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ABSTRACT. In 2010, Invent. Math,, Ershov and Jaikin‐Zapirain proved Kazh‐
\mathrm{d}\mathrm{a}\mathrm{n}'\mathrm{s} property (T) for elementary groups. This expository article focuses on pre‐
senting an alternative simpler proof. Unlike the original one, our proof supplies
no estimate of Kazhdan constants. It may be regarded as a specific example
of the results in the paper “Upgrading fixed points without bounded generation“
(arXiv: 1505.06728, forthcoming version) by the author.

1. INTRODUCTION

Throughout this article, \mathcal{H} stands for an arbitrary Hilbert space (we do not fix a
single Hilbert space: it can be non‐separable after taking metric ultraproducts).

Definition 1.1. For a countable (discrete) group G and G\geq M , we say that G\geq M
has relative property ( $\Gamma$ \mathrm{H}) if for all (affine) isometric G‐actions  $\alpha$ :  c_{ $\Gamma$}\searrow \mathcal{H} (for every
\mathcal{H}) , the M‐fixed point set \mathcal{H}^{ $\alpha$(M)} is non‐empty. We say that G has property ( $\Gamma$ \mathrm{H}) if
G\geq G has relative property ( $\Gamma$ \mathrm{H}) .

The Delorme‐Guichardet Theorem [BdlHV08, Theorem 2.12.4] states that (rela‐
tive) property ( $\Gamma$ \mathrm{H}) is equivalent to (relative) property (T) of Kazhdan. Therefore,
throughout this article, we use the terminology “property (T) for property ( $\Gamma$ \mathrm{H}) .
See [BdlHV08] for details on these properties. A fundamental example of groups
with property (T) is \mathrm{S}\mathrm{L}(n, \mathbb{Z}) for n\geq 3 (see [BdlHV08, Example 1.7.4.(\mathrm{i})] ).

The goal of this article is to provide an alternative proof of the following theorem.

Theorem 1.2 (Ershov and Jaikin‐Zapirain, Theorem 1 in [EJZ10]). For a finitely
generated and associative ring R with unit and for n \geq  3 , the elementary group
\mathrm{E}(n, R) has property (T).

Here, for such R and n , the elementary group \mathrm{E}(n, R) is the subgroup of \mathrm{G}\mathrm{L}(n, R)
generated by elementary matnces \{ eí,j : i \neq j \in \{1 , 2, . . . , n\}, r \in  R\} . The eí,j is
defined by (eí,J)_{k,l} := $\delta$_{k,l}+r$\delta$_{i,k}$\delta$_{J^{l}}\prime, , where  $\delta$ is the Kronecker delta. This theo‐
rem greatly generalizes the aforementioned example because for  R=\mathbb{Z} , Gaussian
elimination implies that SL =\mathrm{E} for all n\geq 2 . The commutator relation

(#) [e_{i_{J}}^{r_{1}},'' e_{j,k}^{r_{2}}]=e_{i,k}^{r_{1}r}2 for i\neq j\neq k\neq i and for r_{1}, r_{2}\in R

implies fimite generation of \mathrm{E}(n, R) as in Theorem 1.2. Here, [$\gamma$_{1}, $\gamma$_{2}] :=$\gamma$_{1}$\gamma$_{2}$\gamma$_{1}^{-1}$\gamma$_{2}^{-1}
Note. In [EJZ10], \mathrm{E}(n, R) is written as EL_{n}(R) . The ring R may be non‐commutative.

For motivations of this result, see Introduction of [EJZ10].
Key words and phrases. Kazhdan’s property (T), elementary groups.
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2. STRATEGIES: COMMON POINTS AND DIFFERENCE

Both of the original proof and the new proof in this article consist of following
two steps. For G=\mathrm{E}(n, R) ,

\bullet (^{(} Building block show relative properties (T) for G \geq  M_{i} for certain
subgroups Ml,. . . M_{l}.

\bullet (
\mathrm{t}

‘Upgrading”’): upgrade them to property (T) for G.

In the first step, both of us employ the following:

Theorem 2.1 (Kassabov, Corollary 2.8 in [Kas07]). For R and n as in Theorem 1.2,
and for all i \neq  j \in \{1, . . . , n\}, \mathrm{E}(n, R) \geq  G_{i,j} has relative property (T). Here,
G_{i,j} := {eí,j :r\in R} (\simeq(R, +

Note. Kassabov showed it in terms of the original definition of property (T). As we
mentioned above, this is equivalent to our property (T) (property ( $\Gamma$ \mathrm{H}) ).

