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REAL TORIC MANIFOLDS AND SHELLABLE POSETS ARISING FROM
GRAPHS

SEONJEONG PARK (OCAMI)

The purpose of this paper is to introduce joint work with Boram Park [12] from a toric topological
view.

1. MOTIVATION

Throughout this paper, a graph permits multiple edges but not a loop, and a simple graph means a
graph having neither multiple edges nor a loop.

A toric variety of complex dimension n is a normal algebraic variety over C with an effective action
of (C*)™ having an open dense orbit. A real toric manifold is the subset consisting of points with rcal
coordinates of a complete smooth toric variety. The fundamental theorem of toric geometry says that
there is a one-to-onc correspondence between the class of toric varieties of complex dimension n and the
class of fans in R™. In particular, for a complete smooth toric varicty X, the fan Lx is complete and
smooth. Furthermore, if a smooth toric variety X is projective, then ¥ x can be realized as the normal
fan of a Delzant polytopc in R™, where a Delzant polytope is a simple convex polytopc such that the
n primitive vectors (outwardly) normal to the faccts meeting at each vertex form a Z-basis. Notc that
the normal fan of a Delzant polytope is a complete non-singular fan and hence it defines a complete
smooth toric variety and a real toric manifold as well.

It is known by Danilov [10] and Jurkiewicz [11] that the (intcgral) Betti numbers of a complete
smooth toric varicty X vanish in odd degrees and the 2ith Betti number of X is equal to h;, where
(ho, - -+, hn) is the h-vector of Lx. Notc that the ith mod 2 Betti number of a real toric manifold Xg
is also equal to h;. However, unlike toric varieties, only littlc is known about the cohomology of real
toric manifolds. In [14] and [15], Suciu and Trevisan have found a formula for the rational cohomology
groups of a real toric manifold, see also [8].

Recently, the rational Betti numbers of some interesting family of real toric manifolds, arising from
graphs, have been formulated in terms of some poscts determined by a graph by using the Suciu-Trevisan
formula, see [7,9]. For a graph G, a simple polytopc Pg was introduced in [5,6] as iterated truncations of
the product of standard simplices.! Furthermore, Py can be realized as a Delzant polytope canonically,
see [7,9] for morc details. Hence there is a real toric manifold Mg corresponding to a graph G.

Theorem 1.1 ( [9]). The ith rational Betti number of the real toric manifold Mg is

Bi(Meg)= > > BTHAPED),
H. PI gmph ACA(H)
where A(POdd) is the ordered complex of the proper part of the poset P°dd

In Section 2, we will define a PI-graph H of GG, an admissible collection .A(H ) of H, the poset P}){‘%ﬂ,

and the poset PH¢ satisfying that H l(A(POdd )) = Hyim (Pr)—i—2( AP

1n [5], G is assumed to be simple and Pg is called a graph associahedron, but in [6], G is not necessarily simple and
Pg is called a pseudograph associahedron. Note that G having a loop defines an unbounded polyhedron.
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A simplicial complex is shellable if its facets can be arranged in lincar order Fi, Fs, ..., F; in such a
way that the subcomplex ( f;ll F)) N Fy is pure and (dim Fy, — 1)-dimensional for all £ = 2,...,¢t. A
bounded? posct P is said to be shellable if its order complex A(P) is shellable. It is shown in (3] that for
a shellable poset P, the order complex A(P) is homotopy equivalent to a wedge of spheres (of various
dimensions).

Theorem 1.2 ( [7]). Let H be a simple graph. If each of connected components of H has even number
of vertices, then A(H) = {V(H)} and Py}, is pure and shellable; otherwise A(H) = 0. Furthermore,

(11) B(Mg)= Y uPg™),
"

even

where G|y is the subgraph of G induced by I and ;L(Pgﬁf‘l) is the Mdbius invariant of the poset Gl

For instance, for a simple connccted path graph,

1 (2 ;
(1.2) #(PE o) = m( k) and §"(Mp,) = (7;) - (z 7_1 1)

for 1 <i < [%], where [2k] = {1,2,...,2k}. Note that k—1+—1-(2kk) is known as the kth Catalan number
and denoted by Ci. In [7], we can find not only (1.2) but also the explicit formula for the rational Betti
numbers of Mg when G is a complete graph, a cycle graph, or a star graph. The rational Betti numbers
of Mg for complcte multipartite graphs are computed in [13].

When G is a simplc graph, cvery Pl-graph of G is an induced subgraph of G, and hence Theorem 1.1
is a generalization of (1.1). But, in general, for a non-simplc graph G, our posets Pf&h and 'P%f'g are
not necessarily to be pure, and many of them arc not shellable. '

Question ( [9]). For a graph G, let A*(G) = {(H, A) | H is a Pl-graph of G and A € A(H)}. Find all
graphs G such that Pg} is shellable for every (H,A) € A*(G).

In [12], we answer the question above and give an explicit formula for the rational Betti numbers of
the real toric manifolds corresponding to some path graphs having multiple edges.

2. PRELIMINARIES

In this section, we introduce some properties of the polytope Pg, and prepare some notions and basic
facts about a poset and its shellability.

