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1 Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H.
For a mapping U : C — H, we denote by F(U) the set of fixed points of U. Let k be a real
number with 0 < k£ < 1. A mapping U : C — H is called a k-strict pseudo-contraction [5] if

Uz~ Uyl? < llz - ylI* + kllz - Uz ~ (y - Uy)||®

for all z,y € C. If U is a k-strict pseudo-contraction and F(U) # @, then we have that, for
z € C and g € F(U),
Uz - qll* < |z — gl + kllz - Us||.

From |Uz — g||? = |[Uz - z||? + ||z — ¢]|* + 2(Uz - z, = — q), we have that

Uz ~ 2] + |z ~ gl + 2(Uz ~ 2,2 — ¢) < ||z - q||* + k||z - Uz|®.



Therefore, we have that
2z —Uz,z —q) > (1 - k)||lz - Uz|? (11

for all z € C and g € F(U). A mapping U : C — H is called generalized hybrid [10] if there
exist a, B € R such that

al|lUz - Uyl + (1 - a)l|lz - Uy|l* < BllUz — yl* + (1 - B)ll= — y|I?

for all z,y € C. Such a mapping U is called (o, ()-generalized hybrid. Notice that the
class of generalized hybrid mappings covers several well-known mappings. For example, a
(1,0)-generalized hybrid mapping is nonexpansive, i.e.,

Uz ~Uyll < llz-yll, Vz,yeC.
It is nonspreading [11, 12 for « =2 and 8 =1, ie,,
2|Uz - Uy|® < |Uz -yl + Uy — z|?, Ve,yeC.
It is also hybrid [21] for a = 3 and B =1, i.e,,
Uz — Uyl < llz - yl® + [Uz - yl> + Uy — 2|?, Vz,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [7]. If U is generalized
hybrid and F(U) # 0, then we have that, for z € C and q € F(U),

allg - Uz|? + (1 - a)llg - Uz|?® < Bllg - I + 1 - B)llg - z|?
and hence |[Uz — g||? < ||z - ¢||?. From this, we have that
2z —q,z — Uz) > ||z - Uz||? (1.2)

On the other hand, there exists such a mapping in a Banach space. Let E be a smooth
Banach space and let B be a maximal monotone operator with B=10 # §. Then, for the
metric resolvent Jj of B for A > 0, we have from [19] that, for any = € E and ¢ € B~10,

(rz — g, J(x — Jrz)) > 0.

Then we get
(Hhz—z+z-¢q,J(z—Jrz)) >0

and hence
(@ —q,J(z — Jrz)) > ||z — Jaz|l?, (1.3)

where J is the duality mapping on E. Motivated by (1.1), (1.2) and (1.3), Takahashi [23]
introduced a new nonlinear mapping as follows: Let E be a smooth Banach space, let C be
a nonempty, closed and convex subset of E and let k be a real number with k& € (—o0,1). A
mapping U : C — E with F(U) # 0 is called k-demimetric if, for any z € C and ¢ € F(U),

2z - g,J(z - Uz)) > (1 - k)|jz - Uz|]?,

where J is the duality mapping on E. According to the definition, we get that a k-strict pseudo-
contraction U with F(U) # 0 is k-demimetric, an (a, 8)-generalized hybrid mapping U with
F(U) # 0 is 0-demimetric and the metric resolvent J with B~10 # @ is (—1)-demimetric.
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In this article, using this new nonlinear mapping called demimetric, we prove weak and
strong convergence theorems for finding a common element of the set of common fixed points of
a finitc family of such new demimetric mappings and the sct of common solutions of variational
inequality problems for a finite family of inverse strongly monotone mappings in a Hilbert
space. Using the results, we obtain well-known and new strong convergence theorems in a
Hilbert space.

