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1 Introduction
This article studies the incompressible Navier-Stokes system

dive = 0, (1.1)
ov—vAv+v-Vo+Vp = g, (1.2)

and the artificial compressible system for (1.1)—(1.2):

e0,pp+dive = 0, (1.3)
Ov—vAv+v-Vo+Vp = g. (1.4)

Here v = T(vl(z,t),v*(z,t),v3(z,t)) and p = p(z,t) denote the unknown
velocity field and pressure, respectively, at time ¢ > 0 and position z € ,
where € is a bounded domain of R® with smooth boundary 8Q; g = g(z)
is a given external force and € > 0 is a small parameter, called the artificial
Mach number.

The system of equations (1.1)—(1.2) and (1.3)—(1.4) are considered under
the boundary condition '

vlaﬂ = Vs (15)

Here v, is a given velocity field satisfying [, s Vs - 1 dS = 0, where n denotes
the unit outward normal to 99.



It is easy to see that the set of stationary solutions of (1.1)—(1.2) is the
same as that of (1.3)—(1.4). Since the incompressible system (1.1)-(1.2) is
obtained from the artificial compressible one (1.3)—(1.4) as the limit € — 0,
one could expect that solutions of (1.1)—(1.2) would be approximated by
solutions of (1.3)—(1.4) with ¢ < 1. However, the limiting procedure is a
singular limit, so it is not straightforward to conclude that stability properties
of u, as a solution of (1.1)—(1.2) are the same as those as a solution of (1.3)-
(1.4) even if 0 < € < 1. In [11, 12] it was discussed whether (1.3)—(1.4) gives
a good approximation of (1.1)—(1.2), when 0 < € < 1, from the view point
of the stability of stationary solutions.

In this article we give a summary of the paper [12] on the relation of
stability properties between stationary solutions of (1.1)—(1.2) and (1.3)-
(1.4). |

A. Chorin ([1, 2, 3]) proposed the artificial compressible system (1.3)—(1.4)
to find numerically stationary solutions of the incompressible Navier-Stokes
equation (1.1)—(1.2). As mentioned above, the set of stationary solutions of
(1.1)—(1.2) is the same as that of (1.3)—(1.4). If solutions of the artificial
compressible system (1.3)—(1.4) converge to a function u, = '(ps,vs) as
t — 00, then the limit u, is a stationary solution of (1.3)—(1.4), and thus, u,
is a stationary solution of (1.1)—(1.2). Chorin numerically obtained stationary
cellular convection patterns of the Bénard convection problem described by
the Oberbeck-Boussinesq equation :

dive = 0, (1.6)
Pr!(0w+v-Vv)— Av+ Vp— VRafe; = 0, (1.7)
00+v-V—Af—-+VRav-e3 = 0 (1.8)

in the infinite layer {z = (2/,73);2 = (z1,72) € R%,0 < z3 < 1} by using
the corresponding artificial system

€0pp +dive = 0, (1.9)
Pr!(8w+v-Vov)— Av+Vp—VRales = 0, (1.10)
00+v-VO—- A —+vVRav-e3 = 0. (1.11)

Here 6(z,t) is the temperature deviation from the heat conductive state;
ez = '(0,0,1) € R3; Pr > 0 and Ra > 0 are non-dimensional parameters,
called the Prandtl and Rayleigh numbers, respectively

In [11] the following questions were considered for (1.6)-(1.8) and (1.9)-
(1.11):
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(1) if u, is stable as a solution of (1.9)-(1.11), then is u, stable as a solution
of (1.6)-(1.8) ? In other words, whether u, represents an observable
stationary flow in the real world ?

(ii) conversely, if u, is stable as a solution of (1.6)-(1.8), then is u, stable
as a solution of (1.9)-(1.11) for 0 < e < 1 ? In other words, what kind
of stationary flows can be computed by Chorin’s method ?

