\Vert u^{(1)}\Vert_{$\alpha$^{3}}^{ $\kappa$}] , $\kappa$_{1:}.$\kappa$_{2}\geq 1, $\kappa$_{3}>1.

(H5)
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Remark 1.1 Because of (H5), it follows that \mathrm{N}[L] is contained in the set of equilibria
(steady‐state solutions) to (1.1).

We are now in a position to prove the following stability result.

Theorem 1.1 Suppose the operators L
, defined in (1.3), and N satisfy hypotheses

(\mathrm{H}1)-(\mathrm{H}5) . Then, if \Re[ơ(L1)] >0 , we can find $\rho$_{0}>0 such that if

\Vert u(0)\Vert_{ $\alpha$}<$\rho$_{0},

there is a unique corresponding solution u=u(t) to (1.1) for all t>0 , satisfying

u\in C([0, T];X_{ $\alpha$})\cap C((0, T];X_{1})\cap C^{1}((0,T];X) , for all T>0 . (1.7)

Moreover, the solution u=0 to (1.1) is exponentially stable in X_{ $\alpha$} , namely, the following
properties hold.

(a) For any  $\epsilon$>0 there is  $\delta$>0 such that

\displaystyle \Vert u(0)\Vert_{ $\alpha$}< $\delta$ \Rightarrow \sup_{t\geq 0}\Vert u(t)\Vert_{ $\alpha$}< $\epsilon$ ;

(b) There are  $\eta$, c,  $\kappa$>0 such that

\Vert u(0)\Vert_{ $\alpha$}< $\eta$ \Rightarrow \Vert u(t)-\overline{u}\Vert_{ $\alpha$}\leq c\Vert u^{(1)}(0)\Vert_{ $\alpha$}\mathrm{e}^{- $\kappa$ t} , all t>0,

for some \overline{u}\in \mathrm{N}[L].

Finally, if \Re[ $\sigma$(L_{1})]\cap(-\infty, 0)\neq\emptyset then the solution  u=0 to (1.1) is unstable in X_{ $\alpha$},
namely, the property provided in (a) does not hold.

Proof. Under uthe stated assumptions on A, B and (H4), the claimed instability property
follows from [10, Theorem 5.1.3]. Likewise, the existence of a unique solution u to (1.1)
in some time interval (0,t_{\star}) satisfying (1.7) for each  T\in (0,t_{\star}) is guaranteed, under

the above assumptions, by classical results on semilinear evolution equations (e.g., [20,
p. 196−198]). Furthermore, this solution can be extended to provide a solution beyond
any time  $\tau$ \in [T, t_{\star} ) if \Vert u( $\tau$)\Vert_{ $\alpha$} < \infty , whereas, if  t_{\star} < \infty , it will fail if and only if

\displaystyle \lim_{t\rightarrow t^{*}}\Vert u(t)\Vert_{ $\alpha$} = \infty . We shall next show that, in fact, only the former situation

occurs, if the size of the initial data is suitably restricted. Applying \mathcal{Q} and \mathcal{P} on both

sides of (1.1) and taking into account (1.6) we show

\displaystyle \frac{du^{(1)}}{dt}+L_{1}u^{(1)}= -PM(u^{(0)}, u^{(1)})
(1.8)

\displaystyle \frac{du^{(0)}}{dt}= -\mathcal{Q}M(u^{(0)}, u^{(1)}) ,

\backslash _{ $\mu$}

with u^{(0)}=Qu, u^{(1)}=\mathcal{P}u . Since the operator L , being sectorial, is the generator of an

analytic semigroup in X , so is L_{1} in X^{(1)} \equiv \mathrm{R}[L] . Thus, for all  t\in [0, t_{\star} ) from (1.8)_{1}
we have

u^{(1)}(t)=\displaystyle \mathrm{e}^{-L_{1}t}u_{0}^{(1)}-\int_{0}^{t}\mathrm{e}^{-L_{1}(t-s)}[\mathcal{P}M(u^{(0)}(s), u^{(1)}(s))]ds . (1.9)
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Also, by assumption and the spectral property of L , there is  $\gamma$>0 such that

\Re[ $\sigma$(L_{1})]> $\gamma$>0 , (1.10)

which implies that the fractional powers L_{1}^{ $\alpha$},  $\alpha$\in(0,1) , are well defined in X^{(1)} . Thus,
setting

w:=\mathrm{e}^{bt}L_{1}^{ $\alpha$}u^{(1)}, 0<b< $\gamma$,
from (1.9) we get

w(t)=\displaystyle \mathrm{e}^{bt}\mathrm{e}^{-L_{1}}{}^{t}L_{1}^{ $\alpha$}u_{0}^{(1)}-\int_{0}^{t}\mathrm{e}^{bt}L_{1}^{ $\alpha$}\mathrm{e}^{-L_{1}(t-s)}[\mathcal{P}M(u^{(0)}(s), \mathrm{e}^{-bs}L_{1}^{- $\alpha$}w(s)]ds . (1.11)

In view of the stated properties of L_{1} it results (e.g. [10, Theorems 1.4.2 and 1.46]),

\Vert L_{1}^{- $\alpha$}w\Vert+\Vert L_{1}^{- $\alpha$}w\Vert_{ $\alpha$}\leq c_{1}\Vert w\Vert , for all  w\in X^{(1)},

and so, by (H5) and the latter, we derive

\Vert PM(u^{(0)}(s),\mathrm{e}^{-bt}L_{1}^{- $\alpha$}w(s))\Vert\leq c_{2}[(\Vert w\Vert+\Vert u^{(0)}\Vert)^{$\kappa$_{1}}\Vert w\Vert^{$\kappa$_{2}}+\Vert w\Vert^{$\kappa$_{3}}] . (1.12)

Next, we recall that in X^{(1)} it is

\Vert L_{1}^{ $\alpha$}\mathrm{e}^{-L_{1}t}\Vert\leq t^{- $\alpha$}\mathrm{e}^{- $\gamma$ t} , (1.13)

and observe that from (1.2) and [10, Theorem 1.4.6]