2 Preliminaries

Throughout this paper, let N be the set of positive integers and let R be the set of real
numbers. Let H be a real Hilbert space with inner product (-,-) and norm || -||. When {z,}
is a sequence in H, we denote the strong convergence of {z,} to £ € H by z, — = and the
weak convergence by T, — z. We have from [20] that for any z,y € H and X € R,

Iz +yli? < ll=l* + 2(y, = + ), 21
Iz + (1= Ayll? = Mzl + (1 = Dgl? - 22 = Nz - yl>. (22)

Furthermore we have that for z,y,u,v € H,
2z —y,u~v) = |z —v)* + Iy - ul® - ||z - ul® - |ly - oll*. (23)

Let C be a nonempty, closed and convex subset of a Hilbert space H. A mappingT : C — H is
called nonexpansive if [Tz—Ty|| < ||z—y| forallz,y € C. If T : C — H is nonexpansive, then
F(T) is closed and convex; see [8, 20]. For a nonempty, closed and convex subset D of H, the
nearest point projection of H onto D is denoted by Pp, that is, ||z — Ppz|| < ||z — y|| for all
z € H and y € D. Such a mapping Pp is called the metric projection of H onto D. We know
that the metric projection Pp is firmly nonexpansive; || Ppz — Ppy"2 < {Ppz—Ppy,z—y) for
all ¢,y € H. Furthermore, (x— Ppz,y — Ppz) < 0 holds for all € H and y € D; see [18, 20].
Using this inequality and (2.3), we have that

IlPpz — yli? + | Ppz — =|| < [l - yl|?, Vze€H, yeD. (29)

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. For a > 0,
a mapping A : C — H is called a-inverse strongly monotone if

(I - y,Aa: - Ay) > (IHAI - Ayllzy V-’E,y €C.

If A is a-inverse-strongly monotone and 0 < X < 2a, then I — AA : C — H is nonexpansive.
In fact, we have that for all z,y € C,
(T = M)z — (I = AA)y|? = ||z - y — MAz — Ay)||
= |z - ylI* — 2Mz — y, Az — Ay) + V|| Az — Ay|?
< llz —yl? — 22allAz — Ay|® + N[ Az - Ay|?
= [lz - ylI* + A — 2a)|| Az — Ay|®
< iz - yll®.
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Thus, I — AA : C — H is nonexpansive; see [1, 16, 20] for more results of inverse-strongly
monotone mappings. The variational inequalty problem for A : C — H is to find a point

u € C such that
(Au,z—u) >0, VzreC. (2.5)

The set of solutions of (2.5) is denoted by VI(C, A). We also have that, for any A > 0,
u = Po(I — AA)u if and only if u € VI(C, A). In fact, let A > 0. Then, for u € C,

u=Po(I -AMu<=> (I -2A)u—u,u—-y) >0, YyeClC
= (-Mu,u—-y) >0, VyeC
<> (Au,u-y) <0, Wyecl
< (Au,y—u) >0, Vel
<> u € VI(C, A).
In the case when a Banach space F is a Hilbert space, the definition of a demimetric mapping
is as follows: Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. Let k € (—00,1). A mapping U : C — H with F(U) # @ is called k-demimetric if, for any

z € C and q € F(U),
2z — g,z - Uz) > (1 - k)|l - Uz|”.

The following lemma which was essentially proved in [23] is important and crucial in the
proof of our main result. For the sake of completeness, we give the proof.

Lemma 2.1 ([23]). Let H be a Hilbert space and let C be a nonempty, closed and convez
subset of H. Let k be a real number with k € (—oc,1) and let U be a k-demimetric mapping
of C into H. Then F(U) is closed and convez.

Proof. Let us show that F(U) is closed. For a sequence {g,,} such that ¢, — g and ¢,, € F(U),
we have from the definition of U that
2(q - gn, g — Uq) > (1 - k)llg - Uq|>.

From gn, — ¢, we have 0 > (1 — k)|lg — Ug||?>. From 1 — k > 0, we have |jg — Uq||? = 0 and
hence g = Uq. This implies that F(U) is closed.
Let us prove that F(U) is convex. Let p,q € F(U) and set ¢ = ap + (1 — a)q, where
a € [0,1]. Then we have
2|z - Uz|® = 2(z — Uz,z — Ux)
=2(ap+ (1 - a)g—-Uz,z - Uz)
=2(ap+(1-a)g— (aUz+ (1 - a)Uz),z — Uz)
=20(p—Uz,z - Uz) +2(1 — a){g— Uz,z - Uz)
=2ap-z+z-Uz,z-Uz)+2(1-a){¢g-z+2z —Uz,z - Uz)
< a(k—1)|z - Uz|]? + 20|z - Uz|?
+(1-a)(k-1)|z - Uz|?+2( - a)||z — Uz|?
= (k- 1)llz - Uz|® + 2||z - Uz|®

and hence 0 < (k — 1)|lz — Uz||?>. We have from 0 > k — 1 that ||z — Uz|| < 0 and hence
z = Uz. This means that F(U) is convex. o
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The following lemma is used in the proof of our main result.