In [11], the above questions were considered for the Oberbeck-Boussinesq
equation (1.6)—(1.8) in the infinite layer under the boundary condition v = 0,
6 =0on {z3 = 0,1} and a periodic boundary condition in ' = (z1,z,). The
results can be restated for the systems (1.1)—(1.2) and (1.3)—(1.4) in the
following way. '

We introduce the linearized operators around a stationary solution u, =
T(ps, vs) associated with the systems (1.1)—(1.2) and (1.3)~(1.4) under (1.5).
Here and in what follows " stands for the transposition. Let L : LZ(2) —
L2(2) be the operator defined by

L =—vPA +P(v,- V+ T(Vu,))

with domain D(L) = [H?(Q) N H(Q)]* N L2(Q). Here H*() denotes the
k th order L2-Sobolev space on , P is the orthogonal projection, called
the Helmholtz projection, from L2( ¥ to L2(Q), and L2(Q) denotes the
set of all L?-vector fields w on § satisfying divw = 0 and w - n|sq = 0,
where n denotés the unit outward normal to 02. We define the operator
L. : H{(Q) x L*(Q)% — HX(Q) x L*(Q)3, acting on u = T (p, w), by

L. = 0 E—zdlv
€T A\V —vA+uv,-V+ (V)

with domain D(L.) = H}(Q) x [H2(Q) N H}(Q)]3. Here H}(2) denotes the
set of H' functions on  that have zero mean value over 2.

Concerning the question (i), it was proved in [11] that if there exists a
positive number by such that p(—L,,) D {A € C;Re\ > —bo} for some
sequence €, — 0 as n — 0o, then there exists a positive constant b; such that
p(=L) D {\ € C;Re X > —b; }. Therefore, a stationary solution obtained by
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Chorin’s method with 0 < € < 1 is stable as a solution of the incompressible .

system (1.1)—(1.2). Furthermore, the instability result was proved: if o(—L)N
{A € C;ReA > 0} # 0, then o(—L)N{)\ € C;ReA >0} # 0 for 0 < € K
1. This shows that unstable stationary solutions of (1.1)~(1.2) cannot be
obtained by Chorin’s method with 0 < € <« 1.



Concerning the question (ii), it was shown in [11] that if p(—L) D {X €
C;Re X > —by} for some positive constant by, then there exist positive con-
stants §y and b, such that p(—L;) D {A € C;Re) > —b;} for 0 < e < 1,
provided that

Re (w - Vs, w)r2

infweHg(Q)3,w;e0 ||Vw||% ; > —do. (1.12)

This gives a sufficient condition for u, to be computed by Chorin’s method
with 0 < € < 1. The corresponding result for the Oberbeck-Boussinesq sys-
tem (1.6)—(1.8) is stated exactly in the same form; and the result is applicable
to stable bifurcating cellular convective patterns of the system (1.6)—(1.8),
such as roll pattern, hexagonal pattern and etc., since they bifurcate from
v =0, 6 =0, and hence, the condition (1.12) is satisfied near the bifurcation
point. However, the condition (1.12) seems to be somewhat stringent since
most of its applications might be limited to stationary flows whose velocity
fields are sufficiently small. .

In [12] an improvement of the condition (1.12) was given. It was shown
that the condition (1.12) can be replaced by

Re ((Qw) - Vv, Qu)

inwaH&(Q)3,w9é0 ”Vleliz > —'60- (1.13)

Here Q = I—PP is the orthogonal projection from L?(f2)3 to the space G2(2) =
{Vp;p € H(Q)} which is the orthogonal complement of L2(f2). The same
result also holds for the case of the Oberbeck-Boussinesq system (1.6)—(1.8).

