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ABSTRACT. In this paper, we introduce two new iterative algorithms (one implicit and
one explicit) for finding a common point of the set of zeros of an accretive operator and
the set of fixed points of a nonexpansive mapping in a real uniformly convex Banach space
having a uniformly Géateaux differentiable norm. Then under suitable control conditions,
we establish strong convergence of sequence generated by proposed algorithm to a common
point of above two sets, which is a solution of a ceratin variational inequality. The main
theorems develop and complement some well-known results in the literature.

1. INTRODUCTION

Let E be a real Banach space with norm || - || and the dual space E*. The value of
z* € E* at y € E is denoted by (y, z*) and the normalized duality mapping J from E into
2E" is defined by

J(z) ={z* € E*: (z,2") = ||zlll|="||, ll=l| = ll="||}, V=€ E.

Recall that a (possibly multivalued) operator A C E x E with the domain D(A) and the
range R(A) in F is accretive if , for each z; € D(A) and y; € Az; (i =1, 2), there exists a
j € J(x1 — z2) such that (y; — y2,j) > 0. (Here J is the normalized duality mapping.) In
a Hilbert space, an accretive operator is also called monotone operator.

Interest in accretive operators stems mainly from their firm connection with evolution
equations. It is well-known that many physically significant problems can be modeled by
initial-value problems of the form

2 | 42(t) 50, (0) =30, @y
where A is an an accretive operator in a ceratin Banach space. Typical examples where
such evolution equations occurs can be found in the heat, wave, or Schrodinger equations.
If in (1.1), z(¢) is independent of ¢, then (1.1) reduces Az 3 0 whose solutions correspond to
the equilibrium points of system (1.1). Consequently, the iterative algorithms of Halpern
type, Mann type, and Rockafellar type have extensively been studied over the last forty
years for constructions of zeros of accretive operators (see, e,g., [2, 3, 4, 8, 9, 10, 12, 13, 14,
15, 16, 18, 20, 21, 22, 27, 28] and the references therein). As an original one, the following
iterative algorithm in Hilbert spaces or Banach spaces was considered by many authors:
for resolvent J,., of m-accretive operator A,

ZTnt1 = Jp,Tn, V0 20,
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where the initial guess zo € E is chosen arbitrarily (see, e.g., [12, 13, 18] and the references
therein). In particular, in order to find a zero of a monotone operator A, Rockafellar [20]
introduced a powerful and successful algorithm which is recognized as Rockafellar proximal
point algorithm in Hilbert space H : for any initial point zo € H, a sequence {z,} is
generated by
Znt1 = Jp (Tn +€n), YR 20,

where J, = (I +7A4)™, for r > 0, is the resolvent of A and {e,} is an error sequence in H.

Xu [24] in 2006 and Song and Yang [23] in 2009 obtained the strong convergence of the
regularization method for Rockafellar’s proximal point algorithm in a Hilbert space H: for
any initial point zo € H

Tnt1 = Jpp(@nt + (1 — 0n)Tn +€n), YR >0,

where {an} C (0,1), {en} C H and {r,} C (0,00).

On the other hand, in 2011, He et al. [6] studied the following iterative algorithm for
finding a common point of the set of zeros of accretive operator A such that A~10 # @ and
D(A) ¢ C C,5¢ R(I +rA) and the set of fixed points of a nonexpansive mapping S in a
real reflexive Banach space E having a weakly sequentially continuous duality mapping:

z=z€C, 1.2)
Tnt1 = Anf(Tp) + BrZn + WSIrnZn, YR >0,

where {a,} and {8,} C [0,1], lim, 00 7n = r and f : C — C is a contractive mapping.
Under the suitable conditions {a,} and {8}, they also showed that the sequence {z,}
generated by (1.2) converges strongly to a common point in F(S) N A0, which is a
solution of a certain variational inequality.

Inspired and motivated by the above-mentioned results, in this paper, we introduce new
implicit and explicit algorithms for finding a common point of the set of zeros of accretive
operator A and the set of fixed points of a nonexpansive mapping S in a real uniformly
convex Banach space F having a uniformly Gateaux differentiable norm. Under suitable
control conditions, we prove that the sequence generated by proposed iterative algorithm
converge strongly to a common point in A~10 N F(S), which is a solution of a certain
variational inequality. The main results develop and supplement the corresponding results
of He et al. [6] as well as Xu [24] and Song and Yang [23] and the reference therein.

2. PRELIMINARIES AND LEMMAS

Let E be a real Banach space with norm ||- || and let E* be its dual. Let C be a nonempty
subset of E. The value of f € E* at z € E will be denoted by (z, f). When {z,} is a
sequence in E, then z,, = z (z,, — z) will denote strong (weak) convergence of the sequence
{zn} to z. For the mapping S : C — C, F(S) will denote the set of fixed point of S; that
is, F(S)={z € C: Sz =z}.