Lemma 2.2 ([26]). Let H be a Hilbert space and let C be a nonempty, closed and conver
subset of H. Let k € (—00,1) and let T be o k-demimetric mapping of C into H such that
F(T) is nonempty. Let X be a real number with 0 < A <1 -k and define S = (1 —\)I + )T.
Then S is a quasi-nonezpansive mapping of C into H.

Proof. 1t is obvious that F(T) = F(S). Since T be a k-demimetric mapping of C into H, we
have that for any z € C and z € F(S),
2z — z,x — Sz) = 2{x — 2z, — (1 = A\)x — ATz) = 2\(z — z,z — T'z)

> M1 = K)lle = Tl = 32258z - 2

= Iz - Tt = =

A
> 3z~ Szl|* = |lo - Sz||?.

k|2 - sz

Then S is a 0-demimetric mapping. Furthermore, we have from (2.3) that for any = € C and
z € F(S),

lz — Sz||? < 2(z — z,x — Sz)
= ||z — Szl < |lz - Sz|® + ||z — 2||* ~ || Sz ~ 2|
= ||Sz - 2| < ||z - 2||?
= ||Sz - 2| < ||z - 2|

Therefore, S is quasi-nonexpansive. (o]

3 Main Results

In this section, we first prove a weak convergence theorem of Mann’s type iteration for
finding a common element of the set of common fixed points for a finite family of demimetric
wappings and the set of connuon solutions of variational inequality problems for a finite fanily
of inverse strongly monotone mappings in a Hilbert space. Let H be a Hilbert space and let C
be a nonempty, closed and convex subset of H. A mapping U : C — H is called demiclosed if,
for a sequence {z,} in C such that z, — w and z, — Uz, — 0, w = Uw holds. For example,
if C is a nonempty, closed and convex subset of H and T is a nonexpansive mapping of C of
H, then T is demiclosed; see [20].

Theorem 3.1 ([13]). Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {ky,...,km} C (—20,1) and {p1,...,un} C (0,00). Let {1}}_9?:1 be a finite
family of k;-demimetric and demiclosed mappings of C into H and let {B;}, be a finite
family of p;-inverse strongly monotone mappings of C into H. Assume that

nM, F(T) (NI, VI(C, B;)) #0.



For any z1 = x € C, define {x,} as follows:

Zn = 2;1_1 (1 = A + AnT;)Zn,
wp =Y, 0:Pc(I — 0Bi)Tn,
Znt1 = Po(onZn + Brzn + Yatn),

where {Aﬂ}! {nn} c (0) 00): {ély cee s{M}y {01: ceey aN} C (0) 1): {an}v {ﬂn}y {7!1} C (01 1) and
a,b,c € R satisfy the following conditions:

(1) 0<a <), <min{l — ky,...,1 —kn}, 0<b< 9, <2min{p;,....un};

@)Y &G=1and T 0i=1;

(3) 0<c<an,fnn<landan+fn+vm=1
Then the sequence {x} converges weakly to a point 2 € ﬂ;-“:lF(T,-) N(NN,VI(C, B;)), where
20 = liMnyoo FnM | p(1)n(nN, vI(C,B,))%n-

Next, we prove a strong convergerice theorem of Halpern’s type iteration for finding a com-
mon element of the set of common fixed points for a finite family of demimetric mappings and
the set of common solutions of variational inequality problems for a finite family of inverse
strongly monotone mappings in a Hilbert space.

Theorem 3.2 ([24]). Let H be a Hilbert space and let C be a nonempty, closed and convez
subset of H. Let {ky,...,km} C (—20,1) and {1,...,un} C (0,00). Let {T;}}; be a finite
family of k;-demimetric and demiclosed mappings of C into H and let {B;}X, be a finite
family of u;-inverse strongly monotone mappings of C into H. Assume that

ML F(T3) 0 (N, VI(C, By)) #0.

