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1. INTRODUCTION

This report is a survey of the paper [K].

A quandle is a set with a binary operation satisfying three conditions which axiomatize
conjugation. In particular, there are mutually adjoint constructions of quandles and groups
through conjugation: (1) we associate a quandle to a conjugation closed subset of a group;
(2) we associate a group to a quandle. Thus by composing these two constructions, we can
construct a new group out of a given conjugation closed subset of a group. However, the
interest of the resulting group entirely depends on the choice of a conjugation closed subset
of a group. One of good choices is the set of reflection of a Coxeter system (W, S) [\mathrm{N}] , and
we call the resulting group the adjoint group of W . The adjoint group of W is given by an
explicit presentation, but its structure has not been known except for the case when W is the
symmetric group [AFGV, \mathrm{E}]. Recently, Akita [A] investigates the natural connection between
the adjoint group of W and the underlying Coxeter group W to describe the structures of the
adjoint group of W . We will study the classifying space of the adjoint group of W based on
Akita’s result [A] in terms of spaces called polyhedral products when W is right‐angled.

2. COXETER QUANDLES AND AKITA’S RESULT

2.1. Coxeter systems. A pair (W, S) of a group W and a finite set S is called a Coxeter
system if it is equipped with a map m :  S\times S\rightarrow \{1, 2, . . . , \infty\} satisfying the following three
conditions:

(1) m(s, t)=m(t, s) ;
(2) m(s, t)=1 if and only if s=t ;
(3) the group W has a presentation

W=\langle s\in S|(st)^{m(s,t)}=1 for m(s, t)<\infty\rangle.

Hereafter, (W, S) will denote a Coxeter system. Our reference of Coxeter groups is [D].
The Artin group associated with a Coxeter system (W, S) is defined by

A_{W}=\langle a_{s}(s\in S)|a_{s}a_{t}a_{s}\tilde{m(s,t)}\ldots=a_{t}a_{s}a_{t}\tilde{m(t,s)}. . for 1<m(s, t)<\infty\rangle.
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Then the Coxeter group W is obtained by adding the relations a_{s}^{2}=1 to A_{W} and replacing a_{s}

with s for s\in S so that there is a natural projection

 $\pi$:A_{W}\rightarrow W, a_{s}\mapsto s.

2.2. Coxeter quandles. Recall that a quandle X is a set equipped with a binary operation
*:X\times X\rightarrow X satisfying the following three conditions:

(1) x*x=x ;
(2) (x*y)*\sim $\tau$=(x*z)*(y*z) ;
(3) the map X\rightarrow X, x\mapsto x*w is bijective for any w\in X.

We consider the following two mutually adjoint constructions producing groups from quandles

and vice versa. To a quandle X there is associated a group

(2.1) Ad (X)=\langle e_{x}(x\in X)|e_{x*y}=e_{y}^{-1}e_{x}e_{y}\}

which is called the adjoint group, and a conjugation closed subset R of a group G is regarded

aồ a quandle by the binary operation

*:R\times R\rightarrow R, g*h=h^{-1}gh.

Then in particular, from a given conjugation closed subset X of a group one gets a new group

Ad (X). and moreover, it is easy to verify that the map

 $\phi$ : Ad (X)\rightarrow G, e_{x}\mapsto x

is a well‐defined surjection.
An element of the form w^{-1} sw for w\in W, s\in S is called a reflection of W , and we denote

by X_{W} the set of all reflections of W . Then X_{W} is a quandle by the above construction and
we call it the Coxeter quandle associated with a Coxeter system (W, S) . Thus we get a group

Ad (X_{W}) , the classifying space of which is our object to study.

2.3. Akita’s results. In [A], Akita proved several properties of Ad (X_{W}) , and these results
are summarized as follows.

Theorem 2.1. The commutative square

Ad (X_{W})\rightarrow^{\mathrm{a}\mathrm{b}}\mathbb{Z}^{c(W)}

\downarrow(p \downarrow proj

 W\rightarrow^{\mathrm{a}\mathrm{b}}(\mathbb{Z}/2)^{c(W)}

is a pullback, where c(W) is the integer explicitly defined by W.
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Since there is a commutative diagram

A_{W}\rightarrow^{\mathrm{a}\mathrm{b}}\mathbb{Z}^{\mathrm{c}(l}ỷ \sim)

\downarrow $\pi$ \downarrow proj

 W\rightarrow \mathrm{a}\mathrm{b}(\mathbb{Z}/2)^{c(W)},
we have:

Corollary 2.2 (Akita [A]). The map  $\pi$:A_{W}\rightarrow W factors as the composite of surjections

A_{W}\rightarrow \mathrm{A}\mathrm{d}(X_{W})\rightarrow $\phi$ W.