In fact, Kassabov’s original form is for the pair \mathrm{E}(n-1, R) \ltimes R^{n-1} \underline{\triangleright}R^{n-1} and
{}^{t}(R^{n-1}) \rangle\triangleleft \mathrm{E}(n- 1, R) \underline{\triangleright} {}^{t}(R^{n-1}) for all n \geq  3 . Here for the former, \mathrm{E}(n- 1, R)
acts on R^{n-1} (column vectors) by the left multiplication; for the latter, it acts on
{}^{t}(R^{n-1}) (row vectors) by the right multiplication. The proof for these pairs is by
spectral theory associated with unitary representations of abelian groups: see also
[Sha99] and [BdlHV08, Sections 4.2 and 4.3]. To deduce Theorem 2.1 from this,
embed \mathrm{E}(n-1, R) \ltimes R^{n-1} and {}^{t}(R^{n-1} ) \rangle\triangleleft \mathrm{E}(n-1, R) into \mathrm{E}(n, R) in several ways.
Note that if G\geq G_{0}\geq M_{0}\geq M , then relative property (T) for G\geq M follows from
that for G_{0}\geq M_{0}.

The difference between the original proof in [EJZ10] and ours is “Upgrading”
(1) In the original proof, upgrading is extrinsic: They consider angles between

fixed point subspaces, and showed that if angles are sufficiently close to being
orthogonal, then upgrading works.

More precise form is as follows. Since their original argument deals with the
original formulation of property (T), we here rather sketch the argument in
formulation of Lavy [Lav15]. For two (non‐empty) affine subspaces \mathcal{K}_{1}, \mathcal{K}_{2} of
\mathcal{H} , they define

\displaystyle \cos\angle(\mathcal{K}_{1}, \mathcal{K}_{2}):=0\neq $\xi$\in \mathcal{K}_{1}'/(\mathcal{K}_{1}'\cap \mathcal{K}_{2}'), 0\neq $\eta$\in \mathcal{K}_{2}'/(\mathcal{K}_{1}'\cap \mathcal{K}_{2}')\sup\frac{|\{ $\xi,\ \eta$\rangle|}{|| $\xi$\Vert|| $\eta$||}\in [0, 1],
where \mathcal{K}_{i}', i=1|, 2, is the linear subspace obtained by parallel transformation of
\mathcal{K}_{i} . The symbol } means the (induced) inner product on \mathcal{H}/(\mathcal{K}_{1}'\cap \mathcal{K}_{2}') . They
say \mathcal{K}_{1} and \mathcal{K}_{2} are  $\epsilon$ ‐orthogonal if \cos\angle(\mathcal{K}_{1}, \mathcal{K}_{2})< $\epsilon$.

They showed existence of (explicit) ($\epsilon$_{i,j})_{1\leq i<j\leq l} (for every l \geq  3 ) with the
following property: for G \geq  H_{i}, 1 \leq  i \leq  l , with \langle H_{1} , . . . ,  H_{l}\rangle = G , if \mathcal{H}^{ $\alpha$(H_{i})}

 $\alpha$:G_{ $\Gamma$\vee}\mathcal{H}\mathrm{a}\mathrm{n}\mathrm{d}\mathcal{H}^{ $\alpha$(H_{\mathrm{j}})}, then r \mathrm{e}1ative properties (\mathrm{T})\mathrm{f}\mathrm{o}\mathrm{r}G\geq H_{i,j}.=\langle H_{i}\mathrm{a}\mathrm{r}\mathrm{e}$\epsilon$_{i,\mathrm{j}}-\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{g}\mathrm{o}\mathrm{n}\mathrm{a}1\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}11i\neq j\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}11affine  H_{J}\rangle \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}11i\neqjisometricactions
imply property (T) for  G . See [Lav15, Subsection 1.2 and Section 2] as well as
[EJZ10].
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Note. To apply this
(

(extrinsic) upgrading” criterion for G = \mathrm{E}(n, R) for a
general R (say, R= \mathbb{Z}\{x,  y\rangle , a non‐commutative polynomial ring), quite deli‐
cate estimate of spectral quantities ( $\epsilon$_{i,j} for $\epsilon$_{i,j}‐orthogonality) is needed. This,
together with the proof of the criterion, makes their proof heavier. In return,
they obtain estimation of Kazhdan constants (see [BdlHV08, Remark 1.1.4]).

(2) Our upgrading is intrensic: our criterion is stated only in terms of group struc‐
ture, and not of group actions. \mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}\backslash makes our proof rather simpler than the
original one. The price to pay, however, is that we do not obtain any estimate
for Kazhdan constants. This is a special case of our (intrinsic) upgrading without
bounded generation [Mim15]. Our upgrading result is as follows:

Theorem 2.2 (Upgrading theorem in this article). Let G be a finitely generated
group and M, L\leq G satisfy \{M, L\rangle=G . Assume the following hypothesis.
(\mathrm{G}\mathrm{A}\mathrm{M}\mathrm{E}^{\mathrm{i}\mathrm{n}\mathrm{n}}) hypothesis: The player can win the (\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{e}^{\mathrm{i}\mathrm{n}\mathrm{n}}) for (G, M, L) , which is
defined in SectiSion 3.

Then, relative properties (T) for G\geq M and G\geq L imply property (T) for G.