Let {un} be a sequence in C such that u, — u. For x; =z € C, let {z,} C C be a sequence
generated by

2 = 2;.1 1&((1 = A)T + A Ty)zm,
wn = Yo, 0:Po(I — 11 Bi)Tn,
Tnyl = Jnun + (1 - Jﬂ) (PC(anzn + ﬂnzn + '7uwn))> Vn € N7

where {An}! {nﬂ} - (0, 00), {61) e 9£M}; {”11 ce ;UN}y {(!,.}, {ﬁn}) {’71!}’ {611} - (01 1) and
a,b,c € R satisfy the following conditions:

(1) 0<a <A, <min{l — ky,...,1 —kpm}, 0< b <5, <2min{p,....n};

(®) Til&=1and Ylioi=1;

() 0<cLon,fnm<landan+Bn+mm=1;

(4) limy 3006 =0 and Y 0, 8p = 00.
Then the sequence {z,} converges strongly to a point 2y € n,-"ilF(’.r,-)n(né":, VI(C, B;)), where
20 = Poy | p(1))n(nY, vI(C.B)) Y-

Using the hybrid method by Nakajo and Takahashi [17], we can also prove a strong conver-
gence theorem for finding a common element of the set of common fixed points for a finite

family of demimetric mappings and the set of common solutions of variational inequality
problems for a finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 3.3 ([2]). Let H be a Hilbert space and let C be a nonempty, closed and conver
subset of H. Let {ki,...,km} C (=00,1) and {ji1,...,pn} C (0,00). Let {T;},; be a finite
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family of k;-demimetric and demiclosed mappings of C into H and let {B:}Y, be a finite
family of u;-inverse strongly monotone mappings of C into H. Assume that

NM, F(T;) n(NfL,VI(C, By)) #0.
Let xy € C. Let {z,} be a sequence generated by

(20 = zﬂil {7’((1 = M) 4+ A T5) 20,
Wp = Ef-’_—l aiPC(I - "nBi)xny
{ Yn = QnTn + PnZn + TnWn,
Cn={2€C:|lyn 2| < llzn — 2|I},
Qn={2€C:{xn— 2,71 —2,) >0},
Zn+1 = Pe.n@.T1, YREN,

where {An}’{nﬂ} C (0, 00)’ {£1: e ,fM}’ {0'1; ...,ON} C (0, 1), {a,,},{ﬂ,,}, {7,"} C (0, 1) and
a,b,c € R satisfy the following conditions:

(1) 0<a <A <min{l —ki,...,1 —knm}, 0<b< 1, <2min{ps,....un};

(2) Zﬁﬁj =land YN oi=1;

(3) 0<c S an:ﬂn,')'n <1 aﬂdan+ﬂ"+7" =1.
Then the sequence {an} converyes strongly to @ point z0 & N, F(T;)N(NLVI(C, By), where

2 = Pn_,’;’:IF(T,»)n(nf’:lVI(C,B.-))'Tl’

Using the shrinking projection method [25], we finally prove a strong convergence theorem
for finding a common element of the set of common fixed points for a finite family of demimetric
mappings and the set of common solutions of variational inequality problems for a finite family
of inverse strongly monotone mappings in a Hilbert space.

Theorem 3.4 ([26]). Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {ki,...,km} C (=00,1) and {p1,...,un} C (0,00). Let {T;}}4; be a finite
family of k;-demimetric and demiclosed mappings of C into H and let {B;}}, be a finite
family of u;-inverse strongly monotone mappings of C into H. Assume that

NM F(T;) N (N, VI(C, B;)) # 0.
Let z1 € C and Cy = C. Let {z,} be a sequence generated by

20 = je1 &((1 = M) + MT})zn,

Wn = Eil ”iPC(I - ﬂnBi)zny

Yn = QnTn + Bnzn + YTnWn,
Cot1={2€Cp: |lyn — 2l < llzn — 21},
Tnt1 = Pcn“.’tl, Vn € N,

where {)‘n}’{ﬂn} C (Oa 00), {511- .o :fM}r{”l:- .. yaN} c (0: 1): {an}’{ﬁn},{’)'n} C (01 1) and
a,b,c € R satisfy the following conditions:
(1) 0<a <A, <min{l — ky,...,1 —kym}, 0<b<n, < 2min{yy,....un};