Theorem 2.1 passes to a homotopy pullback by taking the classifying spaces.

Theorem 2.3. There is a homotopy pullback

BAd (X_{W})\rightarrow(S^{1})^{c(W)}

\downarrow $\phi$ \downarrow inci

 BW\rightarrow(\mathbb{R}P^{\infty})^{c(W)}.

3. RIGHT‐ANGLED COXETER GROUPS AND POLYHEDRAL PRODUCTS

3.1. Right‐angled Coxeter groups. A Coxeter system (W, S) is called right‐angled if \uparrow $\gamma \iota$(s, t)=
1 , 2, \infty for any  s, t \in  S . We characterize the right‐angularity of a Coxeter system (W, S) in
terms of graph products of groups. Let G be a group and  $\Gamma$ be a simple graph with the vertex
set  V . The graph product of G_{ $\Gamma$} is the quotient of the free product of G_{v} =G for v \in  V by
the commutator relations [G_{u}, G_{v}] = 1 whenever the vertices u, v are adjacent in  $\Gamma$ . Graph
products of groups are natural in the sense that for a homomorphism  G\rightarrow H of groups and a
subgraph inclusion  $\Theta$\rightarrow $\Gamma$ , there are homomorphisms

 G_{ $\Gamma$}\rightarrow H_{ $\Gamma$} and G_{ $\Theta$}\rightarrow G_{ $\Gamma$}.

We regard a set S to be a discrete graph so that the graph product \mathbb{Z}_{S} is identified with the
free group generated by S . We then set

 $\theta$:\mathbb{Z}_{S}\rightarrow W, \tilde{ $\theta$}:\mathbb{Z}_{S}\rightarrow A_{W}, \overline{ $\theta$} : \mathbb{Z}_{S}\rightarrow \mathrm{A}\mathrm{d}(X_{W})

to be the projections induced from the inclusions of generators.
Define a graph $\Gamma$_{W} for a Coxeter system (W, S) such that its vertex set is S and s, t\in S are

adjacent in $\Gamma$_{W} whenever m(s, t)=2 . Then if (W, S) is right‐angled, we have

W=\langle s\in S|s^{2}=1, [s, t]=1 for m(s, t)=2\rangle\cong(\mathbb{Z}/2)_{$\Gamma$_{W}}.

Moreover, taking the generating set S into account, we get:
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Proposition 3.1. A Coxeter system (W, S) is right‐angled if and only if there is an isomor‐

phism

W\cong(\mathbb{Z}/2)_{$\Gamma$_{W}}

such that the map  $\theta$:\mathbb{Z}_{S}\rightarrow W is identified with the projection \mathbb{Z}_{S}\rightarrow(\mathbb{Z}/2)_{$\Gamma$_{W}}.

If a Coxeter system (W, S) is right‐angled, we also have

A_{W}= {s\in S| [s, t]=1 for m(s, t)=2} \cong \mathbb{Z}_{$\Gamma$_{W}}.

Then we similarly get:

Proposition 3.2. If a Coxeter system (W, S) is right‐angled, there is an isomorphism

A_{W}\cong \mathbb{Z}_{\mathrm{r}_{w}}

such that the map \tilde{ $\theta$}:\mathbb{Z}_{S}\rightarrow A_{W} is identified with the projection \mathbb{Z}_{S}\rightarrow \mathbb{Z}_{$\Gamma$_{W}}.