One can apply the condition (1.13) to the Taylor problem, namely, a flow
between two concentric infinite cylinders, whose inner cylinder rotates with
a uniform speed and outer one is at rest. It is well known that if the rotation
speed is sufficiently small, then a laminar flow, called the Couette flow, is
stable. When the rotation speed increases, beyond a certain value of the
rotation speed, the Couette flow is getting unstable, and a vortex pattern
is observed. The vortex pattern is periodic in the direction of the axis of
the cylinders and it is called the Taylor vortex. The Taylor has been studied
mathematically as a bifurcation problem for the incompressible system (1.1)-
(1.2) (see [4, 9, 10, 13, 17]). The velocity field near the bifurcation point of the
Taylor vortex is not necessarily small, and hence, it is unclear if the condition
(1.12) can be applied to the Taylor vortex. However, it is not so difficult to
show that the condition (1.13) is satisfied by the velocity field of the Taylor
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vortex under azi-symmetric perturbations. One can thus conclude that the
Taylor vortex can be computed by Chorin’s method. See [12, Secition 5] for
the details.

We also note that the convergence of solutions as ¢ — 0 was discussed in
[14, 15, 16] for the system (1.3)—(1.4) with the additional stabilizing nonlin-
ear term +3(divv)v on the left of (1.4). It was shown in [14, 15, 16] that
there exists a weak solution '(p,,v,) for each € > 0 such that v« — v in
L*(0,T; L*(22)3) and Vpe — Vp weakly in H~1(Q x (0,7T)) for all T > 0
along a sequence € — 0, where " (p, v) is a weak solution of (1.1)—(1.2). We
also mention the works by Donatelli [5, 6] and Donatelli and Marcati [7, 8]
where similar convergence results were obtained in the case of unbounded do-
mains by using the wave equation structure of the pressure and the dispersive
estimates.

This article is organized as follows. In section 2 we state the result on
the stability criterion obtained in [12]. In section 3 we give an outline of an
proof of the result on the stability criterion, i.e., we outline that the condition
(1.13) gives a stability criterion.

We close this section by introducing notation used in this article.

For 1 < p < oo we denote by LP(D) the usual Lebesgue space over D and
its norm is denoted by || - ||z(p). The mth order L? Sobolev space over D is
denoted by H™(D), and its norm is denoted by || - || gm(py. When D = Q, we
simply denote these norms by || - ||, || - [|z=- The inner product of L*(D) is
denoted by (-,-)z2(py, i.e.,

(f, 92y = /D f(z)g(z)dz.

Here z denotes the complex conjugate of z € C. When D = Q we simply
denote (-,-)z2(py by (-,-).
We set
HYD) = the H'(D)-closure of C°(D),
H™Y(D) = the dual space of H{(D),
H'(D) = {f€Li(D): [Vfllzap) < o0},

H™Y(D) = the dual space of H'(D).
We define L2(2) and HF() by

LX(Q) = {f € IA(@); /Qf(w)dw =0},
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H{(Q) = HNQ) N L3(Q) (k> 1).
We set |
L2(Q) = {v e [*(Q)3 divo =0in Q, v - n|sq = 0}

Here and in what follows, n denotes the unit outward normal to 0€). It is
known that (L?(Q))% = L2(Q) & G*(2), where G%(Q) = {Vp; p € H}(Q)} is
orthogonal complement of L2 (). '

The orthogonal projection P from L%(Q)? onto L2(Q2) is called the Helmholtz
projection. We set Q = I — P. '

We denote the resolvent set of an operator A by p(A) and the spectrum
of A by a(A).