A Banach space F is said to be uniformly convez if for all ¢ € [0,2], there exists §¢ > 0
such that
Izl _
Let ! > 1 and M > 0 be two fixed real numbers. Then a Banach space is uniformly convex if
and only if there exists a continuous strictly increasing convex function g : [0, 00) — [0, 00)
with g(0) = 0 such that

Iz + (1 = Ayl < Mzl + (1 = Wiyl ~ wN)g(llz - yll), 21

for all z, y € By (0) = {z € E: ||z|| < M}, where w(\) = A(1 — A) + A(1 — A)!. For more
detail, see Xu [25).

flzll = llyll = 1 implies 1 — 6, whenever |jz —y|| > e.
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The norm of F is said to be Géteaux differentiable if

Nz + tyll — =il
L=l @2

exists for each z, y in its unit sphere U = {z € E : |z|| = 1}. Such an E is said to
be smooth Banach space. The norm is said to be uniformly Géteauzr differentiable if for
y € U, the limit is attained uniformly for z € U. The space E is said to have a uniformly
Fréchet differentiable norm (and E is said to be uniformly smooth) if the limit in (2.2)
is attained uniformly for (z,y) € U x U. It is known that E is smooth if and only if
the normalized duality mapping J is single-valued. Also, it is well-known that if E has a
uniformly Gateaux differentiable norm, J is norm to weak* uniformly continuous on each
bounded subsets of E. The following property of the normalized duality mapping J is
well-known: J(—z) = —J(z) for all z € E ([1}).

An accretive operator A is said to satisfy the range condition if D(A) C R(I +rA) for all
r > 0, where [ is an identity operator of F and D(A) denotes the closure of the domain D(A)
of A. An accretive operator A is called m-accretive if R(I+rA) = E foreachr > 0. If A is
an accretive operator which satisfies the range condition, then we can define, for each 7 > 0
a mapping J, : R(I+1A) = D(A) defined by J, = (I +7A4)~1, which is called the resolvent
of A. We know that J, is nonexpansive (i.e., ||Jrz — Lyl < ||z —yll, Vz,y € R(I +rA))
and A~10 = F(J,;) = {z € D(J;) : Jrz = z} for all r > 0. For these facts, see [1].

We need the following lemmas for the proof of our main results. We refer to [1] for
Lemma 2.1, Lemma 2.2, and Lemma, 2.3. ’

Lemma 2.1. If E be a real smooth Banach space, then one has

Iz + gl < llz|® + 2(y, T (z +9)), V=, y€ B,
where J 1is the normalized duality mapping of E.
Lemma 2.2 (The Resolvent Identity). For A >0, u>0andz € E,

IHhx = J,_,(% + (1 - ;)J,\:c).

Lemma 2.3. Let E be a real Banach space having a uniformly Gateauz differentiable norm,
let C be a nonempty closed convex subset of E, and let {yn} be a bounded sequence in E.
Let LIM be a Banach limit and g € C. Then

LIM|lyn — ¢||* = min LIM||z, — z||®

zeC

if and only if
LIM(z — ¢,J(yn — q@)) <0, Vz € C,
where J is the normalized duality mapping of E.
The following lemma, is given in [26].
Lemma 2.4 ([26]). Let {sn} be a sequence of non-negative real numbers satisfying
Sn41 S (1= Ap)sp + Anbp +7m, VR >0,

where {A\n}, {6} and {yn} satisfy the following conditions:

(1) {2} € [0,1] and T2 A = c0;
(i) imsup,, o, 0n < 0 0r Y02 Anldn| < 003
(iii) v» >0 (n > 0), E:;o')’n < oo.
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Then limg—y00 8p = 0.

Finally, we will use the next lemma which is of fundamental importance for our proof.
Lemma 2.5 ([17]). Let {sn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {sn;} of {sn} such that sp; < 8p;41 for alli > 0.
For every n > ny, define the sequence of integers {r(n)} by

7(n) := max{k <n: 8k < Sp41}
Then {T(n)}n>n, i a nondecreasing sequence verifying
i, ) =
and, for all n > ng, the following two estimates hold:

