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The purpose of this paper is to introduce joint work with Boram Park [12] from a toric topological
view.

1. MOTIVATION

Throughout this paper, a graph pcrmits multiplc cdges but not a loop, and a simple graph means a
graph having neither multiple edges nor a loop.

A tonc variety of complex dimension n is a normal algebraic variety ovcr \mathbb{C} with an effective action
of (\mathbb{C}^{*})^{n} having an open dense orbit. A real toric manifold is the subset consisting of points with rcal
coordinates of a complete smooth toric variety. The fundamental theorem of toric geometry says that
thcrc is a one‐to‐one correspondence bctwccn the class of toric varieties of complex dimension n and the
class of fans in \mathbb{R}^{n} . In particular, for a complete smooth toric variety X , the fan $\Sigma$_{X} is complete and
smooth. Furthermore, if a smooth toric variety X is projective, then $\Sigma$_{X} can bc rcalizcd as thc normal
fan of a Dclzant polytopc in \mathbb{R}^{n} , where a Delzant polytope is a simple convex polytopc such that the
n primitive vectors (outwardly) normal to thc faccts meeting at each vertex form a \mathbb{Z}‐basis. Notc that
the normal fan of a Delzant polytope is a complete non‐singular fan and hence it defines a complete
smooth toric variety and a real toric manifold as well.

It is known by Danilov [10] and Jurkiewicz [11] that the (intcgral) Bctti numbcrs of a complete
smooth toric varicty X vanish in odd degrees and the 2i\mathrm{t}\mathrm{h} Betti number of X is equal to h_{i} , wherc
(h0, . . . , h_{n}) is thc h‐vector of $\Sigma$_{X} . Notc that the ith \mathrm{m}\mathrm{o}\mathrm{d} 2 Betti number of a real toric manifold X_{\mathbb{R}}
is also equal to h_{i} . However, unlike toric varieties, only littlc is known about the cohomology of real
toric manifolds. In [14] and [15], Suciu and Trevisan have found a formula for thc rational cohomology
groups of a real toric manifold, see also [8].

Recently, the rational Bctti numbers of somc interesting family of real toric manifolds, arising from
graphs, have been formulated in terms of some poscts dctcrmined by a graph by using the Suciu‐‘Irevisan
formula, see [7,9]. For a graph G , a simple polytopc P_{G} was introduced in [5,6] as iterated truncations of
the product of standard simpliccs. 1 Furthermore, P_{G} can be realized as a Delzant polytope canonically,
see [7, 9] for more dctails. Hence therc is a rcal toric manifold M_{G} corresponding to a graph G.

Theorem 1.1 ( [9]). The ith rational Betti number of the real toric manifold M_{G} is

$\beta$^{i}(M_{G})= HPTgraph\displaystyle \sum_{0\int G}\sum_{A\in \mathcal{A}(H)}\tilde{ $\beta$}^{i-1}(\triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}}})) ,

where \triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}}}) is the ordered complex of the proper part of the poset \mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}}.
In Section 2, we will define a PI‐graph H of G , an admissible collection \mathcal{A}(H) of H , the poset \mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}},

and thc posct \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} satisfying that \tilde{H}^{i}( $\Delta$(\overline{\mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}}}))\cong\tilde{H}_{\dim(P_{H})-i-2}(\triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}})) .

1_{\mathrm{I}\mathrm{n}} [5], G ib assumed to be simple and P_{G} is called c1 graph associahedron, but in [6], G is not necessarily simple and
P_{G} is called a pseudograph associahedron. Note that G having a loop defines an unbounded polyhedron.

数理解析研究所講究録
第2060巻 2018年 38-43

38



SEONJEONG PARK

A simplicial complex is shellable if its facets can be arranged in linear ordcr F_{1}, F_{2} , . . . , F_{t} in such a
way that thc subcomplcx (\displaystyle \sum_{l=1}^{k-1}\overline{F_{$\iota$'}})\cap\overline{F_{k}} is pure and (\dim F_{k}-1) ‐dimensional for all k = 2 , . . . , t. \mathrm{A}

boundcd2 posct \mathcal{P} is said to bc shellable if its order complex \triangle(\mathcal{P}) is shellable. It is shown in [3] that for
a shellable poset \mathcal{P} , the order complex \triangle(\overline{\mathcal{P}}) is homotopy equivalcnt to a wcdgc of spheres (of various
dimcnsions).