\Vert L_{1}^{ $\alpha$}u_{0}^{(1)}\Vert\leq c_{3}\Vert u_{0}^{(1)}\Vert_{ $\alpha$} . (1.14)

Thus collecting (1.11)-(1.14) we deduce

\Vert w(t)\Vert\leq \mathrm{e}^{-( $\gamma$-b)t}\Vert u_{0}^{(1)}\Vert_{ $\alpha$}

+c_{4}\displaystyle \int_{0}^{t}\frac{\mathrm{e}^{-( $\gamma$-b)(t-s)}}{(t-s)^{ $\alpha$}}[(\Vert w(s)\Vert+\Vert u^{(0)}(s)\Vert)^{$\kappa$_{1}}\Vert w(s)\Vert^{$\kappa$_{2}}+\Vert w(s)\Vert^{$\kappa$_{3}}].
(1.15)

From the local existence theory considered earlier on, we know that for any given  $\rho$>0
there exists an interval of time [0,  $\tau$],  $\tau$<t_{*} , such that

\displaystyle \sup_{t\in[0, $\tau$)}(\Vert w(t)\Vert+\Vert u^{(0)}(t)\Vert) \leq p,  $\tau$<t_{\star} (1.16)

provided \Vert u(0)\Vert_{ $\alpha$} <  $\eta$ , for some  $\eta$ > 0 . Our first objective is to show that  $\eta$ and  $\rho$

can be chosen sufficiently small so that (1.16) holds also with  $\tau$=t_{\star} , thus implying,
in particular, that the solution u = u(t) to (1.1) exists for all times t > 0 . In fact,
suppose, by contradiction, that there is $\tau$_{0}<t_{\star} such that

\Vert w(t)\Vert+\Vert u^{(0)}(t)\Vert< $\rho$, t\in[0,$\tau$_{0}) and \Vert w($\tau$_{0})\Vert+\Vert u^{(0)}($\tau$_{0})\Vert=p . (1.17)

Noticing that

\displaystyle \int_{0}^{t}\frac{\mathrm{e}^{-( $\gamma$-b)(t-s)}}{(t-s)^{ $\alpha$}}ds\leq\int_{0}^{\infty}\frac{\mathrm{e}^{-( $\gamma$-b)t}}{t^{ $\alpha$}}dt<\infty,
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from (1.15) and (1.17) we get

\Vert w(t)\Vert\equiv \mathrm{e}^{bt}\Vert u^{(1)}(t)\Vert_{ $\alpha$}\leq $\eta$+ $\epsilon$( $\rho$) $\rho$ , for all  t\in[0, $\tau$_{0}] , (1.18)

where  $\epsilon$( $\rho$) represents, here and in what follows, a generic smooth, positive function such

that  $\epsilon$( $\rho$)\rightarrow 0 as  $\rho$\rightarrow 0 . On the other hand, (1.8)2 with the help of (H5), furnishes

\displaystyle \Vert u^{(0)}(t)\Vert\leq\Vert u^{(0)}(0)\Vert+c_{5}\int_{0}^{t} [(\Vert u^{(1)}(s)\Vert+\Vert u^{(0)}\langle s)\Vert)^{$\gamma$_{1}}\Vert u^{(1)}(s)||^{$\gamma$_{2}}+\Vert u^{(1)}(s)\Vert_{$\alpha$^{3}}^{ $\gamma$}]ds.

Thus, if we restrict ourselves to. t \in [0, $\tau$_{0}] , and use (1.18) and (1.17), the preceding
inequality provides

\Vert u^{(0)}(t)\Vert\leq \displaystyle \Vert u^{(0)}(0)\Vert+ $\epsilon$( $\rho$)\int_{0}^{t}\Vert u^{(1)}(s)\Vert_{ $\alpha$}ds\leq\Vert u^{(0)}(0)\Vert+ $\epsilon$( $\rho$)\int_{0}^{t}\mathrm{e}^{-bs}\Vert w(s)\Vert ds
\leq 2 $\eta$+ $\epsilon$( $\rho$)p, t\in[0, $\tau$_{0}].

(1.19)
Combining (1.18) and (1.19), and choosing 2 $\eta$/ $\rho$+ $\epsilon$( $\rho$)<1/4 we conclude in particular

\Vert w($\tau$_{0})\Vert+\Vert u^{(0)}($\tau$_{0})\Vert\leq $\rho$/2
contradicting (1.17). As a result, by what we observed early on, we may take  l_{*}=\infty
in (1.16) and conclude as well

\displaystyle \sup_{t\in[0,\infty)}(\Vert w(t)\Vert+\Vert u^{(0)}(t)\Vert) \leq $\rho$ , (1.20)

proving, as a byproduct, the desired global existence property. Now, from (1.20) and

(1.15), we easily deduce, for  $\rho$ small enough,

\Vert w(t)\Vert\leq c_{6}\Vert u^{(1)}(0)\Vert_{ $\alpha$} , all t>0 , (1.21)

namely,
\Vert u^{(1)}(t)\Vert_{ $\alpha$}\leq c_{7}\mathrm{e}^{-bt}\Vert u^{(1)}(0)\Vert_{ $\alpha$} , all t>0 . (1.22)

Also, employing (1.21) into (1.19), we infer

\Vert u^{(0)}(t)\Vert\leq c_{8}\Vert u(0)\Vert_{ $\alpha$} , all t>0 . (1.23)

Therefore, from (1.22) and (1.23) we recover the stability property stated in (a). More‐

over, integrating (1.8)2 between arbitrary t_{1},t_{2}>0 using (1.22) and reasoning in a way

similar to what we did to obtain (1.19) we get

\displaystyle \Vert u^{(0)}(t_{1})-u^{(0)}(t_{2})\Vert\leq c_{9}\int_{t_{1}}^{t_{2}}\Vert u^{(1)}(s)\Vert_{ $\alpha$}ds\leq c_{10}\Vert u^{(1)}(0)\Vert_{ $\alpha$}\int_{\mathrm{t}_{1}}^{t_{2}}\mathrm{e}^{-b $\epsilon$}ds , (1.24)

from which we deduce that there exists \overline{u}\in \mathrm{N}[L] such that

\displaystyle \lim_{\mathrm{t}\rightarrow\infty}\Vert u^{(0)}(t)-\overline{u}\Vert=0.
Employing this information into (1.24) in the limit  t_{2}\rightarrow\infty , and with  t_{1}=t we show

||u^{(0)}(t)-\overline{u}\Vert_{ $\alpha$}\leq c_{11}\Vert u^{(0)}(t)-\overline{u}\Vert\leq c_{12}\Vert u^{(1)}(0)\Vert_{ $\alpha$}\mathrm{e}^{-bt},
which, once combined with (1.22), proves the exponential rate of decay stated in (b).
The proof of the theorem is thus concluded.