3.2. Polyhedral products. We translate Proposition 3.1 into homotopy theory by using

spaces called polyhedral products. Let (X, A) be a pair of spaces and K be an abstract simpli‐

cial complex on the vertex set [m] . We associate to  $\sigma$ \in K , possibly empty, a subspace D( $\sigma$)
of X^{m} such that

(3.1) D_{(X,A)}( $\sigma$)=Y_{1} \times\cdots\times Y_{m}, Y_{l}= \left\{\begin{array}{l}
X i\in $\sigma$\\
 A i\not\in $\sigma$.
\end{array}\right.
The polyhedral product of (X, A) associated with K is now defined by

Z(K;(X, A))=\displaystyle \bigcup_{ $\sigma$\in K}D_{(X,A)}( $\sigma$) .

Although polyhedral products are defined more generally for a sequence of pairs of spaces, \mathrm{a}

single pair of spaces is enough for our purpose here. We refer to [BBCG, IK] for the basic
homotopy theory of polyhedral products.

We express the classifying space of a right‐angled Coxeter group by a polyhedral product. \mathrm{A}

simplicial complex is called flag if every collection of pairwise adjacent vertices is its simplex.

For a simple graph  $\Gamma$ , we denote by \triangle( $\Gamma$) the flag complex whose 1‐skeleton is  $\Gamma$.

Proposition 3.3. A Coxeter system (W, S) is right‐anglei if and only if there is a homotopy

equivalence

BW\simeq Z(\triangle($\Gamma$_{W});(\mathbb{R}P^{\infty}, *))

such that the map  $\theta$ :  B\mathbb{Z}_{S}\rightarrow BW is identified with the inclusion Z(S;(S^{1}, *))\rightarrow Z(\triangle($\Gamma$_{W});(\mathbb{R}P^{\infty}, *
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4. MAIN THEOREM AND ITS APPLICATIONS

4.1. Main theorem. By an old trick of homotopy theory, we can prove:

Lemma 4.1 (cf. [DS, Lemma 2.3.1]). Let (F, F') \rightarrow (E, E') \rightarrow  B be a pair of homotopy
fibrations where (F, F (E, E') are NDR pairs. Then the sequence

Z(K;(F, F \rightarrow Z(K;(E_{:}E \rightarrow B^{n $\iota$}

is a homotopy fibration.

Using this lemma, we can prove the following.

Proposition 4.2. Let F\rightarrow E\rightarrow B be a homotopy fibration such that the fiber inclusion is a

cofibration. Then the commutative square

(4.1) Z(K;(E, F))\rightarrow^{\mathrm{i}\mathrm{n}\mathrm{c}1}E^{m}

\downarrow
inci

\downarrow
 Z(K;(B, *))\rightarrow B^{m}

\uparrow s a homotopy pullback, where m is the number of vertices of K.

We now prove the main theorem which indicates a homotopical inheritance of the right‐

angularity of a Coxeter system (W, S) by the adjoint group Ad (X_{W}) as in Proposition 3.3. Let
I_{2} be the mapping cylinder of the degree 2 map S^{1}\rightarrow S^{1} , and we consider the pair (I_{2}, S^{1}) such

that the inclusion S^{1} \rightarrow I_{2}\simeq S^{1} is of degree 2. Note that we also have an inclusion S^{1} \rightarrow I_{2}

which is a homotopy equivalence.

Theorem 4.3. If a Coxeter system (W, S) is right‐angled, then there is a homotopy equivalence

BAd (X_{W})\simeq Z( $\Delta$($\Gamma$_{W});(I_{2}, S^{1}))

such that the map \overline{ $\theta$} : B\mathbb{Z}_{S} \rightarrow BAd (X_{W}) is identified with the inclusion Z(S;(S^{1}, *)) \rightarrow

 Z(\triangle($\Gamma$_{W});(I_{2}, S^{1})) induced from a homotopy equivalence S^{1}\rightarrow I_{2}\simeq.

4.2. Applications of Theorem 4.3. We first consider a torsion in the adjoint group Ad (X_{W}) .

By definition, W always has a torsion whereas one of the biggest problems on Artin groups to

show whether they are torsion free or not [P]. Since Ad (X_{W}) is an intermediate object between
W and A_{W} by Theorem??, one may ask:

Problem 4.4. Is Ad (X_{W}) torsion free í?

Suppose (W, S) is right‐angled. Since BA_{W} \simeq  Z(\triangle($\Gamma$_{W});(S^{1}, *)) is finite dimensional by

Proposition 3.2, A_{W} is torsion free. So one may expect that Ad (X_{W}) is also torsion free.