Theorem 1.2 ( [7]). Let H be a simple graph. If each of connected components of H has even number
of vertices, then \mathcal{A}(H)=\{V(H)\} and \mathcal{P}_{H,V(H)}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} is pure and shellable; otherwise \mathcal{A}(H) =\emptyset . Furthermore,

(1.1) $\beta$^{ $\iota$}(M_{G})= l\displaystyle \subseteq V(G)\sum_{|I|=2_{l}} $\mu$(\mathcal{P}_{G|_{I},I}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}))
where G|_{I} is the subgraph of G induced by I and  $\mu$(\mathcal{P}_{G|_{I},I}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}) is the Möbius invariant of the poset \mathcal{P}_{G|_{I},I}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}.

For instance, for a simplc conncctcd path graph,

(1.2)  $\mu$(\displaystyle \mathcal{P}_{P_{2k},[2k]}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}})=\frac{1}{k+1}\left(\begin{array}{l}
2k\\
k
\end{array}\right) and $\beta$^{i} (Mpn) = \left(\begin{array}{l}
n\\
i
\end{array}\right) - \left(\begin{array}{l}
n\\
i-\mathrm{l}
\end{array}\right)
for 1 \leq  i \leq \lfloor \mathrm{g}\rfloor , where [2k] = \{1, 2, . . . , 2k\} . Note that \displaystyle \frac{1}{k+1}\left(\begin{array}{l}
2k\\
k
\end{array}\right) is known as the kth Catalan number
and denoted by C_{k} . In [7], we can find not only (1.2) but also the explicit formula for the rational Betti
numbers of M_{G} when G is a complete graph, a cycle graph, or a star graph. The rational Bctti numbers
of M_{G} for complete multipartitc graphs are computed in [13].

When G is a simple graph, cvery PI‐graph of G is an induced subgraph of G , and hence Theorem 1. 1
is a generalization of (1.1). But, in general, for a non‐simple graph G , our posets \mathcal{P}_{H,C}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} and \mathcal{P}_{H,C}^{\mathrm{o}\mathrm{d}\mathrm{d}} are
not necessarily to be pure, and many of them arc not shellable.

Question ( [9]). For a graph G , let \mathcal{A}^{*}(G)= { (H, A) |H is a PI‐graph of G and A\in \mathcal{A}(H) }. Find all
graphs G such that \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} is shellable for cvcry (H, A) \in \mathcal{A}^{*}(G) .

In [12], we answer the question above and give an explicit formula for the rational Bctti numbers of
thc real toric manifolds corresponding to some path graphs having multiple edges.

2. PRELIMINARIES

In this section, we introduce some properties of the polytope P_{G} , and prepare some notions and basic
facts about a poset and its shellability.

Let G= (V, E) bc a graph. An edge e\in E is multiple if there exists an edge e'(\neq e) in E such that
e and e' have the same pair of cndpoints. A bundle of G is a maximal set of multiple edges which have
the same pair of endpoints.3 A subgraph H of G is an induced (respectively, semi‐induced) subgraph
of G if H includes all the edges (respectively, at least one edge) bctwcen every pair of vertices in H if
such edges exist in G.

Properties of P_{G} . Let G be a connected graph with vcrtex sct V and bundles B_{1} , . . . , B_{k}.

(1) The polytope P_{G} is constructed from \triangle|V|-1 \times\triangle|B_{1}|-1 \times \cdots \times$\Delta$^{|B_{k}|-1} by truncating the faces
corresponding to the proper connected semi‐induced subgraphs of G^{4}

(2) There is a one‐to‐one correspondence between thc faccts of P_{G} and the proper connected semi‐
induced subgraphs of G.