\square 
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2. Asymptotic Stability of the Equilibrium Configurations of a Pendu‐

lum with a Liquid‐Filled Cavity

Objective of this and the next section is to apply the general theory developed in the

previous one, also combined with the findings of [6], to the study of the stability of the

equilibria, and long‐time behavior of the generic motion of a physical pendulum with

an interior cavity entirely filled with a viscous liquid.
More specifically, let 8 be the coupled system constituted by a rigid body, \mathfrak{B} , with

an interior cavity, \mathrm{e} (assumed to be a domain of \mathbb{R}^{3} of class C^{2} ), entirely filled with

a Navier‐Stokes liquid, ￡.Suppose that \mathfrak{B} is constrained to move (without friction)
around a horizontal axis a in such a way that during all possible motions of 8 its center

of mass G belongs to a fixed vertical plane orthogonal to \mathrm{a} , so that the distance from

G to its orthogonal projection, O , on a is kept constant.

Denoting by \mathcal{F}\equiv\{O, e_{1}, e_{2}, e_{3}\} a frame attached to \mathfrak{B} , with the origin at O,  e_{1}\equiv

 o^{\rightarrow}G/|o^{\rightarrow}G| , and e_{3} directed along. \mathrm{a} , we then have that the motion of 8 in \mathrm{S} is governed
by the following set of equations [19]

 $\rho$(v_{t}+\dot{ $\omega$}e_{3}\times x+v\cdot\nabla v+2 $\omega$ e_{3}\times v) = $\mu \Delta$ v-\nabla p
in \mathrm{e}\times \mathbb{R}_{+}

\nabla\cdot v =0
(2.1)

v(x,t)|_{\partial}\mathrm{e}=0

\mathrm{C}(\dot{ $\omega$}-\dot{a})=$\beta$^{2}$\chi$_{2}, \dot{ $\chi$}+ $\omega$ e_{3}\mathrm{x} $\chi$=0,

Here, v and pare relative velocity and (modified) pressure fields of L , respectively, while

 $\rho$ and  $\mu$ are its density and shear viscosity coefficient. Also,  $\omega$ e3 is the angular velocity
of \mathrm{B} and  $\chi$= ($\chi$_{1} \equiv\cos $\varphi,\ \chi$_{2} \equiv -\sin $\varphi$, 0) where  $\varphi$ is the angle between  e_{1} and the

gravity g . Furthermore, \mathrm{C} is the moment of inertia of 8 with respect to \mathrm{a},

a :=-\displaystyle \frac{ $\rho$}{\mathrm{C}}e_{3}\cdot\int_{\mathrm{e}}x\times v , (2.2)

and

$\beta$^{2}=Mg|OG|\rightarrow,
with M mass of S.

It is not difficult to show (formally) that (2.1) has only two steady‐state solutions

given by
\mathrm{s}_{0}^{\pm}:=(v\equiv\nabla p\equiv 0, $\omega$\equiv 0,  $\chi$=\pm e_{1}) , (2.3)

and representing the equilibrium configurations where \mathrm{S} is at rest with G in its lowest

(\mathrm{s}_{0}^{+}) or highest (\mathrm{s}_{0}^{-}) position.
We shall next employ Theorem 1.1 to investigate the stability property of the above

equilibrium configurations. Successively, combining that theorem with some of the

results established in [6], we will characterize the asymptotic behavior of the solutions

to (2.1) in a very general class, and for a �laxge� set of initial data.

To accomplish all the above, we begin to observe that the ��perturbed motion� around

\mathrm{s}_{0}^{\pm} can be written as

(v,p, $\omega$,  $\chi$:= $\gamma$\pm e_{1}) , | $\gamma$\pm e_{1}|=1 , (2.4)
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where, by (2.1), the �perturbation�� (v,p,\mathrm{w}, $\gamma$) satisfies the following equations

 $\rho$(v_{t}+\dot{ $\omega$}e_{3}\times x)- $\mu \Delta$ v+\nabla p =- $\rho$(2 $\omega$ e_{3}\times v+v\cdot\nabla v)
in \mathrm{e}\times \mathbb{R}_{+}

\nabla\cdot v =0

(2.5)
v(x,t)|\partial \mathrm{e}=0

\mathrm{C}(\dot{ $\omega$}-\dot{a})=$\beta$^{2}$\gamma$_{2}, \dot{ $\gamma$}+ $\omega$ e_{3}\times$\gamma$_{0}=- $\omega$ e_{3}\times $\gamma$,

with

$\gamma$_{0}:= $\xi$ e_{1},  $\xi$=\pm 1 . (2.6)
Our subsequent step is to write (2.5) as an evolution problem of the type (1.1) with X

appropriate Hilbert space H . We thus define

L_{ $\sigma$}^{2}(\mathrm{e}):= { v\in L^{2}(\mathrm{e}) : \nabla\cdot v=0 \mathrm{i}\mathrm{n} \mathrm{e}, v\cdot n|_{\partial \mathrm{e}}=0} ,

and let

H :=\{u :=(v,  $\omega$,  $\gamma$)^{\mathrm{T}} : u\in L_{ $\sigma$}^{2}(\mathrm{e})\oplus \mathbb{R}\oplus \mathbb{R}^{2}\},
endowed with the scalar product

\langle u_{1}, u_{2}\displaystyle \rangle:=\int_{\mathrm{G}}v_{1} . v_{2}\mathrm{d}\mathrm{C}+$\omega$_{1}$\omega$_{2}+$\gamma$_{1} .