Let G = (V, E) be a graph. An edge e € E is multiple if there exists an edgc €/(# €) in E such that
e and €’ have the samc pair of cndpoints. A bundle of G is a maximal set of multiple edges which have
the same pair of endpoints.® A subgraph H of G is an induced (respectively, semi-induced) subgraph
of G if H includes all the edges (respectively, at lcast onc cdge) between every pair of vertices in H if
such edges exist in G.

Properties of Pg. Let G be a connected graph with vertex set V and bundles By, . .., Bg.
(1) The polytope Py is constructed from AlVI=1 x AlB1=1 ... x AlIBxl=1 by truncating the faces
corresponding to the proper connected semi-induced subgraphs of G.4
(2) There is a one-to-one correspondence between the facets of Pg and the proper connected semi-
induced subgraphs of G.

27 poset P is said»toA be bounded if it has a unique minimum, denoted by 0, and a unique maximum, denoted by i. We
denote by P =P — {0,1}.

3Each bundle of a graph has at least two elements.

4The reader can find the detailed construction of Pg in [6,9].
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FIGURE 1. The faccts of Pg and the proper semi-induced connected subgraphs of G

(3) Two facets Fy and Fy+ of Pg intersect if and only if H and H’ are disjoint and cannot be
connected by an edge of G, or one contains the other. Scc Figure 1.

If Gy,...,Gy are connected components of G, then Pg = Pg, x --- X Pg,.

A graph H is a partial underlying graph of G if H can be obtained from G by replacing some bundles
with simple cdges, that is, cvery bundle of H is also a bundle of G. A graph H is a partial underlying
induced graph (PI-graph for short) of G if H is an induccd subgraph of some partial underlying graph
of G. Now we let Cg be the set of all the vertices and multiple cdges of G. Then every semi-induced
subgraph of G can be expressed as a subset of Cg and for a PI-graph H of G, Cp is inherited from Cg.
See Figures 1 and 2.

For a connccted graph H, a subsct A C Cpy is admissible to H if the following hold:

(1) JANV(H)| =0 (mod 2) and each vertex incident to only simple edges of H is contained in A,
(2) BNA#0and |[BN Al =0 (mod 2), for cach bundle B of H.
For a disconnected graph H, A C Cy is admissible to H if Ci'N A is admissible to H' for cach component
H' of H. We denote by A(H) the sct of all the admissible collections of H. For each H, in Figure 2, we
have A(H;) = {1234}, A(H2) = {1234ab, 34ab}, and A(H3) = {1234cd, 1234ce, 1234de, 14cd, 14ce, 14de}.

For each A € A(H), a semi-induced subgraph I of H is A-even (respcctively, A-odd) if [I' N A|
is even (respectively, odd) for each component I” of I. Now we define the poset Py (respectively,
P}’;}i) by the poset consisting of all A-even (respectively, A-odd) semi-induced subgraphs of H ordered
by subgraph containment, including both § and H. Note that if A(H) = @ then Pg4 and P}’;’lg are
defined to be the null poset, and if A(H) # 0 then Py and P}’fﬂ are bounded posets. Figure 2 gives
cxamples of Pgey'.

Note that for a graph H, A(PF) (respectively, A(Pg9)) is a geometric subdivision of the simplicial
complex dual to the union of the facets Fy of the polytope Py such that |1 N A| is even (respcctively,
odd). Hence, from the Alexander duality, we have I:I‘(A(P}?}fi)) = fIdim(pH)_,_g(A(W‘f‘{‘))‘

For a bounded poset P, we denote by ME(P) the set of pairs (¢,z < y) consisting of a maximal
chain ¢ and a cover z < y along that chain. For z,y € P and a maximal chain 7 of [0,z], the closed
rooted interval [z,y], of P is a subposet of P obtained from [z,y] adding the chain r. A chain-edge
labeling of P is a map A: ME(P) — A, where A is some poset satisfying; if two maximal chains coincide
along their bottom d covers, then their labels also coincide along thosc covers. A chain-lexicographic
labeling (CL-labeling for short) of a bounded poset P is a chain-edge labeling such that for each closed
rooted interval [z, y], of P, there is a unique strictly increasing maximal chain, which lexicographically
precedes all other maximal chains of [z, y],. A posct that admits a CL-labeling is said to be CL-shellable.
We can easily see that P s34 and Pg a4, arc CL-shellable.

Given a CL-labeling A\: ME(P) — A, a maximal chain ¢ : zg < 1 < --- < z¢ of P is called a falling
chain if A(0,T,—1 < x;) >p Ao, z, < 2i4+1) for every 1 <7 < L.
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FIGURE 2. Examples for PI-graphs of G and the posets Pg%y

Theorem 2.1 ( [1,3,4]). The following hold:

(1) If a bounded poset P is CL-shellable, then A(P) has the homotopy type of a wedge of spheres.
Furthermore, for any fized CL-labeling, the ith reduced Betti number of A(P) is equal to the
number of falling chains of length i + 2.

(2) Every (closed) interval of a shellable (respectively, CL-shellable) poset is shellable (respectively,
CL-shellable).