2_{\mathrm{A}} poset \mathcal{P} ib said to be bounded if it has a unique minimum, denoted by Ô, and a unique maximum, denoted by \mathrm{i} . We
denote by \mathcal{P}= P—{Ô, \mathrm{i} }.

3_{\mathrm{E}\mathrm{a}\mathrm{c}\mathrm{h}} bundle of a graph hab at least two elements.
4_{\mathrm{T}\mathrm{h}\mathrm{e}} reader can find the detailed construction of Pc in [6, 9].
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1^{a}\infty b2\rightarrow 3
P_{G} G

1^{a}\leftarrow 2 12 1^{a}2

12a 12b 12ab

 1\leftarrow \propto\rightarrow \leftarrow^{3}
1 2 3

\propto\rightarrow 3 1^{a}\infty\rightarrow 3 12\leftarrow b3
23 123a 123b

FIGURE 1. Thc faccts of P_{G} and the proper semi‐induced connected subgraphs of G

(3) Two facets F_{H} and F_{H'} of P_{G} intersect if and only if H and H' are disjoint and cannot bc
connected by an edge of G , or one contains the other. Sec Figurc 1.

If G_{1} , . . . , G_{\ell} are connected components of G , then P_{G}=P_{G_{1}} \times\cdots \times P_{G_{\ell}}.

A graph H is a partial underlying graph of G if H can be obtained from G by rcplacing some bundles
with simplc cdges, that is, cvcry bundle of H is also a bundle of G . A graph H is a partial underlying
induced graph ( PI‐graph for short) of G if H is an induccd subgraph of some partial underlying graph
of G . Now we let C_{G} be the set of all the vertices and multiplc cdgcs of G . Then every semi‐induced
subgraph of G can be expressed as a subset of C_{G} and for a PI‐graph H of G, C_{H} is inherited from C_{G}.
See Figurcs 1 and 2.

For a connected graph H , a subset A\subset C_{H} is admissible to H if the following hold:

(1) |A\cap V(H)| \equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} 2) and each vertex incident to only simple edges of H is contained in A,

(2)  B\cap A\neq\emptyset and |B\cap A| \equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} 2) , for cach bundle B of H.

For a disconnected graph H, A\subset C_{H} is admissible to H if C_{H'}\cap A is admissible to H' for cach component
H' of H . We dcnote by \mathcal{A}(H) the sct of all the admissible collections of H . For each H_{ $\iota$} in Figurc 2, wc
have \mathcal{A}(H_{1})= {1234}, \mathcal{A}(H_{2})=\{1234ab, 34ab\} , and \mathcal{A}(H_{3})=\{1234cd, 1234ce, 1234de, 14cd, 14ce, 14de\}.

For each A \in \mathcal{A}(H) , a semi‐induced subgraph I of H is A‐even (respectively, A‐odd) if |I'\cap A|
is cvcn (respectively, odd) for each component I' of I . Now we define the poset \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} (respectively,

\mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}}) by the poset consisting of all A‐even (rcspcctively, A‐odd) semi‐induced subgraphs of H ordered
by subgraph containmcnt, including both \emptyset and  H . Note that if \mathcal{A}(H) = \emptyset thcn \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} and \mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}} are
defined to be the null poset, and if \mathcal{A}(H)\neq\emptyset thcn \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} and \mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}} are bounded posets. Figure 2 givcs
cxamplcs of \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}.

Note that for a graph H, \triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}}) (respectively, \triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}}}) ) is a geometric subdivision of the simplicial
complex dual to the union of the facets F_{I} of thc polytope P_{H} such that |I\cap A| is even (respectively,
odd). Hence, from the Alexander duality, we have \overline{H}^{v}(\triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{o}d\mathrm{d}}}))\cong\overline{H}_{\dim(P_{H})- $\iota$-2}(\triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}})) .