$\gamma$_{2},

and corresponding norm

\Vert u\Vert:=\{u, u\rangle^{\frac{1}{2}}.
Moreover, we introduce the following operators

I : u\in H\mapsto lu := ( $\rho$ v+\mathrm{P}[p $\omega$ e_{3}\mathrm{x}x], \mathrm{C}( $\omega$-a),  $\gamma$)^{\mathrm{T}}\in H
Ã : u\in D(\overline{A}) :=W^{2,2}(\mathrm{e})\cap \mathcal{D}_{0}^{1,2}(\mathrm{e})\oplus \mathbb{R}\oplus \mathbb{R}^{2}\subset H\mapsto\overline{A}u :=(- $\mu$ \mathrm{P} $\Delta$ u,  $\omega,\ \gamma$)^{\mathrm{T}}\in H
\tilde{B} : u\in H\mapsto\tilde{B}u :=(0, -$\beta$^{2}$\gamma$_{2}- $\omega,\ \omega$ e_{3}\times$\gamma$_{0}- $\gamma$)^{\mathrm{T}}\in H
\overline{N}:u\in D(\tilde{A})\mathrm{C}H\mapsto\overline{N}(u) :=(- $\rho$ \mathrm{P}[2 $\omega$ e_{3}\mathrm{x}v+v\cdot\nabla v], 0, - $\omega$ e_{3}\times $\gamma$)^{\mathrm{T}}\in H,

(2.7)
where \mathrm{P} : L^{2}(\mathrm{e}) \mapsto  L_{ $\sigma$}^{2}(\mathrm{e}) is the Helmholtz projector. It is readily shown that the

operator I is boundedly invertible. In fact, we have

\langle Iu , u\displaystyle \rangle=\int_{\mathrm{C}} $\rho$|v|^{2}+2 $\rho \omega$\int_{\mathrm{G}}e_{3}\times x\cdot v+\mathrm{C}$\omega$^{2}+| $\gamma$|^{2} , (2.8)

and so, observing that \mathrm{C}=\mathrm{C}_{B}+\mathrm{C}_{\mathrm{C}} with \mathrm{C}_{\mathfrak{B}} and \mathrm{C}_{L} moments of inertia with respect
to a of \mathfrak{B} and \mathrm{e} , respectively, and that

\displaystyle \mathrm{C}\mathrm{c}=\int_{\mathrm{e}} $\rho$ (\mathrm{e}3 \mathrm{x}x)^{2} , (2.9)

from (2.8) we deduce

\displaystyle \langle Iu, u\rangle=\int_{\mathrm{G}} $\rho$|v+ $\omega$ e_{3}\times x|^{2}+C_{B}$\omega$^{2}+| $\gamma$|^{2}
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From this relation it follows that \mathrm{N}[I]=\{0\} . On the other hand, by its very definition
we have I=I_{1}+K where I_{1} is an isomorphism of H onto itself and K is a compact

(finite‐dimensional) operator. We thus conclude the stated invertibility property of I.

From (2.7)1, it also follows at once that the operator I is symmetric, namely,

\langle Iu_{1}, u_{2})=\langle u_{1},  Iu_{2}\rangle , for all  u_{1}, u_{2}\in H,

and, therefore, so is its inverse. Thus, defining

A :=I‐1Ã, B:=I^{-1}\tilde{B} , L:=A+B, N:=-I^{-1}\overline{N} , (2.10)

we see that (2.5) can be written as the following evolution equation in the space H

\displaystyle \frac{du}{dt}+Lu+N(u)=0, u(0)\in H . (2.11)

We shall next show that the operators L and N defined above satisfy all the assumptions
(\mathrm{H}1)-(\mathrm{H}5) stated in the previous section. In this regard we commence to notice that,
by the properties of the Stokes operator

 A_{0}:=- $\mu$ \mathrm{P} $\Delta$

with domain  D(A_{0}) := W^{2,2}(\mathrm{e})\cap D_{0}^{1,2}(\mathrm{e}) and range L_{ $\sigma$}^{2}(\mathrm{e}) , it follows that \overline{A} has a

compact inverse and, therefore, a purely discrete spectrum which, in addition, lies on

the positive real axis. Since I^{-1} is symmetric (and bounded), the operator A enjoys
the same stated properties as Ã. Furthermore, B is bounded and therefore satisfies

(1.2) with  $\alpha$=0 , and we conclude that L is Fredholm of index 0 . We shall now prove
the validity of the other assumptions.

Proof of (HZ)

The equation Lu=0 in H is equivalent to the following system of equations:

- $\mu$ \mathrm{P} $\Delta$ v=-\nabla p, \nabla\cdot v=0 , v|_{\partial}\mathrm{e}=0

$\beta$^{2}$\gamma$_{2}=0,  $\omega$ e_{3}\times$\gamma$_{0}=0,
whose solutions are of the form

u^{(0)}\cdot=(0,0,  $\sigma$ e_{1})^{\mathrm{T}} ,  $\sigma$\in \mathbb{R} . (2.12)

Therefore,
\dim \mathrm{N}[L]=1.

\square 

Proof of (H2)

The equation Lu=u^{(0)} , with u^{(0)} given in (2.12) for some  $\sigma$\in \mathbb{R} , is equivalent to the

system of equations

- $\mu$ \mathrm{P} $\Delta$ v=-\nabla p, \nabla\cdot v=0, v|_{\partial}\mathrm{e}=0

$\beta$^{2}$\gamma$_{2}=0,  $\omega$ e_{3}\times$\gamma$_{0}= $\sigma$ e_{1}.

However, with the help of (2.6) we infer at once  $\sigma$=0 , which proves the claim.