3. (\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{e}^{\mathrm{i}\mathrm{n}\mathrm{n}})

Let G be a group, and M, L \leq  G satisfy \{M,  L\rangle = G . The (\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{e}^{\mathrm{i}\mathrm{n}\mathrm{n}}) for
(G, M, L is a one‐player game. Here, we fix (G, M, L) and keep them unchanged.
For each ordinal  $\iota$ , we set  H_{1}^{( $\iota$)}\leq G and H_{2}^{( $\iota$)}\leq G . Those two subgroups H_{1} and H_{2},
indexed by  $\iota$ , are respectively “upgraded” (enlarged). The rules are the following.

\bullet For the initial stage ( $\iota$=0) , H_{1}^{(0)}=M and H_{2}^{(0)}=L.
\bullet The player wins if there exists  $\iota$ for which the player can set as either  H_{1}^{( $\iota$)}=G

or H_{2}^{( $\iota$)}=G.
\bullet For each non‐zero limit ordinal  $\iota$ , the player can upgrade  H_{1} and -H_{2} as

Here,, this table means that for each j=1 , 2, H_{j}^{( $\iota$)} is defined as \displaystyle \bigcup_{ $\iota$},{}_{< $\iota$}H_{j}^{($\iota$')}.
We use similar tables to indicate this kind of upgrading.

\bullet For each non‐zero  $\iota$ such that  $\iota$-1 exists, the player is allowed to take either
one of admissible moves for upgrading: type (I) move and type (\mathrm{I}^{\mathrm{i}\mathrm{n}\mathrm{n}}) move.

(Rules of the admissible moves: upgrading from  $\iota$-1 to  $\iota$ )
\bullet Type (I) move: pick a subset  Q\subseteq G such that for all  $\gamma$\in Q,

 $\gamma$ H_{1}^{( $\iota$-1)}$\gamma$^{-1}\geq M and  $\gamma$ H_{2}^{( $\iota$-1)}$\gamma$^{-1}\geq L.
Then, upgrade H_{1} and H_{2} as:
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\bullet Type (\mathrm{I}\mathrm{I}^{\mathrm{i}\mathrm{n}\mathrm{n}}) move: pick a subset W\subseteq G such that for all \mathrm{w}\in W,

wH_{2}^{( $\iota$-1)}\mathrm{w}^{-1}\geq M and wH_{1}^{( $\iota$-1)}w^{-1}\geq L.
Then, upgrade H_{1} and H_{2} as:

Here, (\mathrm{I}^{\mathrm{i}\mathrm{n}\mathrm{n}}) means the following: in more general “(Game)“, there is a notion of
type (\mathrm{I}_{(12)}) moves. Type (\mathrm{I}^{\mathrm{i}\mathrm{n}\mathrm{n}}) moves are restricted type (\mathrm{I}\mathrm{I}_{(12)}) moves, where we
only consider inner conjugations as group automorphisms. Compare with Main
Theorems in [Mim15].

These moves in (\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{e}^{\mathrm{i}\mathrm{n}\mathrm{n}}) represent ways of upgrading. Rough meaning is: for an
affine isometric action  $\alpha$ :  G\cap \mathcal{H} , (if  $\xi$\in \mathcal{H}^{ $\alpha$(M)} and  $\eta$\in \mathcal{H}^{ $\alpha$(M)} are chosen in a spe‐
cial manner, then information on  $\xi$ and  $\eta$ is automatically upgraded: more precisely,
in each stage  $\iota$ of (\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{e}^{\mathrm{i}\mathrm{n}\mathrm{n}}) ,  $\xi$ \in \mathcal{H}^{ $\alpha$(H_{1}^{( $\iota$)})} and  $\eta$ \in \mathcal{H}^{ $\alpha$(H_{2}^{( $\iota$)})}. ” See Proposition 4. 1
for the rigorous statement. There might be some formal similarity to Mautner phe‐
nomena, which is upgrading process in continuous setting (unitary representations
of Lie groups) with the aid of limiting arguments: see [BdlHV08, Lemma 1.4.8].

Let us see how we employ this criterion to the case of G=\mathrm{E}(n, R) .

Proof of “Theorem 2.2 implies Theorem 1.2”. Let R and n be as in Theorem 1.2.

Set G=\mathrm{E}(n, R) , M= \left(\begin{array}{ll}
I_{n-1} & R^{n-1}\\
0 & 1
\end{array}\right)(\simeq (R^{n-1}, +)) , and L= \left(\begin{array}{ll}
I_{n-1} & 0\\
{}^{t}(R^{n-1}) & 1
\end{array}\right).
Note that by (#) , \langle M, L\rangle=G.

The aforementioned original form of Theorem 2.1 by Kassabov implies:

Lemma 3.1. These G\geq M and G\geq L have relative property (T).