2 Stability criterion

We state the stability criterion given in [12]. We introduce the linearized
operators for the Navier-Stokes and the corresponding artificial compressible
systems. Suppose that u; = ' (p,,v,) be a smooth stationary solution of
(1.1)—(1.2), (1.5). Then, the perturbation equation takes the form

divw = 0, (2.1)
ow—vAw+vs-Vw+w- Vo, +w-Vw+Vp = 0. (2.2)
We consider (2.1)—(2.2) under the boundary condition
’w|Q =0. (2.3)
Applying the Helmholtz projection P we have
dw
dt

where L : L2(Q) — L2(2) denotes the linearized operator around v, defined
by

+ Lw +P(w - Vw) =0, (2.4)

D(L) = (H*(Q) N Hy(Q))* N L2(Q), _
Lw = —vPAw + P(vs - Vw + w - Vv,) (w € D(L)).
The corresponding artificial system takes the form

% + Leu+ N(u,u) = 0. (2.5)



Here u = T(p,w); L. : HX(Q) x L*(Q)} — HL(Q) x L2(2)3 denotes the
linearized operator around u, defined by H(Q) x L%(Q) defined by

D(Le) = Hy () x (H*(Q) N Hy(Q)),

I = 0 elzdiv )
TNV —vA+v,-V+T(Vv,))’
and N(u,u) is the nonlinear term given by
N(u,u) = T(0,w - Vw)

for u = T (p, w).
The following result was obtained in [12].

Theorem 2.1. (/12]) Suppose that p(—L) D {\ € C; Re X > —bo} for some
positive constant by. Then there exist positive constants €, 09 and by such
that of

- Re ((Qw) - Vv,, Qu)
g 2 = 2.6
werpBrwr  VQuE 2" (2.6)

then p(=L¢) D{A € C; ReA > —b1} for all 0 < € < €.

Remark 2.2. As an application of Theorem 2.1 (and [12, Rem. 2.2]), we
mention the Taylor problem, a flow between concentric cylinders whose inner
part rotates and the outer one is at rest. In fact, one can show that the
bifurcating Taylor vortex is stable as a solution of the artificial compressible
- system for 0 < € < 1 under axisymmetric perturbations. This implies that
the Taylor vortex can be computed by Chorin’s method since the Taylor vortex
is azisymmetric. See [12, Section 5] for the details.

Remark 2.3. It is easily verified from the proofs of Theorem 2.1 and [11,
Theorem 38.3] that the same result also holds for the case of the Oberbeck-
Boussinesq system (1.6)—(1.8).

3 Outline of proof of Theorem 2.1

Following [12] we give an outline of the proof of Theorem 2.1. We consider
the resolvent problem for —L,:

M+Lu=F, u="(p,w)€ D(L), (3.1)
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where F = T(f,g) € HX(Q) x L*(Q)? is given. For simplicity we set v = 1.
The problem (3.1) is rewritten as

Elp+divw = €, (3.2)
w—-Aw+v,-Vw+w-Vo,+Vp = g, (3.3)
’LUIaQ = 0. (3.4)
The assumption of Theorem 2.1 is that
p(—L) D {) € C;Re A > —bo} (3.5)

for some positive constant by.

We see from the following two propositions that a part of the spectrum
o(—L.) near the imaginary axis may possibly lie only in a region Im A =
O(e7') under the assumption (3.5).

Proposition 3.1. There exist positive constants a and b such that {\ €
C;Re\ > —ae?|Im A2 + b} C p(—Le) for all0 < e < 1.

" One can prove Proposition 3.1 by the standard Matsumura-Nishida en-
ergy method as in the proof of [11, Proposition 6.1].

Proposition 3.2. There erist positive numbers €, and a; such that
{)\ € C,Re/\ > —bo, !)\l < a16_1} C p(—Le)
for all 0 < € < €.

Proposition 3.2 can be proved by the same perturbation argument as in
the proof of [11, Proposition 6.3]. :

One can see from Propositions 3.1 and 3.2 that Theorem 2.1 holds without
the condition (2.6) if \/575 < ay. In the case \/575 > a,, for some range of
A near the imaginary axis with Im A = O(e™!), we still need to consider if
this range belongs to p(—L,) for 0 < € < 1.