\square 
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Proof of (H3)

The equation
Lu=\mathrm{i} $\zeta$ u  $\zeta$\in \mathbb{R}\backslash \{0\},

is equivalent to the following ones

- $\mu$ \mathrm{P}\triangle v=-\nabla p+\mathrm{i} $\zeta \rho$(v+ $\omega$ \mathrm{e}_{3}\mathrm{x}x) , \nabla v=0, v|_{\partial}\mathrm{e}=0
(2.13)

$\beta$^{2}$\gamma$_{2}=\mathrm{i} $\zeta$ \mathrm{C}( $\omega$-a) , we_{3}\times$\gamma$_{0}=\mathrm{i} $\zeta \gamma$.

After dot‐multiplying (2.13)1 by \overline{v} = complex conjugate), (2.13)5 by ($\beta$^{2}/ $\xi$)\overline{ $\gamma$} (see
(2.6)), (2.13)4 by \overline{ $\omega$}, and integrating by parts over \mathrm{e} as necessary, we get

 $\mu$\Vert\nabla v\Vert_{2}^{2}+\mathrm{i} $\zeta \rho$\Vert v\Vert_{2}^{2} =\mathrm{i} $\zeta$ \mathrm{C}a\overline{ $\omega$}

-\mathrm{i} $\zeta$ \mathrm{C}| $\omega$|^{2} =-$\beta$^{2}$\gamma$_{2}\overline{ $\omega$}-\mathrm{i} $\zeta$ \mathrm{C}a\overline{ $\omega$}

-\displaystyle \mathrm{i} $\zeta$\frac{$\beta$^{2}}{ $\xi$}| $\gamma$|^{2} =$\beta$^{2}$\gamma$_{2}\overline{ $\omega$}.
Adding side‐by‐side the displayed equations, we find

 $\mu$\displaystyle \Vert \mathrm{V}v\Vert_{2}^{2}+\mathrm{i} $\zeta$[\Vert v\Vert_{2}^{2}-\mathrm{C}| $\omega$|^{2}-\frac{$\beta$^{2}}{ $\xi$}| $\gamma$|^{2}]=0,
which implies v\equiv 0 . As a result, by using the curl operator \nabla \mathrm{x} on both sides of (2.13)_{1}
with v=0 , we show  $\omega$=0 , which, in turn, once replaced in (2.13)4 furnishes $\gamma$_{2}=0.
Thus, finally, from (2.13)5 we conclude  $\gamma$=0 , and the proof is completed.

\square 

Proof of (H4)

From (2.7) and (2.10), we easily show

\Vert N(u_{1})-N(u_{2})\Vert\leq c[|$\omega$_{1}|(\Vert v_{1}-v_{2}\Vert_{2}+|$\gamma$_{1}-$\gamma$_{2}|)+(\Vert v_{2}\Vert_{2}+|$\gamma$_{2}|)|$\omega$_{1}-$\omega$_{2}|
+\Vert \mathrm{P} (v_{1} . \nabla v_{1}-v_{2} . \nabla v_{2})\Vert_{2}]

(2.14)
Next2 we observe that the fractional powers of \overline{A} are given by

\tilde{A}^{ $\alpha$}u=(A_{0}^{ $\alpha$}v, $\omega,\ \gamma$) ,  $\alpha$\in(0,1) , (2.15)

and that, being I^{-1} bounded, by Heinz inequality

 c_{1}\Vert A^{ $\alpha$}u\Vert\leq\Vert\tilde{A}^{ $\alpha$}u\Vert\leq c_{2}\Vert A^{ $\alpha$}u\Vert . (2.16)

Furthermore, by a classical result [13, Lemma 3], for any  $\alpha$\displaystyle \in[\frac{3}{4} , 1] it is

\Vert \mathrm{P}(v_{1}\cdot\nabla v_{1}-v_{2}\cdot\nabla v_{2})\Vert_{2}\leq c_{1}(\Vert A_{0}^{ $\alpha$}v_{1}\Vert_{2}+\Vert A_{0}^{ $\alpha$}v_{2}\Vert_{2})\Vert A_{0}^{ $\alpha$}(v_{1}-v_{2})\Vert_{2} . (2.17)

The claimed property about the validity of (H4) is then a consequence of (2.14)-(2.17) .

\square 
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Proof of (H5)

In view of (2.12) and recalling the decomposition (1.4), we have

u=u^{(0)}+u^{(1)}\equiv(0,0, $\gamma$_{1}e_{1})^{\mathrm{T}}+(v,  $\omega,\gamma$_{2}e_{2})^{\mathrm{T}}
Thus, from (2.7)4 and (2.14)-(2.17) it follows that

\Vert\overline{N}(u^{(0)}+u^{(1)})\Vert \leq c_{1} [| $\omega$|\Vert v\Vert_{2}+\Vert \mathrm{P}(v\cdot\nabla v)\Vert_{2}+| $\omega$|(|$\gamma$_{1}|+|$\gamma$_{2}|)]
\leq c_{2} [(\Vert u^{(1)}\Vert+\Vert u^{(0)}\Vert)\Vert u^{(1)}\Vert+\Vert A_{0}^{ $\alpha$}v\Vert_{2}^{2}]
\leq \mathrm{c}_{3} [(\Vert u^{(1)}\Vert+\Vert \mathrm{u}^{(0)}\Vert)\Vert u^{(1)}\Vert+\Vert u^{(1)}\Vert_{ $\alpha$}^{2}] ,

from which, using the boundedness of I^{-1} , the validity of (H5) follows with $\kappa$_{1}=$\kappa$_{2}=1,
and $\kappa$_{3}=2.

\square 

As we know from the general approach, the stability property of the solution u\equiv 0

to (1.1) requires that the eigenvalues in the spectral set  $\sigma$(L_{1}) have all positive real

part. The following Lemma 2.2 provides the necessary and sufficient conditions for this

to hold. However, its proof requires a simple but \mathrm{i}\mathrm{m}|portant preliminary result that we

prove first.