(2) Z;il £ =1 and Z;N=1 0i=1;
(3) 0<c<an,fn,m<landa,+ B+, =1
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Then the sequence {z,} converges strongly to a point z € N}, F(T;)N(NX,VI(C, B;)), where
20 = Pom_ p(1)n(nN_, vI(C,B:)T1-

=1 =1

4 Applicationss

In this section, we apply Theorems 3.1, 3.2, 3.3 and 3.4 to obtain well-known and new strong
convergence theorems in Hilbert spaces. We know the following lemmas obtained by Marino
and Xu [15] and Kocourek, Takahashi and Yao [10]; see also [27, 28].

Lemma 4.1 ([15, 27]). Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let k be a real number with 0 < k <1 and U : C — H be a k-strict pseudo-
contraction. If z, — z and , — Uz, — 0, then z € F(U).

Lemma 4.2 ([10, 28]). Let H be a Hilbert space, let C be a nonempty, closed and convez
subset of H and let U : C — H be generalized hybrid. If ,, — z and z, — Uz, — 0, then
z € F(U).

Using Theorem 3.1, we obtain the following weak convergence results.
Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. Let {p1,....un} C (0,00). Let {B;}., be a finite family of u;-inverse strongly monotone

mappings of C into H. Assume that NN, VI(C, B;) # 0. For any r; = z € C, define {z,} as
follows:

Wn = YLy 0:Po(I — 12B;)an,
Tntl = CnZTn + YnWn,
where {n,} C (0,00), {71,...,0n} C (0,1), {an}, {1} C (0,1) and b,c € R satisfy the
following conditions:
(1) 0<b< ny <2min{py,...,un};

(8) Tilioi=1;
(8) 0<c<anWm<landa,+v, =1.

Then {z,} converges weakly to zo € NX_,VI(C,B;), where zp = lim,,_, 00 PN vi(C,B)Tn-
Proof. The identity mapping I is a %-demimetric mapping of C into H. Putting T; = I for all

je{l,...,M}and )\, = % for all n € N in Theorem 3.1, we have that z, = z,, for all » € N.
Furthermore, replacing 8, + Yn by Yn, we have the desired result from Theorem 3.1. O

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convez subset of
H. Let {T;}}., be a finite family of generalized hybrid mappings of C into H and let {U;} N,
be a finite family of nonezpansive mappings of C into H. Assume that

n;'b.f—.lF(Tj) N (NI F(Us)) # 0.
For any x1 = x € C, define {z,} as follows:

20 = T &((1 = M) + AnT})2n,
Wn = 2?,:1 oiPo((1~na)I + MU;) T,
Tny1 = Po(an®n + Brzn + Ynwn),
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where { M}, {1} C (0,00), {&1,-..,ém}, {o1,--.,0n} C (0,1), {an}, {Bn}, {1} C (0,1) and
a,b,c € R satisfy the following conditions:

(1) 0<a<A<1,0<b<1n L1;

N

(8 T, g=1and T, 0i=1;

() 0<c<anfnymm<landan+fn+m=1
Then the sequence {Tn} converges weakly to a point zo € NIL, F(T;) N (N, F(U;)), where
20 = limp 00 Pn;‘;,F(T,)n(n&,F(U.«))a’w
Proof. Since T is generalized hybrid, T} is 0-demimetric. Furthermore, from Lemma 4.2 T is
demiclosed. Since U; is nonexpansive, B; = I - U; is a %-inverse strongly monotone mapping.
We also have from NY_, F(U;) # @ that

NI VI(C,I - U;) = NjL F(PoUs;) = NJL, F(Us).

Therefore, we have the desired result from Theorem 3.1. O

Using Theorem 3.2, we can prove a strong convergence theorem for a finite family of strict
pseudo-contractions in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and convez subset of
H. Let {ki,...,km} C [0,1) and let {T,};‘:’__I be a finite family of k;-strict pseudo-contractions
of C into H. Let {un} be a sequence in C such that un, — u. Assume that N1, F(T;) # 0.
For any z1 = € C, define {zn} as follows:

20 = 2550 &((1 = Aa)] + MnT;)n,
Tyl = Onttn + (1 - Jn) (PC(anzn + ﬁnzn))’

where a,c € R, {\} C (0,00), {&1,--.,Em} C (0,1) and {an}, {Bn}, {Bn} C (0,1) satisfy the
following conditions:

(1) 0<a <A, <min{l—ky,...,1—ky};
)T &6=1

(3) 0<c<ap,fn<landon+Bn=1;
(4) limy 4006 =0 and Y 4o, &y, = 00.