For a bounded poset \mathcal{P} , we denote by \mathcal{M}\mathcal{E}(\mathcal{P}) the set of pairs ( $\sigma$, x<y) consisting of a maximal
chain  $\sigma$ and a cover  x<y along that chain. For x, y \in \mathcal{P} and a maximal chain r of [Ô, x], the closed
rooted intcrval [x, y]_{r} of \mathcal{P} is a subposet of \mathcal{P} obtained from [x, y] adding the chain r . A chain‐edge
labeling of \mathcal{P} is a map  $\lambda$ : \mathcal{M}\mathcal{E}(\mathcal{P})\rightarrow $\Lambda$ , where  $\Lambda$ is some poset satisfying; if two maximal chains coincide
along their bottom  d covers, then their labels also coincide along those covers. A chain‐lexicographic
labeling ( CL‐labeling for short) of a bounded poset \mathcal{P} is a chain‐eige labeling such that for each closed
rooted interval [x, y]_{r} of \mathcal{P} , thcrc is a unique strictly increasing maximal chain, which lcxicographically
precedes all other maximal chains of [x, y]_{r} . A posct that admits a CL‐labeling is said to bc CL‐shellable.
We can easily see that \mathcal{P}_{H_{1},1234}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} and \mathcal{P}_{H_{2},1234ab}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} arc CL‐shcllable.

Given a CL‐labeling  $\lambda$ : \mathcal{M}\mathcal{E}(\mathcal{P}) \rightarrow $\Lambda$ , a maximal chain  $\sigma$ :  x_{0}<x_{1}\ll\cdots\ll x_{\ell} of \mathcal{P} is called a falling
chain if  $\lambda$( $\sigma$, x_{ $\iota$-1}<x_{i})\geq $\Lambda \lambda$( $\sigma$, x_{0}<x_{i+1}) for every 1\leq i<\ell.
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1 2 3 4
—

b e b e

H_{1}G

\mathcal{P}_{H_{1},1234}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} \mathcal{P}_{H_{2)}1234ab}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}

H_{2} H_{3}

\mathcal{P}_{H_{3},1234cd}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}

FIGURE 2. Examplcs for PI‐graphs of G and the posets \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}

Theorem 2.1 ( [1, 3,4]). The following hold:

(1) If a bounded poset \mathcal{P} is CL‐shellable, then \triangle(\overline{\mathcal{P}}) has the homotopy type of a wedge of spheres.
Furthermore, for any fixed CL‐labeling, the ith reduced Betti number of \triangle(\overline{\mathcal{P}}) is equal to the
number of falling chains of length i+2.

(2) Every (closed) interval of a shellable (respectively, CL_{-\mathcal{S}}hellable) poset is shellable (respectively)
CL‐shellable).

(3) The product of bounded posets is shellable (respectively, CL‐shellable) if and only if each of the
posets is \mathcal{S}hellable (respectively, CL‐shellable).

(4) A bounded poset is pure and totally semimodular, then it is CL‐shellable.

By (1) of Theorem 2.1, both \triangle(\overline{\mathcal{P}_{H_{1},1234}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}}) and \triangle(\overline{\mathcal{P}_{H_{2},1234ab}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}}) in Figure 2 have the homotopy type
S^{0}\vee S^{0} because they have two falling chains of length 2 for any CL‐labelling. Theorem 2.1 shows that
\mathcal{P}_{H_{3},1234cd}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} is not shcllable because the interval [\emptyset, 1234cd] is not shellable.

An alternative approach to CL‐shellability, via so‐called “recursive atom ordcrings”, was introduced
in [2, 3].

Definition 2.2. A bounded poset \mathcal{P} admits a recursive atom ordering ifits lcngth \ell(\mathcal{P}) is 1, or \ell(\mathcal{P}) > 1

and thcrc is an ordering $\alpha$_{1} , . . . , $\alpha$_{t} of the atoms of \mathcal{P} satisfying the following:

(1) For all j = 1 , . . . , t , the interval [$\alpha$_{J}, \mathrm{i}] admits a recursive atom ordering in which the atoms of
[$\alpha$_{j}, \mathrm{i}] that belong to [$\alpha$_{ $\iota$}, \mathrm{i}] for somc i<j come first.