Lemma 2.1 For any \mathrm{v}\in L^{2}(\mathrm{e}) , We have

\displaystyle \frac{\mathrm{C}_{\mathfrak{B}}}{\mathrm{C}} $\rho$\Vert \mathrm{v}\Vert_{2}^{2}\leq E := $\rho$\Vert \mathrm{v}\Vert_{2}^{2}-\mathrm{C}a^{2}\leq p\Vert \mathrm{v}\Vert_{2}^{2} . (2.18)

Proof. From (2.2), we deduce

E= $\rho$\displaystyle \Vert \mathrm{v}\Vert_{2}^{2}-\frac{$\rho$^{2}}{\mathrm{C}}(\int_{\mathrm{e}}(e_{3}\mathrm{x}x)\cdot \mathrm{v})^{2}
Therefore, by the Schwarz inequality and (2.9), we infer

E\displaystyle \geq $\rho$\Vert \mathrm{v}\Vert_{2}^{2}-\frac{ $\rho$}{\mathrm{C}}(\int_{\mathrm{G}}p(e_{3}\times x)^{2})\Vert \mathrm{v}\Vert_{2}^{2}\geq (1-\frac{\mathrm{C}_{J}\mathrm{c}}{\mathrm{C}})  $\rho$\Vert \mathrm{v}\Vert_{2}^{2}=\frac{\mathrm{C}_{\mathfrak{B}}}{\mathrm{C}} $\rho$\Vert \mathrm{v}\Vert_{2}^{2}.
\square 

We are now in a position to prove the following.

Lemma 2.2 If in (2.6)  $\xi$=1 then \Re[ $\sigma$(L_{1})]\backslash >0 , whereas if  $\xi$=-1 then \Re[ $\sigma$(L_{1})]\cap
(-\infty, 0)\neq\emptyset.

Proof. To show the result it is sufficient to prove that all solutions to the equation

\displaystyle \frac{du}{dt}+Lu=0, u(0)\in H (2.19)

are bounded, if  $\xi$=1 , whereas there exists at least one unbounded solution if  $\xi$=-1.
Now, (2.19) is equivalent to the following system of equations

 $\rho$(v_{t}+\dot{ $\omega$}e_{3}\times x)- $\mu \Delta$ v=\nabla p, \nabla\cdot v=0, v|_{\partial}\mathrm{e}=0,

\mathrm{C}(\dot{ $\omega$}-\dot{a})=$\beta$^{2}$\gamma$_{2},
(2.20)

\dot{ $\gamma$}+ $\xi \omega$ e_{2}=0,

(v(\cdot, 0), $\omega$(0), $\gamma$(0))\in L_{ $\sigma$}^{2}(\mathrm{e})\times \mathbb{R}\times \mathbb{R}^{2}
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By dot‐multiplying the first equation by v , integrating by parts over C and employing
(2.20), we get

\displaystyle \frac{1}{2}\frac{d}{dt}[ $\rho$\Vert v\Vert_{2}^{2}-\mathrm{C}a^{2}]+ $\mu$\Vert\nabla v\Vert_{2}^{2}=$\beta$^{2}$\gamma$_{2}a . (2.21).

Likewise, by multiplying both sides of (2.20)4 by  $\omega$-a and using (2.20)5, we deduce

\displaystyle \frac{1}{2}\frac{d}{dl} [\mathrm{C}( $\omega$-a)^{2}+\frac{$\beta$^{2}}{ $\xi$}$\gamma$_{2}^{2}] =-$\beta$^{2}$\gamma$_{2}a . (2.22)

As a result, summing (2.21) and (2.22) side by side we infer

\displaystyle \frac{1}{2}\frac{d}{dt}[ $\rho$\Vert v\Vert_{2}^{2}-\mathrm{C}a^{2}+\mathrm{C}( $\omega$-a)^{2}+\frac{$\beta$^{2}}{ $\xi$}$\gamma$_{2}^{2}]+ $\mu$\Vert\nabla v\Vert_{2}^{2}=0 . (2.23)

Consequently, if  $\xi$=1 , from Lemma 2.1, (2.23), and (2.20)5 we readily conclude that

there is a constant M>0 depending on the initial data, such that

\Vert v(t)\Vert_{2}+| $\omega$(t)|+| $\gamma$(t)|\leq M all l\geq 0 , (2.24)

which implies \Re[ $\sigma$(L_{1})] >0 . Suppose, next,  $\xi$=-1 and, by contradiction, \Re[ $\sigma$(L_{1})] >

0 . This means that any given solution to (2.19) must obey (2.24). As a consequence,
on the one hand, from (2.21), Schwarz and Poincaré inequalities and (2.18) we get

\displaystyle \frac{dE}{dt}+c_{1}E\leq c_{2}\Vert v\Vert_{2} . (2.25)

On the other hand, from (2.23) and again Poincare inequality, we infer

\displaystyle \int_{0}^{\infty}\Vert v(t)\Vert_{2}^{2}dt<\infty,
so that the differential inequality (2.25) combined with (2.18) furnishes (see [7, Lemma

2.1])

\displaystyle \lim_{t\rightarrow\infty}\Vert v(t)\Vert_{2}=0.
From the latter and (2.24) we easily deduce that the  $\omega$‐limit of the dynamical system
generated by by (2.19) must be connected, compact and invariant, and therefore, in

particular, that  v\equiv 0 there. Using this property in (2.20), we show also  $\omega$\equiv$\gamma$_{2}\equiv 0.
Thus, integrating (2.23) from 0 to t>0 , and then letting  t\rightarrow\infty we prove

 2 $\mu$\displaystyle \int_{0}^{\infty}\Vert\nabla v(t)\Vert_{2}^{2}dt= $\rho$\Vert v(0)\Vert_{2}^{2}-\mathrm{C}a^{2}(0)+\mathrm{C}( $\omega$(0)-a(0))^{2}+\frac{$\beta$^{2}}{ $\xi$}$\gamma$_{2}^{2}(0) .

However, since  $\xi$=-1 , this relation cannot be true for any initial data (it�s enough to

choose v(0)\equiv 0 and $\omega$^{2}(0)<($\beta$^{2}/\mathrm{C})$\gamma$_{2}^{2}(0) ), thus showing a contradiction.

\square 

Combining \mathrm{a}\mathrm{J}1 we have shown so far in this section with Theorem 1.1, we thus deduce
the following stability results.