What remains is to check hypothesis (\mathrm{G}\mathrm{A}\mathrm{M}\mathrm{E}^{\mathrm{i}\mathrm{n}\mathrm{n}}) for the triple (G, M, L) above.

First, take type (I) move with Q= ( \mathrm{E}(n1, R)0 01 ) . Then, upgrading is:

Finally, take type (\mathrm{I}^{\mathrm{i}\mathrm{n}\mathrm{n}}) move with W = \{w\} . Here, w = ( 001 I_{n\frac{0}{0}3,1} 001 ) ,

where I_{n-3,1} denotes the diagonal matrix with diagonals 1, . . . , 1 (n-3 times) and
-1 . Note that w=(e_{n-1,n}^{1}e_{n,n-1}^{-1}e_{n-1,n}^{1})^{2}(e_{1,n}^{1}e_{n,1}^{-1}e_{1,n}^{1}) \in G . The miracle here is

wH_{2}^{(1)}w^{-1}= ( 01 \mathrm{E}(n-1,R){}^{t}(R^{n-1}) ) \geq M , and \mathrm{w}H_{1}^{(1)}\mathrm{w}^{-1}= \left(\begin{array}{lll}
1 &  & 0\\
R^{n-1} & \mathrm{E}(n & -1,R)
\end{array}\right) \geq L.
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Therefore, our upgrading process goes as follows:

Since [e_{n,2)}^{r}e_{2,1}^{1}]=e_{n,1}^{r} for n\geq 3 by (#) , the new H_{1}^{(2)} and H_{2}^{(2)} both equal G.

Therefore, we are done. \square 

We will prove Theorem 2.2 in Section 4. The combination of these proofs provides
our new proof of Theorem 1.2.

Remark 3.2. The upgrading argument above is intrinsic, but it does not use any
form of (non‐trevial) bounded generation, whose definition is as follows.

Definition 3.3. Let (1_{G} \in)U = U^{-1} and X be non‐empty subsets of G . We say
that U boundedly generates X if there exists N \in \mathrm{N} such that U^{N} \supseteq  X , where
U^{N} (\subseteq G) denotes the image of  U\times \cdots \times  U (the N‐time direct product) by the
N‐time multiplication map (gl, . . . , g_{N} ) \mapsto g_{1}\cdots g_{N}.

Note. In some literature, “bounded generation” is used in the following very restric‐
tive way: U = \displaystyle \bigcup_{1\leq i\leq l}C_{i} for C_{i} cyclic subgroups and X = G . Our convention is
much more general.

Study of intrinsic upgrading was initiated and developed by works of Shalom
[Sha99], [Sha06]. Here we recall the definition of displacement functions.

Definition 3.4. Let  $\alpha$ :  G\leftrightarrow \mathcal{H} be an affine isometric action of a countable discrete

group. Let A\subseteq G be a non‐empty subset. Then, the displacement (function) over
A is a function

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{ $\alpha$}^{A}:\mathcal{H}\rightarrow \mathbb{R}_{\geq 0}\cup\{+\infty\}
defined by disp  $\alpha$ A( $\zeta$)=\displaystyle \sup_{a\in A}\Vert $\alpha$(a)\cdot $\zeta$- $\zeta$\Vert for  $\zeta$\in \mathcal{H}.

Proposition 3.5 (Shalom’s bounded generation argument, [Sha99]). Let  $\alpha$ :  G\cap

\mathcal{H} be an affine isometric action of a countable discrete group. Let M_{1} , . . . , M_{l} be
subgroups of G. Assume that for each 1\leq i\leq l, \mathcal{H}^{ $\alpha$(M_{i})}\neq\emptyset . Assume the following
bounded generation hypothesis: \displaystyle \bigcup_{1\leq i\leq l}M_{i} boundedly generates G.

Then, \mathcal{H}^{ $\alpha$(G)}\neq\emptyset.

Proof. By triangle inequality and isometry of  $\alpha$ , observe that for non‐empty subsets
 A and B in G and for every  $\zeta$\in \mathcal{H} , disp  $\alpha$ AB( $\zeta$) \leq \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{ $\alpha$}^{A}( $\zeta$)+\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{ $\alpha$}^{B}( $\zeta$) . Here AB (\subseteq G)
is defined as the image of A\times B by the multiplication map (g_{1}, g_{2})\mapsto g_{1}g_{2}.