Sr(n) < Sr(n)+1;  Sn < Sr(n)+1-

3. MAIN RESULTS

Throughout the rest of this paper, we always assume the following:

e E is a real Banach space;
o J is the normalized duality mapping of E;
e C is a nonempty closed convex subset of E; -
e A C E x E is an accretive operator in E such that A~10 # @ and D(A) c C C
nr>0 R(I + TA);
e J, is the resolvent of A for each r > 0;
e §:C — C is a nonexpansive mapping with F(S) N A~10 # 0;
e f:C — C is a contractive mapping with a constant k € (0, 1).
In this section, we introduce the following algorithm that generates a net {Z:}:c(0,1) in
an implicit way:
= Jp(tfze + (1 - t)Szy). (3.1)
We prove strong convergence of {:ct} ast = 0toa pomt g in A7'0 N F(S) which is a
solution of the following variational inequality:
(I-f)aT(@—p)) 20, Vpe AT'ONF(S). (3.2)
We also propose the following algorithm which generates a sequence in an explicit way:
Tnt1 = Jpp(OnfZn + (1 — ay)Szy), VYR >0,

where {a,} C (0,1), {rn} C (0,00) and zp € C is an arbitrary initial guess, and establish
the strong convergence of this sequence to a point ¢ in A~10N F(S), which is also a solution
of the variational inequality (3.2).

3.1. Strong convergence of the implicit algorithm. Now, for ¢t € (0,1), consider a
mapping @Q; : C — C defined by

Qiz = J(tfz+ (1 —t)Sz), VzeC.
It is easy to see that Q; is a contractive mapping with constant 1 — (1 — k). Indeed, we

have
1Qex — Quyll < tllfz — fyll + |(1 - t)Sz — (1 - t)Sy||
Stkllz -yl + (1 - t)llz -yl
=(1-(1-kt)llz -yl
Hence @ has a unique fixed point, denoted z;, which uniquely solves the fixed point equa-~
tion (3.1).
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We summarize the basic properties of {z;} and {y.}, where y; = tfz; + (1 — t)Sz; for
t € (0,1).

Proposition 3.1. Let E be a uniformly convex Banach space. Let the net {z;} be defined
by (3.1), and let {y;} be a net defined by y; = tfxi + (1 — t)Sz; for t € (0,1). Then

(1): {z:} and {y:} are bounded for t € (0,1);

(2): z; defines a continuous path from (0,1) in C and so does y;

(3): limyso ||y — Szl = 0;

(4): limgo ||lye — Jrmell = 0;

(5): limg_,o ”.’Et - ytll = 0,'

(6): limgyg ||y — Syell = 0;

We establish the strong convergence of the net {z;} as ¢ — 0, which guarantees the
existence of solutions of the variational inequality (3.2).

Theorem 3.2. Let E be a uniformly convex Banach space having a uniformly Gateaux
differentiable norm. Let {z;} be a net defined by (3.1), and let {y;} be a net defined by
y = tfxy + (1 — t)Sxz, for t € (0,1). Then the nets {z:} and {y;} converge strongly to a
point ¢ € A~10N F(S) as t = 0, which is the unique solution of the variational inequality
(3.2).

Corollary 3.3. Let E be a uniformly convex and uniformly smooth Banach space. Let
{z.} be a net defined by (3.1), and let {y} be a net defined by y = tfz; + (1 — ¢)Sz; for
t € (0,1). Then the nets {z;} and {y} converge strongly to a point ¢ € A~10 N F(S) as
t — 0, which is the unique solution of the variational inequality (3.2).

3.2. Strong convergence of the explicit algorithm. Now, using Theorem 3.2, we
show the strong convergence of the sequence generated by the explicit algorithm (3.3) to a
point ¢ € A~10 N F(S), which is the unique solution of the variational inequality (3.2).

Theorem 3.4. Let E be a uniformly convex Banach space having a uniformly Giteauz
differentiable norm. Let {an} € (0,1) and {r,} C (0,00) satisfy the conditions:
(C1) limp_y00 O = 0;
(C2) 3 onZoan = oo;
(C3) |an+1 — om| S 0(0m41) + 0, Yoo y0n < 00 (the perturbed control condition);
(C4) 1p, 2> 0 forn >0 and 302 [rn41 — 7| < 0.
Let xg = z € C be chosen arbitrarily, and let {z,} be a sequence generated by

Znt1 = Ipp(@nfTn + (1 — 0r)Szy), VR >0. (3.3)

Let {yn} be a sequence defined by yn = anfzn+(1—an)St,. Then {z,} and {y,} converge
strongly to ¢ € A~10 N F(S), where q is the unique solution of the variational inequality
(3.2).

Proof. First, we note that by Theorem 3.2, there exists the unique solution g of the varia-
tional inequality
(I-1)e,J(g-p) <0, Vpe ATNONF(S),
where ¢ = lim;oz; = lim;_,oy; being defined by z: = J.(tfz: + (1 — t)Sz;) and 3y =
tfzy + (1 — t)Sz; for 0 < t < 1, respectively.
We divide the proof into several steps.