Theorem 2.2 The steady‐state solution \mathrm{s}_{0}^{+} in (2.3), representing the equilibrium con‐

figuration where the center of mass G of 8 is in its lower position, is asymptotically,
exponentially stable. Precisely, the folloWing properties hold.
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(a) There is $\rho$_{0}>0 such that if, for some a\in[3/4 , 1

\Vert A_{0}^{ $\alpha$}v(0)\Vert_{2}+| $\omega$(0)|+| $\gamma$(0)|<$\rho$_{0},

then there exists a corresponding unique, global solution (v,  $\omega$,  $\gamma$) to (2.5) with

 $\xi$=1 , such that, for all T>0,

v\in C((0,T];D(A_{0})).\cap C^{1}((0,T];L_{ $\sigma$}^{2}(C)) , A_{0}^{ $\alpha$}v\in C([0,T];L_{ $\sigma$}^{2}(C)) ,

 $\omega$\in C([0,T]_{)}\mathbb{R})\cap C^{1}((0, T];\mathbb{R}) ;  $\gamma$\in C^{1}([0,T];\mathbb{R}^{2})\cap C^{2}((0, T];\mathbb{R}^{2}) ;

(b) For any  $\epsilon$>0 there is  $\delta$>0 such that

\displaystyle \Vert A_{0}^{ $\alpha$}v(0)\Vert_{2}+| $\omega$(0)|+| $\gamma$(0)|< $\delta$ \Rightarrow \sup_{t\geq 0}(\Vert A_{0}^{ $\alpha$}v(t)\Vert_{2}+| $\omega$(t)|+| $\gamma$(t)|)< $\epsilon$ ;

(c) There are  $\eta$, c,  $\kappa$>0 such that

\Vert A_{0}^{ $\alpha$}v(0)\Vert_{2}+| $\omega$(0)|+| $\gamma$(0)|< $\eta$ \Rightarrow

\Vert A_{0}^{ $\alpha$}v(t)\Vert_{2}+| $\omega$(t)|+| $\gamma$(t)|\leq c(\Vert A_{0}^{ $\alpha$}v(0)\{|_{2}+| $\omega$(0)|+|$\gamma$_{2}(0)|)\mathrm{e}^{- $\kappa$ t} , all t>0.

Finally, the steady‐state solution \mathrm{s}_{0}^{-}in (2.3), representing the equilibrium configuration
where the center of mass G of@ is in its higher position, is unstable.

Proof. In view. of what we have already shown, the only thing that remains to prove is

 $\gamma$(t) \rightarrow  0 as  t\rightarrow\infty . To this end, we observe that, by Theorem 1.1,  $\gamma$(t) \rightarrow $\sigma$ e_{1} , for

some  $\sigma$\in \mathbb{R} , which, by (2.4) and property (b) above, must satisfy

$\sigma$^{2}+2 $\sigma$=0, | $\sigma$|< $\epsilon$.

In turn, by choosing  $\epsilon$ (namely,  $\delta$) appropriately, the latter implies  $\sigma$=0 , thus com‐

pleting the proof.
\square 

Remark 2.2 The simple stability of \mathrm{s}_{0}^{+} as well as the instability of \mathrm{s}_{0}^{-} , in the norm \Vert||
was established in [6, Theorem 1.5.2], by a different method based on the study of the

local dynamics of 8 near \mathrm{s}_{0}^{\pm}.

3. Asymptotic Behavior of the Motion of a Pendulum with a Liquid‐
Filled Cavity for Large Initial Data

Another way of stating the stability part in Theorem 2.2 is to say that all solutions

to (2.1)-(2.2) with �fsufficiently smooth�� initial data that are �sufficiently close�� to the

equilibrium configuration \mathrm{s}_{0}^{+} must remain �close� to \mathrm{s}_{0}^{+} and eventually converge to it

at an exponential rate. Objective of this section is to show that, in fact, the same

conclusion holds in the more general class of weak solutions to (2.1)-(2.2) and for data

that not only are less regular, but also not necessarily �close�� to the stable equilibrium
configuration \mathrm{s}_{0}^{+} . This result is achieved by suitably combining the findings of [6] with

those of Theorem 2.2.

We begin to recall the definition of weak solution [6].
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Definition 3.1 The triple (v,\mathrm{w},  $\chi$) is a weak solution to (2.1) if it meets the following
requirements:

(a) v\in C_{w}([0, \infty);L_{ $\sigma$}^{2}(\mathrm{e}))\cap L^{\infty}(0, \infty;L_{ $\sigma$}^{2}(\mathrm{e}))\cap L^{2}(0,\infty;W_{0}^{1,2}(\mathrm{e})) ;

(b)  $\omega$\in C^{0}([0, \infty))\cap L^{\infty}(0, \infty) ,  $\chi$\in C^{1}([0, \infty);\mathrm{S}^{1});^{1}

(c) Strong Energy Inequality: namely, for all t\geq s and a.a. s\geq 0 including s=0,

\displaystyle \mathcal{E}(t)+u(t)+ $\mu$\int_{s}^{t}\Vert\nabla v( $\tau$)\Vert_{2}^{2}d $\tau$\leq \mathcal{E}(s)+u(s) (3.1)

where

\mathcal{E} :=\displaystyle \frac{1}{2}[ $\rho$\Vert v\Vert_{2}^{2}-\mathrm{C}a^{2}+\mathrm{C}( $\omega$-a)^{2}] (kinetic energy)
and

\mathcal{U} :=-\mathrm{C}$\beta$^{2}$\chi$_{1} (potential energy)

(d) (v, $\omega$,  $\chi$) satisfies (2.1)_{1,2,4,6} in the sense of distributions and (2.1)3 in the trace

sense.

The proofof the following important result is found in [6, Proposition 1.3.6, Theorem

1.4.4].