Let U=\displaystyle \bigcup_{1\leq i\leq l}M_{i} . Pick one  $\zeta$\in \mathcal{H} . By assumption of \mathcal{H}^{ $\alpha$(M_{t})}\neq\emptyset , disp  $\alpha$ U( $\zeta$)<\infty.
By bounded generation hypothesis, it follows that disp  $\alpha$ G( $\zeta$) <\infty . It means that, the
 G‐orbit of  $\zeta$,  $\alpha$(G)\cdot $\zeta$ , is boundcd. Then, the (unique) Chebyshev center [BdlHV08,
Lemma 2.2.7] of it is  $\alpha$(G)‐fixed. \square 
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In Shalom’s intrinsic upgrading, some forms of (non‐trivial) bounded generation
hypotheses were essential. This was a bottle‐neck for intrinsic upgrading, because
these hypotheses are super‐strong in general. For instance, bounded generation for
\mathrm{E}(n, R) , n\geq 3 , by elementary matrices ( \displaystyle \bigcup_{i\neq j}G_{i,j} , where G_{i,j} is as in Theorem 2.1)
is true for R=\mathbb{Z} (Carter‐Keller, see [BdlHV08, Section 4.1]), false for R=\mathbb{C}[t] for
every n (van der Kallen), and open in many cases, even for R=\mathbb{Z}[t].

4. PROOF OF THEOREM 2.2

4.1. The upshot of upgrading. The idea of the proof is inspired by Shalom’s
second intrinsic upgrading [Sha06, 4. \mathrm{I}\mathrm{I}\mathrm{I} ] (with bounded generation): Shalom himself
called it algebraization. The upshot of our upgrading is the following.

Proposition 4.1 (The upshot of our upgrading). Let G be a finitely generated group.
Let M, L \leq  G with (M,  L\rangle =G. Let  $\alpha$ :  G \cap \mathcal{H} be an affine isometric action.
Assume that the linear part  $\pi$ of  $\alpha$ does not have non‐zero G‐invar?ant vectors.
Assume \mathcal{H}^{ $\alpha$(M)} \neq\emptyset and \mathcal{H}^{ $\alpha$(L)} \neq \emptyset . Assume, besides, that ( $\xi$,  $\eta$) \in \mathcal{H}^{ $\alpha$(M)} \times \mathcal{H}^{ $\alpha$(L)}
realizes the distance

D := dist (\displaystyle \mathcal{H}^{ $\alpha$(M)}, \mathcal{H}^{ $\alpha$(L)})(=\inf\{\Vert$\zeta$_{1}-$\zeta$_{2}\Vert : $\zeta$_{1}\in \mathcal{H}^{ $\alpha$(M)}, $\zeta$_{2}\in \mathcal{H}^{ $\alpha$(L)}\}) .

Then, in each stage  $\iota$ in (\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{e}^{\mathrm{i}\mathrm{n}\mathrm{n}}) for (G, M, L) ,  $\xi$\in \mathcal{H}^{ $\alpha$(H_{1}^{( $\iota$)})} and  $\eta$\in \mathcal{H}^{ $\alpha$(H_{2}^{( $\iota$)}))}.
Recall an affine isometric action  $\alpha$ is decomposed into linear part  $\pi$ (unitary rep‐

resentation) and cocycle part  b :  $\alpha$( $\gamma$)\cdot $\zeta$= $\pi$( $\gamma$) $\zeta$+b( $\gamma$) (see [BdlHV08, Section 2.1]).
The key to the proof of Proposition 4.1 is the following observation due to Shalom.

Lemma 4.2 (Shalom’s parallelogram argument, see 4. \mathrm{I}\mathrm{I}\mathrm{I}.6 in [Sha06]). In the setting
as in Proposition 4.1, the realizer of D is unique.

Proof. Let ($\xi$', $\eta$') be another realizer. Take midpoints (m_{1}, m_{2}) , where m_{1} = ( $\xi$+
$\xi$')/2 and m_{2}= ( $\eta$+$\eta$')/2 . Observe that (m_{1}, m_{2}) is again a realizer of D : indeed,
m_{1}\in \mathcal{H}^{ $\alpha$(M)}, m_{2}\in \mathcal{H}^{ $\alpha$(L)} , and \Vert m_{1}-m_{2}\Vert \leq D (by triangle inequality).

Then, by strict convexity of \mathcal{H},  $\xi$- $\eta$ =$\xi$'-$\eta$' . Note that  $\xi-\xi$' \in \mathcal{H}^{ $\pi$(M)} and
 $\eta-\eta$'\in \mathcal{H}^{ $\pi$(L)} . Therefore,  $\xi-\xi$'= $\eta-\eta$'\in \mathcal{H}^{ $\pi$(G)} ; hence these equal 0. \square 

Proof of Proposition 4.1. By (transcendental) induction on  $\iota$ . For  $\iota$=0 , the asser‐
tion holds. We proceed in induction step. If  $\iota$ is a non‐zero limit ordinal, then the
upgrading from all  $\iota$' <  $\iota$ to  $\iota$ in the rules of (\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{e}^{\mathrm{i}\mathrm{n}\mathrm{n}}) straightforwardly works.
Finally, we deal with the case where  $\iota$-1 exists. Assume that  $\xi$ \in \mathcal{H}^{ $\alpha$(H_{1}^{(\mathrm{t}-1)})} and
 $\eta$\in \mathcal{H}^{ $\alpha$(H_{2}^{( $\iota$-1)})} ; we take a new move.