To this end, it suffices to deduce a priori estimate for solutions of (3.1)
uniformly for A = p + 4% with —po < p < py and a;/2 < [p] < 2\/b/_a,
where o and p; are some positive constants. In fact, if we obtain such a
uniform a priori estimate, then it follows that {A = u + %, —pe < p <
w1, a1/2 < |n| < 2\/13%} - p(——Le) by a standard continuation argument
since A = +i& € p(—L) for 0 < € < €; by Proposition 3.2. We will establish
an appropriate a priori estimate under the condition (2.6).

It is easily seen that Theorem 2.1 follows from the following proposition.
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Proposition 3.3. Let A = p+i? with u,n € R. Suppose that u = T(p,w) €
D(L.) is a solution of (3.1). For given positive numbers pu; and 1, there exist
positive constants 6, and C' = C'(||vs|c1, B, ) such that if

Re (Vp-Vv,,V
inf { BB Ten Vel o € H2(), ¢ #0, Fhlon =0} > by

and
2

< . <n < Cel,

then

o +ﬁ277)llwllz+nlleII2<0{(n+ < )lglz+ —nfu%p}

for all0 < € < C"min{l,n,, /1, % L,W*N* RV +} with p, = ma‘x{128’ p}-

Idea of proof of Proposition 3.3. To illustrate the idea of the proof of
Proposition 3.3, we consider the case u = 0, i.e.,

A=l
€

The following estimate can be proved in a similar manner to the proof of
[11, Prop. 6.5]. See also [12, Prop. 3.5].

Proposition 3.4. Let 7, be a given positive number. Let u = ' (p,w) €
D(L.) be a solution of (3.1) with X\ = i1, n € R. There exists a positive
constant C' = C'(||vsller, B, ) such that if :

1
e < C'min{l,n.}, 7. <n < =

then
(1 +26%n) [w|3+7][Veo[}3 < —64nRe (w- Vo, w) +C(en+6)|Gallzllw]l-

Here G\ = \g— Vf; and C is a positive constant depending only on ||vs||c1
and €.

Proof. Let u = "(p,v) € D(L) be a solution of (3.1). Then, by (3.2), we
have

p=— )\dlv'w+ f



Substituting this into (3.3), we obtain

EXw — EXAW — Vdivw + ENw, - Vw +w - Vo,) = Gy (3.6)
We take the inner product of (3.6) with w. It follows that
EN w2+ || Vw2 + ||div w |3 = -\ (v, - Vw +w - Vv, w) +€2(Gy, w).

Since \? = —35-, the real part of (3.7) yields 0
—n?||lwl||2 + ||divw]||? = enlm (v, - Vw + w - Vo, w) (38)
+ €’Re (G, w).
Therefore,
N llwllz < 3+ en)|Vwll + en(llvsll2, + [ Voslloo) lwll3 (3.9)
+E[|Gallallw]2-
The imaginary part of (3.7) yields
n||Vwl||3 = —nRe (w - Vv, w) + elm (G, w)
< —nRe(w - Vo, w) + 2| Vo3 + el Gilelhwll
and hence,
Vel .10

< —nRe(w - Vs, w) + €||G||2|| w2
By (3.9) and (3.10), we have

773 2,7 2
L lwl3 + 301 - en)| Vel
< —nRe(w - v,,w)
+C {en?|Vslloo + en?l|vs5 } w3 + C(e¥n + €)|Gallz w2,

and consequently, if n < i, then

12
< —nRe(w - v, w)
+C {en’|Vslloo + en’llvsliZ} lwllz + C(e%n + )| Gall2|w]lo-

seaent
1o\ lwlf + Lo[Vol?
(5 + 5650 Il + gl Vw3
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Therefore, there exists a positive constant C' = C'(||vs|c1) such that if

1
€ < C'min{l,n.}, 17*<77<Z—

then
(ﬂ3+ﬁ2n)llwu2+ nllelIz —nRe (w-Vw,, w)+C(*n’+€) |G Iz |w]l2.

This completes the proof. EI

We next estimate solenoidal part of w.