(3) The product of bounded posets is shellable (respectively, CL-shellable) if and only if each of the
posets is shellable (respectively, CL-shellable).

(4) A bounded poset is pure and totally semimodular, then it is CL-shellable.

By (1) of Theorem 2.1, both A(Pgh,,,) and A(Pg,5,,,) in Figure 2 have the homotopy type
59V S0 because they have two falling chains of length 2 for any CL-labelling. Theorem 2.1 shows that
Pl o34cq 18 Dot shellable because the interval (@, 1234cd] is not shellable.

An alternative approach to CL-shellability, via so-called “recursive atom ordcrings”, was introduced
in [2,3].

Definition 2.2. A bounded poset P admits a recursive atom ordering if its length ¢(P) is 1, or £(P) > 1
and there is an ordering ag, ..., a; of the atoms of P satisfying the following:
(1) For all j =1,...,t, the interval [o;, 1] admits a recursive atom ordering in which the atoms of
[a,1] that belong to [a, 1] for some i < j come first.
(2) For all 4, j with 1 < < j <¢, if a;, aj < y then there exist an integer k and an atom z of [a, i
such that 1 <k < jand o < 2 < y.

Theorem 2.3 ( [3]). A bounded poset admits a recursive atom ordering if and only if it is CL-shellable.

3. MAIN RESULT AND ITS APPLICATION

In this scction, we introduce the main result in [12] and give the formula for the rational Betti numbers
of Mg, as an application, where P2 is a graph in Figure 3.

Let G be the collection of graphs whose connected components are simple or belong to the list in
Figurc 3.
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FIGURE 3. Non-simple connected graphs with n vertices and m multiple edges (m > 2)

Theorem 3.1 (Main result in [12]). Let G be a graph. Then PH% is CL-shellable for every (H,A) €
A*(G) if and only if G belongs to G.

Sketch of proof. The proof of ‘only if’ part relies on (2) of Theorem 2.1; if a graph G is not in G, then
we can always find a pair (H, A) € A*(G) such that Pg} has a non-shellable interval, scc Theorem 4.2
in [12].

The proof of the ‘if’ part relies on (3)~(4) of Theorem 2.1 and Theorem 2.3. For a simple connected
graph H, if A(H) # 0, then Py V(e 1s pure and totally semimodular (see [7]), and hence Pavm
is CL-shellable by (4) of Theorem 2.1. For a non-simple connected graph H € G, Py% admits a
recursive atom ordering for every A € A(H) (scc Theorem 5.3 in [12]), and hence it is CL-shellable by
Theorem 2.3. Since every Pl-graph of G € G belongs to G, every G € G satisfies that Pf% is shellable

for every (H, A) € A*(G) by (3) of Theorem 2.1. O

Now we see the rational Betti numbers of the real toric manifold corresponding to 15",2 in Figure 3.
We give labels 1,...,n to the vertices from left to right and a, b to the multiplc cdges as shown below.

Under the recursive atom ordering in Theorem 5.3 in [12], we can compute the number of falling
chains of Ple-je: 4 Which tells us the homotopy type of A(P;,"e: A) by (1) of Theorem 2.1. Note that

A(Pys) {A1:=12---nab, Ay :== 34 -- - nab}, if n is even;
™27 ) {As := 134+ nab, Ag := 234 -nab}, if n is odd.

Proposition 3.2 (Proposition 6.3 and Tablc 2 in [12]). Ifn is even, then

even ~ k—3 ven ~ k—1
NG \/ $¥7 and A(PTT ) \V&S
Cr—1 Cr

for k=252 Ifn is odd, then
A(Pe"e“ ) is contractible and A(Peve“ A4) ~ \/ gk-1

Pn2,A3
Ci+1—Ck

fork = "T_P’ Here, Cy, is the kth Catalan number.

Note that A(Paox)) is homotopy equivalent to Ve, Sk=2_ Since each connected component of
a Pl-graph of P, is a simplc path graph or P, for some m < n. By using H ‘(A(’PO‘”))
Hdlm( P)—ie 2(A(Pev““)), we can plug Proposition 3.2 into Theorem 1.1 and computc the rational Betti
numbers of M B,

%
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Proposition 3.3 (Section 6.2 in [12]). The ith rational Betti number of Mp,_, is

1—1 n—-2
B(Mp ) = B(Mp)+D > b (Mp,_,_y) + b7 + 07
=0 m=2
where
M =(" fl<i<|Z];
(M — (1) (1—1)’ lf —"=1L120
B (Mp.) {0, otherwise,
and
Ck, zfzz% r%—lforevenk
. 2
ko= Crs = Cia, if i = E=L for odd k
0 otherwzse.

For some 4, f*(Mp, ) can be wnttcn in a simple form. For instance, (M, L) =1 B8 Mg )= W

and § k( Pk
over all binary trees having k + 1 internal verticcs, sce [16, A071721].

)= ﬁk“( Poess, )= k 2 8k Cy, which is known as the total number of nonempty subtrees

Remark. Tt would be interesting if one figures out that the ith rational Betti number 3{(M¢) counts
other combinatorial objects for every G € G.
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