(2) For all i, j with 1\leq i<j\leq t , if $\alpha$_{i}, $\alpha$_{j} <y then there exist an integer k and an atom z of [$\alpha$_{J}, \mathrm{i}]
such that 1\leq k<j and $\alpha$_{k}<z\leq y.

Theorem 2.3 ( [3]). A bounded po\mathcal{S}et admits a recursive atom ordering if and only if it is CL ‐shellable.

3. MAIN RESULT AND ITS APPLICATION

In this section, we introduce the main result in [12] and give the formula for thc rational Bctti numbers
of M_{P_{n,2}^{-}} as an application, whcrc \tilde{P}_{n,2} is a graph in Figure 3.

Let \mathcal{G} be the collection of graphs whose connected components are simple or belong to the list in
Figure 3.
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\overline{P}_{\mathfrak{n},m} — \overline{S}_{n,m} \overline{T}_{n_{\backslash }m}
(n \geq 2) (n \geq  5 , od (n \geq  5 , od

P_{n,m}'- - \overline{S}_{n,m}' \overline{T}_{n,7r $\iota$}'
(n \geq  3 (n \geq  5 , od (n \geq  5 , od

FIGURE 3. Non‐simple connected graphs with n vertices and m multiple cdgcs (m\geq 2)

Theorem 3.1 (Main result in [12]). Let G be a graph. Then \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} is CL‐shellable for every (H, A) \in

\mathcal{A}^{*}(G) if and only if G belongs to \mathcal{G}.

Sketch of proof. The proof of ‘only if’ part relies on (2) of Theorem 2.1; if a graph G is not in \mathcal{G} , then
we can always find a pair (H, A) \in \mathcal{A}^{*}(G) such that \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} has a non‐shellable interval, scc Theorcm 4.2
in [12].

The proof of the ‘if’ part relies on (3) \sim(4) of Theorem 2.1 and Thcorem 2.3. For a simple connected
graph H , if \mathcal{A}(H) \neq \emptyset , then \mathcal{P}_{H,V(H)}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{I}1} is pure and totally semimodular (see [7]), and hence \mathcal{P}_{H,V(H)}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}
is CL‐shellable by (4) of Theorem 2.1. For a non‐simple connected graph H \in \mathcal{G}, \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} admits a
recursive atom ordering for every A\in \mathcal{A}(H) (\sec Theorem 5.3 in [12]), and hcnce it is CL‐shellable by
Theorem 2.3. Since every PI‐graph of  G\in \mathcal{G} belongs to \mathcal{G} , every G\in \mathcal{G} satisfies that \mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}} is shellablc
for every (H, A)\in \mathcal{A}^{*}(G) by (3) of Thcorem 2.1. \square 

Now we see the rational Betti numbers of the real toric manifold corresponding to \tilde{P}_{n,2} in Figure 3.
We give labels 1, . . . , n to the vertices from left to right and a,\cdot b to the multiple cdgcs as shown bclow.

n\displaystyle \frac{n-1}{-2n}

Under the recursive atom ordering in Theorem 5.3 in [12], wc can compute thc number of falling
chains of \mathcal{P}^{\underline{\mathrm{e}}\mathrm{v}\mathrm{e}\mathrm{n}}

P_{n,2},A
’ which tells us the homotopy type of \triangle(\overline{\mathcal{P}_{P_{r $\iota$,2},A}^{\underline{\mathrm{e}}\mathrm{v}\mathrm{e}\mathrm{n}}}) by (1) of Theorem 2.1. Note that

\mathcal{A}(\tilde{P}_{n,2})= \left\{\begin{array}{ll}
\{A_{1} :=12\cdots nab, A_{2} :=34\cdots nab\}, & \mathrm{i}\mathrm{f} n \mathrm{i}\mathrm{s} \mathrm{c}\mathrm{v}\mathrm{c}\mathrm{n};\\
\{A3 :=134\cdots nab, A_{4} :=234\cdots nab\}, & \mathrm{i}\mathrm{f} n \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d}.
\end{array}\right.
Proposition 3.2 (Proposition 6.3 and Tablc 2 in [12]). If n is even, then