\bullet Case 1. New move is of type (I): this case was essentially done by Shalom
[Sha06, 4. \mathrm{I}\mathrm{I}\mathrm{I}.6]. Let  $\gamma$\in Q . The conditions  $\gamma$ H_{1}^{( $\iota$-1)}$\gamma$^{-1}\geq M and  $\gamma$ H_{2}^{( $\iota$-1)}$\gamma$^{-1}\geq
 L are imposed on Q exactly in order to ensure that  $\alpha$( $\gamma$)\cdot $\xi$ \in \mathcal{H}^{ $\alpha$(M)} and
that  $\alpha$( $\gamma$) .  $\eta$ \in \mathcal{H}^{ $\alpha$(L)} . By isometry of  $\alpha$, ( $\xi$,  $\eta$) and ( $\alpha$(h) .  $\xi$,  $\alpha$(h) .  $\eta$)
are two realizers of D , and Lemma 4.2 applies. Therefore, we obtain that
 $\xi$\in \mathcal{H}^{ $\alpha$(Q)}\cap \mathcal{H}^{ $\alpha$(H_{1}^{( $\iota$-1)})}=\mathcal{H}^{ $\alpha$(\langle H_{1}^{( $\iota$-1)},Q\rangle)} ; similarly,  $\eta$\in \mathcal{H}^{ $\alpha$(\langle H_{2}^{( $\iota$-1)_{Q))}}}.
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\bullet Case 2. New move is of type (1\mathrm{I}^{\mathrm{i}\mathrm{n}\mathrm{n}}) : Let w\in W . Then, the condition on w

implies that  $\alpha$(\mathrm{w})\cdot $\eta$\in \mathcal{H}^{ $\alpha$(M)} and that  $\alpha$(w)\cdot $\xi$ \in \mathcal{H}^{ $\alpha$(L)} . Hence, this time
( $\alpha$(w)\cdot $\eta$,  $\alpha$(w)\cdot $\xi$) is another realizer of D . Again by Lemma 4.2,  $\alpha$(\mathrm{w})\cdot $\xi$= $\eta$.
By recalling  $\eta$\in \mathcal{H}^{ $\alpha$(H_{2}^{( $\iota$-1)}} ), we conclude that (\mathcal{H}^{ $\alpha$(H_{1}^{( $\iota$-1)})} \ni) $\xi$\in \mathcal{H}^{ $\alpha$(w^{-1}H_{2}^{( $\iota$-1)}w)}
for all \mathrm{w}\in W . Similarly, (\mathcal{H}^{ $\alpha$(H_{2}^{( $\iota$-1)})} \ni) $\eta$\in \mathcal{H}^{ $\alpha$(w^{-1}H_{1}^{( $\iota$-1)}w)} for all w\in W.

\square 

4.2. Metric ultraproducts, scaling limits, and realizers of the distance.
Proposition 4.1 might look convincing, but there is a gap to conclude Theorem 2.2.
In general, there is no guarantee on the existence of realizers ( $\xi$,  $\eta$) of D.

This gap will be fixed by well‐known Propositions 4.4 and 4.5 below. Neverthe‐
less, we include (sketchy) proofs for the reader’s convenience. They employ metric
ultraproducts. The reader who is familiar with this topic may skip this subsection.

Definition 4.3 (uniform action). Let G be a finitely generated group and let S=
S^{-1} be a finite generating set of G . Let  $\alpha$ :  G\cap \mathcal{H} be an affine isometric action.
The action  $\alpha$ is said to be (S, 1) ‐uniform if \displaystyle \inf_{ $\zeta$\in \mathcal{H}}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{ $\alpha$}^{S}( $\zeta$) \geq  1 . For a fixed S , we
simply say  $\alpha$ to be 1‐uniform for short.

Fix a finitely generated group  G ; fix moreover as a finite generating set S . We
set the following three classes of actions and Hilbert spaces:

\bullet  C := \{( $\alpha$, \mathcal{H} where \mathcal{H} is a Hilbert space and  $\alpha$ :  G \cap \mathcal{H} is an affine
isometric action.

\bullet Cnon‐fixed := \{( $\alpha$, \mathcal{H}) : ( $\alpha$, \mathcal{H}) \in C, \mathcal{H}^{ $\alpha$}(c) = \emptyset\}.
\bullet  C^{1} := { ( $\alpha$, \mathcal{H}) : ( $\alpha$, \mathcal{H})\in C,  $\alpha$ is 1‐uniform.}.

Then,  C^{1} is a subclass of C^{\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}} . The failure of property (T) for G exactly
says that C^{\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}}\neq\emptyset.

In the two propositions below, let G be a finitely generated group, and fix a fimite
generating set S.

Proposition 4.4 (A special case of the Gromov‐Schoen argument, see also 4. \mathrm{I}\mathrm{I}\mathrm{I}.2

in [Sha06]). Assume G fails to have property (T). Then, C^{1-\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}\neq\emptyset.