Proposition 3.5. Let 7. be given a positive number. Let u = "(p,w) be
a solution of (3.1) with X = i%, n > n,. If w = v + Vo is the Helmholtz
decomposition of w, then

vl < C{nl IIV<p||H1+ IIVs0||H2+ 2”9“2

€2 €
+ Sl Vel + ﬁnwsnzonwn%} ,

3
7;5
[vlf < C {gllvwllip +IVelda + llglls + lvsli2 I Vawll3 + IIVvslliollwlli} :

To prove Proposition 3.5 we apply the following estimate for the Stokes
system with nonhomogeneous boundary data. -

Lemma 3.6. Suppose that " (p,v) € H}(Q) x H%(Q) is a solution of

dive = 0,
Avw—-Av+Vp = g,- (3.11)
vjgn = Y,

with A € {\ € C; larg\| < 7 — w} for some 0 < w < %, g € L*() and
% € HE (0R2) satisfying ¥ - n|aq = 0. Then there exists a positive constant
- C =C(w,R) such that

3
|Alllollz + [[vllzz + lpla < E{llgllz + M= ¥]l200) + (9Pl ;3 500 }-
HE(50)
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A proof of Lemma can be found in {12, Section 4.

Proof of Proposition 3.5. Let v = "(p,w) € D(L.) be a solution of
(3.2)-(3.4) and let w = v + Vo be the Helmholtz decomposition of w.
Then, dive = 0, v - nlsq = 0, gnflm = w - n|gg and [, dr = 0. Since
wlaq = 0, we see that

% _
on |,
and
dive = 0,
)\'v—A'v+Vq = —(vs-V'w+'w-V'vs),
vlsgn = —V|s-
Here
qa=Xp—Ap+p.
Note that
/qd:c—-/(/\go Ap +p)d / a(pda-— 0.
a0 0
Applying Lemma 3.6, one can obtain the desired estimates. O

The potential flow part V¢ satisfies the following estimates.

Proposition 3.7. Let w = v + Vi be as in Proposition 3.5. Then there
ezists a positive constant C' = C'(||vs||c1) such that if 0 < € < C'min{1, 0.},
the following estimates

64 .
lagl2 < ¢, {rfllwII% T enl|Vooll2 + E§||G,\||§} , (3.12)

IIVA<PII2 <G {?7 lwllz + enl| V|3 + €| Av]l3 + IIGAH%} , (3.13)

hold un_,th C1 > 0 independent of n,, €, and Q.

Outline of-_proof of Proposition 3.7. Let w = v + V¢ be the Helmholtz
decomposition of w. Since divw = Ay, we see from (3.8) that
1Aell; = nPllwll} + enIm (v, - Vo + w - Vo, w) + €Re (G, w)
< nPllwll3 + enl Vwll + en(llvs|l2 + Vs lloo) w13
+€?Re (G, w),
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and hence,

1Aellz < 7Pllwll3 + enll Vwll3 + en([lvsllZ, + | Vslloo) [lwlf3
+e?Re (G, w).
By using the Holder and Poincaré inequalities one can obtain the désired
estimate for ||Ad||3.

We next establish the estimate(3.13). We take the inner product of (3.6)
with —V Ay to obtain

—222(w, VAp) + EXAw, VAY) + || VA2

= €M, - Vw +w - Vv, VAp) — (G, VAp). (3:14)
Since w|sn = 0 and divw = Ay, we have
—22%(w, VAp) = €XX(divw, Ap) = €X2||Ag|l2,
EXNAw, VAp) = €X(Av, VAY) + eéAIIVAwlli-
Taking the real part of (3.14), we thus have
—1*llAgll3 + VAl
< ZIVAGIE+ 3P oI Vel + [V fuol2)
2GR + e AP Av]3
This .implies that, if A =42 with > ., then
1 2 _ o 2. 349 9 9
§”VA<P”2 < n’llAelz + 2€M |Av|3
+ 36" {|vsll5 Ve llz + [ Vsl w3} (3.15)

3
+ 2GR

By (3.12) and (3.15), one can obtain the desired estimate (3.13). See [12] for
the details. 0.