Proposition 3.1 For any given initial data

(v_{0}, $\omega$_{0}, $\chi$_{0})\in L_{ $\sigma$}^{2}(\mathrm{e})\times \mathbb{R}\times \mathrm{S}^{1} , (3.2)

there exists at least one corresponding weak solution (v,\mathrm{w}, $\chi$) and a time t_{0} (depending
on the solution) such that, setting I_{t_{\mathrm{O}},T}=(t_{0}, t_{0}+T) ,

v\in C^{0}(\overline{I_{t_{0},T}};W_{0}^{1,2}(\mathrm{e}))\cap L^{\infty}(t_{0}, \infty;W_{0}^{1,2}(\mathrm{e}))\cap L^{2}(I_{\mathrm{t}_{0},T};W^{2,2}(\mathrm{e})) ,

(3.3)
v_{t}\in L^{2}(I_{t_{0},\mathrm{T}};H(\mathrm{C})) ,  $\omega$\in W^{1,\infty}(I_{t_{\mathrm{O}},\mathrm{T}}) ,  $\chi$\in W^{2,\infty}(I_{t_{0},T};\mathrm{S}^{1}) ,

for all T>0 . Moreover, there is p\in L^{2}(I_{t_{0},T};W^{1,2}(\mathrm{e})) , all T>0 , such that (v,p, $\omega,\ \gamma$)
satisfies (2.1)_{1,2} a.e. in \mathrm{e}\times (t_{0}, \infty) . In addition, the following asymptotic properties
hold:

\displaystyle \lim_{t\rightarrow\infty}(\Vert v(t)\Vert_{2,2}+\Vert v_{t}(t)\Vert_{2}+| $\omega$(t)|)=0.
Finally, for all initlal data such that

 $\rho$\Vert v_{0}\Vert_{2}^{2}+\mathrm{C}($\omega$_{0}^{2}-a(0))^{2}<2\mathrm{C}$\beta$^{2}(1+$\chi$_{1,0}) (3.4)

we have also

\displaystyle \lim_{t\rightarrow\infty}| $\chi$(t)-e_{1}|=0,
that is, the coupled system pendulum‐liquid goes to the equilibrium configuration with

the center.of mass in its lower position.

From Proposition 3.1 and Theorem 2.2 we are now able to prove the main result of

this section that establishes the rate of decay to equilibrium.
1As customary, \mathrm{S}^{1} denotes the unit sphere in \mathbb{R}^{2}.
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Theorem 3.1 Let the initial data (3.2) satisfy condition (3.4). Then, for any corre‐

sponding Weak solution (v, $\omega$,  $\chi$) , there are t_{0}, C_{1} , possibly depending on the solution,
and C_{2}>0 such that

\Vert v(t)\Vert_{2,2}+\Vert v_{t}(t)\Vert_{2}+| $\omega$(t)|+|\dot{ $\omega$}(t)|+| $\chi$(t)-e_{1}|\leq C_{1}\mathrm{e}^{-C_{2}t} , for all t\geq t_{0}.

Proof. Recalling that [4, Section IV.6]

\Vert v\Vert_{2,2}\leq C_{3}\Vert A_{0}v\Vert_{2}\leq C_{4}\Vert v\Vert_{2,2},

and  $\chi$= $\gamma$+e_{1} , by Proposition 3.1 and (1.4) (with A\equiv A_{0}, \Vert\}| \equiv \Vert\Vert_{2} ) we get that

there exists t_{0}>0 such that

\Vert A_{0}^{ $\alpha$}v(t_{0})\Vert_{2}+| $\omega$(t_{0})|+| $\chi$(t_{0})-e_{1}|< $\eta$

with  $\eta$ as in Theorem 2.2(c), and  $\alpha$\in [0 , 1] . Therefore, again by Theorem 2.2(c) and

(1.4) we deduce

\Vert A_{0}^{ $\alpha$}v(t)\Vert_{2}+| $\omega$(t)|+| $\chi$(t)-e_{1}|\leq C\mathrm{e}^{- $\kappa$ t} , for all  $\alpha$\in[0 , 1) and t\geq t_{0} . (3.5)

Now, from [6, eq. (1.44)] we know that, for all t\geq t_{0} , the following differential inequality
holds

\displaystyle \frac{d}{dt}E_{1}+c_{1}\Vert\nabla v_{t}\Vert_{2}\leq c_{2}[$\omega$^{2}+\Vert v\Vert_{2}+(\Vert v\Vert_{2}+\Vert\nabla v\Vert_{2}^{8})\Vert v_{t}\Vert_{2}^{2}] , (3.6)

where

\displaystyle \frac{\mathrm{C}_{\mathfrak{B}}}{\mathrm{C}} $\rho$\Vert v_{t}\Vert_{2}^{2}\leq E_{1}:= $\rho$\Vert v_{t}\Vert_{2}^{2}-\frac{$\rho$^{2}}{\mathrm{C}}(\int_{\mathrm{e}}(e_{3}\times x)\cdot v_{t})^{2}\leq p\Vert v_{t}\Vert^{2} ; (3.7)

see Lemma 2.1. Therefore, employing the Poincarè inequality \Vert\nabla v_{t}\Vert_{2} \geq  c\Vert v_{t}\Vert_{2} , and

taking into account (3.5) and (3.7), from (3.6) we deduce

\displaystyle \frac{d}{dt}E_{1}+c_{3}E_{1}\leq c_{4}\mathrm{e}^{-c_{5}}{}^{t}(1+E_{1}) .

By a direct application of a Gronwall‐like lemma to the latter inequality, and also with

the help of (3.7), we infer

\Vert v_{t}(t)\Vert_{2}\leq c_{6}\mathrm{e}^{-c_{7}t}, t\geq t_{0} . (3.8)

Plugging this information back in (2.5)4 and using (3.5) entails

|\dot{ $\omega$}(t)|_{2}\leq c_{8}\mathrm{e}^{-\mathrm{c}_{9}\mathrm{t}}, t\geq t_{0} . (3.9)

Next, employing (2.1)1 and (2.1)4, one can show the following estimate [6, eq. (1.46)]

||v(l)\Vert_{2,2}\leq c_{10}(\Vert\nabla v(t)\Vert_{2}^{3}+\Vert v_{t}(t)\Vert_{2}+| $\omega$(t)|\Vert v(t)\Vert_{2}+|$\chi$_{2}(t)|) , t\geq t_{0} . (3.10)

The desired result is then a consequence of (3.5), and (3.8)-(3.10) .

\square 
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