Proposition 4.5 (Shalom, 4. \mathrm{I}\mathrm{I}\mathrm{I}.3-4 in [Sha06]). Let M \leq  G and L \leq  G be sub‐
groups with \langle M,  L\rangle =G. . Assume that M \leq  G and L \leq  G have relative property
(T), and that C^{1-\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}\neq\emptyset.

Then, D :=\displaystyle \inf\{\Vert $\xi$- $\eta$\Vert : ( $\alpha$, \mathcal{H})\in C^{1-\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}},  $\xi$\in \mathcal{H}^{ $\alpha$(M)},  $\eta$\in \mathcal{H}^{ $\alpha$(L)}\} is realized.

Here we briefly recall the definitions on (pointed) metric ultraproducts. See a
survey [Sta09] for more details. Ultrafilters \mathcal{U} on \mathbb{N} have one‐to‐one correspondence
to \{0 , 1 \}‐valued probability means (that means, finitely additive measures  $\mu$ , such
that  $\mu$(\mathbb{N})=1 , defined over all subsets in N). The correspondence is in the following
manner. \mathcal{U}=\{A\subseteq \mathrm{N}: $\mu$(A)=1\} . A principal ultrafilter corresponds to the Dirac
mass at a point in N. Non‐pmncipal ultrafilters correspond to all the other ones.

In what follows, we fix a non‐principal ultrafilter \mathcal{U} . For real numbers r_{n} , we write
as linw r_{n}=r_{\infty} , if for all  $\epsilon$>0, \{n\in \mathbb{N}: |r_{\infty}-r_{n}| < $\epsilon$\}\in \mathcal{U} . Then, it is well‐known
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that every bounded real sequence (r_{n})_{n} has \mathrm{a} (unique) limit with respect to \mathcal{U} . Since
\mathcal{U} is non‐principal, if \displaystyle \lim_{n\rightarrow\infty}r_{n} exists, then it coincides with \displaystyle \lim_{u}r_{n}.

Let ((X_{n}, d_{n}, z_{n}))_{n\in \mathrm{N}} be a sequence of pointed metric spaces. Let l_{\infty}-\displaystyle \prod_{n}(X_{n}, z_{n}) :=

\displaystyle \{(x_{n})_{n}:x_{n}\in X_{n}, \sup_{n\in \mathrm{N}}d_{n}(x_{n}, z_{n}) <\infty\} , and d_{\infty}((x_{n})_{n}, (y_{n})_{n}) :=\displaystyle \lim_{u}d_{n}(x_{n}, y_{n}) .
Finally, define the pointed metr?c ultraproduct (X_{\mathcal{U}}, d_{\mathcal{U}}, z_{u}) as follows.

X_{\mathcal{U}}:=l_{\infty}-\displaystyle \prod_{n}(X_{n}, z_{n})/\sim d_{\infty}=0,
d_{u} is the induced (genuine) metric, and z_{u} :=[(z_{n})_{n}] . Here \sim d_{\infty}=0 denotes that we
identify all of two sequences in \displaystyle \ell_{\infty}-\prod_{n}(X_{n}, z_{n}) whose distance in d_{\infty} is zero, and

means the equivalence class in \sim d_{\infty}=0 . This is also written as lirw (X_{n}, d_{n}, z_{n}) .
We can show that metric ultraproducts of (affine) Hilbert spaces are again (affine)
Hilbert spaces (because Hilbert spaces are characterized in terms of inner products).

We fix (G, S) . For a sequence of pointed (isometric) G‐actions ($\alpha$_{n}, (X_{n}, d_{n}), z_{n})
that satisfies

(o) supdisp$\alpha$_{n}s_{(z_{n})}<\infty,

we can define the pointed metric ultraproduct action $\alpha$_{u} on (X_{u}, d_{u}, z_{\mathcal{U}}) by $\alpha$_{\mathcal{U}}( $\gamma$) .
[(x_{n})_{n}] :=[($\alpha$_{n}( $\gamma$)\cdot x_{n})_{n}] . This is also written as \displaystyle \lim_{u}($\alpha$_{n}, X_{n}, z_{n}) .

Proof of Proposition 4.4. Let ( $\alpha$, \mathcal{H}) \in C^{\mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{R}\mathrm{x}\mathrm{e}\mathrm{d}}(\neq\emptyset) . By completeness of \mathcal{H} , we can
find a sequence ($\zeta$_{n})_{n\in \mathrm{N}} with the following property: for all  $\chi$\in \mathcal{H} with \Vert $\chi-\zeta$_{n}\Vert \leq

(n+1)\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{ $\alpha$}($\zeta$_{n}) , it holds that disp  $\alpha$( $\chi$)\geq \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{ $\alpha$}($\zeta$_{n})/2(>0) . For details, see [Sta09,
Lemma 3.3].