Then {z,} converges strongly to z € ﬂj"ilF(Tj), where z9 = Pn,-“i F(T;)U-

Proof. Since Tj is a kj;-strict pseud-contraction of C into H such that F(T;) # 0, T; is k;-
demimetric. Furthermore, from Lemma 4.1, T; is demiclosed. Furthermore, if B; = 0 for all
i € {1,...,N} in Theorem 3.2, then B; is a 1-inverse strongly monotone mapping. Putting
7n = 1 for all n € N in Theorem 3.2, we have that w, = z, for all n.€ N. Furthermore,
replaceing B, + Yn by 8,. we have the desired result from Theorem 3.2. O

Using Theorem 3.3, we prove a strong convergence theorem for a finite family of inverse
strongly monotone mappings in a Hilbert space.

Theorem 4.6. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. Let {p1,....un} C (0,00). Let {B;}L, be a finite family of u;-inverse strongly monotone
mappings of C into H. Assume that N\, VI(C,B;) # 0. Let x; € C. Let {z,} be a sequence
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generated by
Wn = 29-’.—1 0iPc(I — 1o B;)xn,
Yn = QnTp + YnWn,
Cn={2€C:lyn — 2|l < llzn - 2|},
Qn={2€C:(Tn — 2,71 — z4) > 0},
Tny1 = Po,n@.T1, VR EN,

where b,c € R, {n,} C (0,00), {01,...,0n8} C (0,1) and {an}, {71} C (0,1) satisfy the
following conditions:

(1) 0 fvb < nn < 2min{p,...,pN};

(2) Ei:l 0i = 1;

(8) 0<c<an,Wm<land ap+v,=1.
Then {z,} converges strongly to zo € NXL,VI(C, B;), where z = Py vi(e,B)T1-

Proof. The identity mapping I is a -;--demimetric mapping of C into H. Putting T; = I for
all j € {1,...,M} and A\, = { for all n € N in Theorem 3.3, we have that z, = z, for all
n € N. Furthermore, replacee 8, + v by 7». Thus, we have the desired result from Theorem
3.3. O

Using Theorem 3.4, we prove a strong convergence theorem for a finite family of generalized
hybrid mappings and a finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 4.7. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. Let {p,...,pn} C (0,00). Let {T; }j“il be a finite family of generalized hybrid mappings
of C into H and let {B;}., be a finite family of p;-inverse strongly monotone mappings of
C into H. Assume that

LF(T) N (N, VI(C, B:)) # 0.

Letzy € C and Cy =C. Let {z,} be a sequence generated by

2n = e &((1 = M) + AnT})Tn,

wn = Y1, 0iPo(I — 1 Bi)an,

Yn = OnTp + PrZn + YnWn,
Cor1={2€Cn: [lyn — 2l < [lxn - 2|},
Tn41 = Pcnﬂxl, Vn €N,

where {An}’{nﬂ} C (0’ 00), {511- .. sfM}»{UI:- .. )aN} C (071): {an}){ﬂn}y{'ﬁt} C (0, 1) and
a,b,c € R satisfy the following conditions:

(1) 0<a< A £1,0<b< 0, <2min{y,...,un};

(2) ZA:f—.l & =1and Zf__l oi=1;

(8) 0< c<an,Bn,Tn <1 and ap+ fn +7p = 1.
Then the sequence {z,} converges strongly to a point zy € n;‘ilF(fl})n(np':l VI(C, B;)), where

20 = Pt p(1)n(n, VI(C,B)T1-

Proof. Since T is a generalized hybrid mapping of C into H such that F(T;) # 0, from (1.2),
T} is O-demimetric. Furthermore, from Lemma 4.2, T} is demiclosed. Therefore, we have the
desired result from Theorem 3.4. O
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