Indeed, by Theorem 4.3 BAd (X_{W})\simeq Z(\triangle($\Gamma$_{W});(I_{2}, S^{1})) is finite dimensional, so we get:
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Corollary 4.5. If a Coxeter system (W, S) is right‐angled, then Ad (X_{W}) is torsion free.

We next consider a property of the map  $\Phi$:A_{W}\rightarrow \mathrm{A}\mathrm{d}(X_{W}) when (W, S) is right‐angled. We

assume (W, S) is right‐angled and |S|=m so that we may identify S with [m] . Note that \mathbb{Z}^{rn} is

identified with the graph product \mathbb{Z}_{\triangle^{m-1}} . Then by Theorem 3.2, the map ab: BA_{W}\rightarrow B\mathbb{Z}^{m} is
identified with the inclusion Z(\triangle($\Gamma$_{W});(S^{1}, *))\rightarrow Z(\triangle^{m-1};(S^{1}, *))=(S^{1})^{m} , so by Proposition

??, the map ab: BA_{W}\rightarrow B\mathbb{Z}^{m} is the projection

$\Lambda$_{R}(v_{1}, \ldots, v_{m})\rightarrow$\Lambda$_{R}(\triangle($\Gamma$_{W}))

in cohomology. In particular, since $\Lambda$_{R}(\triangle($\Gamma$_{W})) is a free R‐module, the map ab‘ :  H^{*}(\mathbb{Z}^{m};R)\rightarrow
 H^{*}(A_{W};R) has a section as R‐modules. On the other hand, there is a commutative diagram

A_{W}\underline{\mathrm{a}\mathrm{b}}\mathbb{Z}^{c(W)}

\downarrow $\Phi$ \Vert
Ad (X_{W})\rightarrow \mathbb{Z}^{c(W)}\mathrm{a}\mathrm{b}

even when (W, S) is not right‐angled. Thus by considering the induced commutative diagram
in cohomology, we obtain:

Proposition 4.6. If a Coxeter system (W, S) is right‐angled, the map $\Phi$^{*} :  H^{*}(\mathrm{A}\mathrm{d}(X_{W});R)\rightarrow
 H^{*}(A_{W}, R) has a section as R‐modules.

We will show that this property of  $\Phi$ can be recovered by a homotopical property of the in‐

duced map  $\Phi$ :  BA_{W}\rightarrow B\mathrm{A}\mathrm{d}(X_{W}) . To this end, we recall the natural homotopy decomposition

of a suspension of a polyhedral product. Let (X, A) be a pair of spaces and K be a simplicial

complex on the vertex set [m] . For any  $\sigma$\in K , we put

\hat{D}_{(X,A)}( $\sigma$)=Y_{1}\wedge\cdots\wedge Y_{m}, Y_{i}= \left\{\begin{array}{l}
X i\in $\sigma$\\
 A i\not\in $\sigma$
\end{array}\right.
and define the polyhedral smash product of (X, A) with respect to K by

\displaystyle \hat{Z}(K;(X, A))=\bigcup_{ $\sigma$\in K}\hat{D}_{(X,A)}( $\sigma$) (\subset X^{\wedge n})
where X^{ $\Lambda$ n} is the smash product of n‐copies of X . For a subset I\subset[m] , we put

K_{I}=\{ $\sigma$\in K| $\sigma$\subset I\}.

Theorem 4.7 (Bahri, Bendersky, Cohen, and Gitler [BBCG]). There is a homotopy equivalence

 $\Sigma$ Z(K;(X, A))\displaystyle \simeq $\Sigma$\bigvee_{\emptyset\neq I\subset[m]}\hat{Z}(K_{I};(X, A))
which is natural with respect to (X, A) .

145



RIGHT‐ANGLED COXETER QUANDLES AND POLYHEDRAL PRODUCTS

Proposition 4.6 is recovered by the following homotopical property of the map  $\Phi$ :  A_{W} \rightarrow

Ad (X_{W}) .

Theorem 4.8. If a Coxeter system (W, S) is nght‐angled, the map  $\Sigma \Phi$ :  $\Sigma$ BA_{W}\rightarrow $\Sigma$ B\mathrm{A}\mathrm{d}(X_{W})
has a left homotopy inverse.
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