Then, the ultraproduct \displaystyle \lim_{u}( $\alpha$, (\mathcal{H}, r_{n}\Vert. $\zeta$_{n}) is well‐defined and 1‐uniform. Here
r_{n}:=2(\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{ $\alpha$}($\zeta$_{n}))^{-1}. \square 

Proof of Proposition 4.5. Observe that this infimum is over a non‐empty set. Let
(($\alpha$_{n}, \mathcal{H}_{n}, $\xi$_{n}, $\eta$_{n}))_{n} be a sequence that “asymptotically realizes” D as  n\rightarrow\infty . More
precisely, assume that \Vert$\xi$_{n}-$\eta$_{n}\Vert \leq D+2^{-n} . We claim that (($\alpha$_{n}, \mathcal{H}_{n}, $\xi$_{n}))_{n\in \mathrm{N}} satisfies
(o). Indeed, note that \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{$\alpha$_{n}}^{M}($\xi$_{n}) =0 and disp $\alpha$_{n}L($\eta$_{n}) =0 . The latter implies that
disp $\alpha$_{n}L($\xi$_{n}) \leq 2(D+1) . Observe that there exists N\in \mathbb{N} such that (M\cup L)^{N}\supseteq S,
because \langle M,  L\rangle =G and |S| <\infty . Then, by the inequality on disp in the proof of
Proposition 3.5, for all  n we have that

disp $\alpha$_{n}s_{($\xi$_{n})}\leq \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}_{$\alpha$_{n}}^{(M\cup L)^{N}}($\xi$_{n})\leq 2N(D+1) .

Finally, the resulting action ( $\alpha$, \mathcal{H}) := \displaystyle \lim_{u}($\alpha$_{n}, \mathcal{H}_{n}, $\xi$_{n}) )  $\xi$ := [($\xi$_{n})_{n}] , and  $\eta$ :=

[($\eta$_{n})_{n}] realize D . Here, observe that ( $\alpha$, \mathcal{H}) \in C^{1-\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}}. \square 

4.3. Closing.

Proof of Theorem 2.2. By contradiction. Suppose that G \geq  M and G \geq  L have
relative property (T), but that G fails to have property (T). Then, by Proposi‐
tions 4.4 and 4.5, there must exist a realizer ( $\alpha$, \mathcal{H},  $\xi$,  $\eta$) of D as in Proposition 4.5.
In particular, \Vert $\xi$- $\eta$\Vert=D=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\mathcal{H}^{ $\alpha$(M)}, \mathcal{H}^{ $\alpha$(L)}) and  $\alpha$ is 1‐uniform.

Observe  G^{\mathrm{a}\mathrm{b}\mathrm{e}1} :=G/[G, G] is finite. Indeed, for the abelianization map \mathrm{a}\mathrm{b}_{G} :  G\rightarrow

(G^{\mathrm{a}\mathrm{b}\mathrm{e}1}, +) , relative properties (T) above imply that |\mathrm{a}\mathrm{b}_{G}(M)| <\infty and |\mathrm{a}\mathrm{b}_{G}(L)| <
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\infty : otherwise, we would have non‐trivial translations. (Note that finite generation
of  G implies ones of \mathrm{a}\mathrm{b}_{G}(M) and \mathrm{a}\mathrm{b}_{G}(L). ) Since \mathrm{a}\mathrm{b}_{G}(G) =\mathrm{a}\mathrm{b}_{G}(M)+\mathrm{a}\mathrm{b}_{G}(L) , we
are done.

Let  $\pi$ be the linear part of  $\alpha$ . According to the decomposition \mathcal{H} = \mathcal{H}^{ $\pi$(G)}\oplus
(\mathcal{H}^{ $\pi$(G)})^{\perp},  $\alpha$ is decomposed into  $\alpha$_{\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{a}\mathrm{i}} and  $\alpha$orthogonal (this is done by decomposing
the cocycle  b into these two summands). Because G^{\mathrm{a}\mathrm{b}\mathrm{e}1} is finite, a_{\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{a}1} is the trivial
action. Therefore, we can extract  $\alpha$orthogonal from  $\alpha$ , without changing  D and 1‐
uniformity. We, thus, may assume that \mathcal{H}^{ $\pi$(G)}=\{0\}.

Then, Proposition 4.1 applies: either  $\xi$ \in \mathcal{H}^{ $\alpha$(G)} or  $\eta$ \in \mathcal{H}^{ $\alpha$(G)} must hold by
hypothesis (\mathrm{G}\mathrm{A}\mathrm{M}\mathrm{E}^{\mathrm{i}\mathrm{n}\mathrm{n}}) . It contradicts the assumption that  $\alpha$ is 1‐uniform. \square 

Remark 4.6. Our Theorem 2.2 is greatly generalized to Main Theorems in [Mim15].
There, we deal with fixed point properties relative to more general metric spaces
(even non‐linear ones); we furthermore allow some non‐inner automorphisms of G

in type (I1) moves.
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