\displaystyle \triangle(\overline{\mathcal{P}_{P_{n,2},A_{1}}^{\underline{\mathrm{e}}\mathrm{v}\mathrm{e}\mathrm{n}}})\sim-\bigvee_{C_{k-1}}S^{k-3} and \displaystyle \triangle(\overline{\mathcal{P}_{P_{n,2}^{-},A_{2}}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{I}1}})\sim-\bigvee_{C_{k}}S^{k-1}
for k= \displaystyle \frac{n-2}{2} . If n is odd, then

\triangle(\overline{\mathcal{P}_{\tilde{P}_{n.2},A_{3}}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}}) is contractible and  $\Delta$(\displaystyle \overline{\mathcal{P}_{P_{n,2},A_{4}}^{\underline{\mathrm{e}}\mathrm{v}\mathrm{e}\mathrm{n}}})\sim-\bigvee_{C_{k+1}-C_{k}}S^{k-1}
for k= \displaystyle \frac{n-3}{2} . Here, C_{k} is the kth Catalan number.

Note that \triangle(\overline{\mathcal{P}_{2k,[2k]}}) is homotopy equivalent to S^{k-2} Since each connected component of

a PI‐graph of \overline{P}_{n,2} is a simplc path graph or \tilde{P}_{m,2} for some m \leq  n . By using \tilde{H}^{\mathrm{c}}(\triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{o}\mathrm{d}\mathrm{d}}})) \cong

\tilde{H}_{\dim(P_{H})-i-2}(\triangle(\overline{\mathcal{P}_{H,A}^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}})) , we can plug Proposition 3.2 into Theorem 1.1 and computc thc rational Betti
numbers of M_{P_{n,2}^{-}}.
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Proposition 3.3 (Section 6.2 in [12]). The ith rational Betti number of M_{P_{n,2}^{-}} is

$\beta$^{ $\iota$}(M_{P_{n,2}^{-}}) = $\beta$^{ $\iota$}(M_{P_{r $\iota$}})+\displaystyle \sum_{l=0}^{ $\iota$-1}\sum_{m=2}^{n-2}b_{rn}^{\ell}$\beta$^{ $\iota$-\ell-1}(M_{P_{n- $\tau$ n-1}})+b_{n-1}^{x-1}+b_{n}^{l-1},
where

$\beta$^{\mathrm{t}}(M_{P_{n}})= \left\{\begin{array}{ll}
[Matrix]-[Matrix], & if 1\leq i\leq \mathrm{L}\frac{n}{2}\rfloor;\\
0, & otherwise,
\end{array}\right.
and

\{
C_{\frac{k}{2}} , if i=\displaystyle \frac{k}{2} or \displaystyle \frac{k}{2}-1 for even k

b_{k}^{i}:= C_{\frac{k+1}{2}} -C_{\frac{k-1}{2}} , if i=\displaystyle \frac{k-1}{2} for odd k

0 otherwise.

For some i, $\beta$^{i}(M_{P_{n,2}^{-}}) can bc written in a simplc form. For instance, $\beta$^{1}(M_{P_{r $\iota$,2}^{-}})=n., $\beta$^{2}(M_{P_{ $\tau \iota$,2}^{-}})= \left(\begin{array}{l}
n\\
2
\end{array}\right),
and $\beta$^{k}(M_{P_{2k,2}^{-}}) =$\beta$^{k+1}(M_{P_{2k+1,2}^{-}}) = \displaystyle \frac{6k}{k+2}C_{k} , which is known as the total number of noncmpty subtrees

over all binary trees having k+1 internal verticcs, sce [16, A071721].

Remark. It would be interesting if one figures out that the ith rational Betti number $\beta$^{i}(M_{G}) counts
othcr combinatorial objects for every G\in \mathcal{G}.
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