We are now in a position to prove Proposition 3.3 for the case \ = i,
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Proof of Proposition 3.3. Let w = v + V¢ be the Helmholtz decomposi-
tion of w. Then

—nRe (w -Vu,,w) < —nRe(Vp- Vo, Vo) + n{|Re (v - Vs, Vo)
+|Re (Vg - Vs, v)| + |Re (v - Vo, v)|}
—nRe (Vo - Vo, Vo)

1
+rn[[ Vs lool| Vellz + (14 =)l Vos o lv]l3

IA

for any x > 0. Choose k = (s4||—vﬂjﬂ|:' Then, since [|w||3 = ||[v||3 + |V¢|)3, we
see from Proposition 3.4 that

(7 + B°n)||wlf3 + 0l Vwl||3 (3.16)
< —conRe (Vo - Vo, V) + Cn||Vu,|oo[[v]13 + C(€27° + €)||Gall2]| w2,

where ¢y = 64.

To compute the proof, we need to estimate the second term on the right-
hand side of (3.16). Applying Propositions 3.5 and 3.7, we see that there
exists a positive constant C' = C(Q2) such that

1 ' 13
;;IIVAson% < C{nzllwllg + en||[Vw|l3 + €202 || V| 31 + €| VAY|3
+€2||gll3 + €°[|vs||Z | Vw3 + €| Vs |2 |wl|3
4
€
G}

It follows that if 7” < 537, then

SIVAQIE < CLOP + Vo2 [w] + (e + €llv,|2) Vel 3
1 3 4
+eind|VolZ, + gl + S1Gal3}

(3.17)

Using (3.17), Proposition 3.5 and the elliptic estimates: | V| zx < C||[VF1Ap||;
(k = 1,2), we obtain
1 .
[l < c{(5 +eint)IaplE + 02 + Vv, 1) lwl
+e2(en + €[|v, |2) I Vwl3 + €]} + S Gall2 (3.18)
€2 2 2
gl + 2 o LI Vw3 + 2 Vol 3.
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Furthermore, we see from Proposition 3.7 that
64
napl < {rtul+erivoli+ Gy (319)
Combining (3.16), (3.18) and (3.19), we have
n
(0 + B)llwlly + 7l Vel + 55180l
< —conRe (Ve - Vus, Vi)
1 € et
+3rwl} + S7IVwl + SIGAlR
+CIVollo [ (ehn 7% + éknt) Al
+e2(n” + €| Vs ||2) w3
2
€
+e(en + €|v,||2) [ Vawll3 + ;’E”vs“oo”vw"%

€ 2 | An.2 € 2 e® 2
+;751|Vvslloollwllz +€*llgllz + Fllgllz + F”GA”2
+O(En* + €)[|Gallz]|wl2.

It then follows that there exists a positive constant C' = C'(||vslc1, B, 2)
such that if e < C'min{1, n.}, n < <, then

1 3 2 2 1 2 1 2
10+ Bl + 5Vl + gzl Al
< —conRe (Vo - Vv, Vo) + Ce'nliglls + C(€27* + €) | Gallz w2
et e
+C—||G4|I2 + C—]\g|)?.
7 1Gall2 " lgll3
1
< 3@ +62 w3 — conRe (Ve - Vo, Vo)
+c( tent )||GA||2+c(e n+ )ng||2
"This implies that if

Re (V- Vo, Vo)
inf {
1Al

[
2
s € HJ(Q), ¢ #0, anl,

: 1
} - 86001’
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then
: €2 €
(7 + )l + Vel +nl gl < ¢ (n+ ) lgll + TNV SI3}-

This completes the proof. 0.
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