Step 1. We show that ||zn — pl| < max{||lzo — p||, I2¢/|Ifp — p||} for all n > 0 and all
p € AT'0NF(S), and s0 {z,}, {va}, {Jrnzn}, {Szn}, {Jratn}, {Syn} and {fz,} are
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bounded. Indeed, let p € A~10 N F(S). From A~0 = F(J,) for each r > 0, we know
p= Sp = J.,p. Then we have

Zn+1 = pll < llyn — pll = llom(fn = p) + (1 — on)(Sz0 — Sp)||
< anllfza = pll + (1 = an)|za — 2l
< an(llfzn = foll + I7p = pll) + (1 - an)l|zn — pll
< ankl|zn = pll + onllfp — pll + (1 — an)llzn — pll

| fp — pll

= (1= (1 = Kjaw)llen = pll + (1 ~ Kan 2=

1
< max{ lon ~ ol 7 15) =51 .
Using an induction, we obtain
1
Jon ol < max{ oo — o1, I =51}

Hence {z,,} is bounded. Also for p € A~10N F(S), we get

"yn -p||l < an“f:v,, - fP” + (1 - an)”SIn - SP” + anl!fp - P”
< ank“a’n "P“ + (1 - an)”zn _p“ + an"fp - P"
= (1= (1~ B)an)lzn — 2l + (1 — K)oy 122l
Il fp — pll
< —_ L}
< max{ iz - o, U221,

and so {yn} is bounded, and so are {yn}, {Jr,¥n}, {SZn}, {Syn} and {fz,}. Moreover, it
follows from condition (C1) that

¥n — SZnll = ol f2n — Szall < an(l|fzall + ISzal) = 0 (n — o0). (34)

Step 2. We show that lim, o6 ||Zn+1 — Zn|| = 0. First, from Lemma 2.2 (Resolvent
identity), we observe that

ratn = Jrp_y Yn—1ll =

Tn— Tn-—-
Jr,._l( = lyn + (1 - : 1)']1‘,.?>’n> — Jrp1Yn—1

Tn n
Tn—-1 Tn—
S : Yn + (l - : l)JTnyfl) = Yn-1
" ’; (3.5)

-1

< My = Yn-1ll + Il - ‘:— (lyn — yn-all + | Jrnn — yn-ll)
n

Tn — Tn—
< Nyn = Ynall + | =—2=2 My,

where M = sup,5o{[|Jrn¥n — Yn—1]l + |4 — yn-1l}. Since

Yn = anf(Zn) + (1 — @n)Szy,
Yn—-1 = @n-1f(Tn-1) + (1 — an-1)STpn_1, VYn>1,
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by (3.5), we have for n > 1,

Tn = Tn-1
€

= [|(1 = an)(Szp — Szn-1) + an(fTn — f2Zn-1)

Tn — Tn-1
€

lZn+1 = Znll = [[Fra¥n = Jra_s¥n-1ll < Y0 — Yaall + M,

+ (an — an-1)(fTn—1 — Sza1)l| + M,

3.6
< (1 an)l[n — nct| + kamllzn — Tna] (36)

-1

M,

|an - aﬂ_1|M2 + ll -

Tn
Tn — Tp—-1

< (1~ Q1 ~k)om)|zn — zp-1]| + lan — an—1| Mz +
where My = sup{|| f(zn) — Szn|| : » > 0}. Thus, by (C3) we have

Tp — Tn—
llzns1 = @nll < (1= (1 = k)am)len = @n-1]l + Ma(o(an) + on1) + My | 2—"=|.

In (3.6), by taking sp41 = [|Znt1 — Znll, An = (1 — k)an, Andn = M20(c) and

Tn —Tn-1

T = M + Maop-1,

we have
Sp41 < (1 - An)sn + Mbn + Yn-
Hence, by the conditions (C1), (C2), (C3), (C4) and Lemma 2.4, we obtain
nll{go |Zn+1 — znll = 0.
Now, in order to prove that limp_,o ||Zn — ¢]| = 0, we consider two possible cases as in
[10] and [27].
Case 1. Assume that {|lz, — ¢||} is a monotone sequence. In other words, for ngy large

enough, {||z» — gl|} is either nondecreasing or nonincreasing. Hence {||z, — g||} converges
(since {]|lzn — ¢||} is bounded).

Step 3. We show that lim,c0 [[yn — Jr,¥nl| = 0. First, from Lemma 2.2 (Resolvent
Identity), we know that

Iralt = Jm( Yn + Jr,.yn)

1 1
J"( Yn + Jr,.yn)_q < §<yn_Q)+§(Jrnyn_(I)“-

By the inequality (2.1) (I=2,A = 5), we obtain that

Then we have

|Jrn e — gl =

2

1
Wragm —all? < J.n( Yo + Jrny,.)—q

<[s-o) oo

1 1
Ellyn QIIZ + §"Jrnyn - q112 - Zg(”yn = Jra¥all)

2

3.7

1 1 1
< 5llom —all* + 5llvm — al* - 7901 = Jru3nll)

1
= |lyn — ‘I”2 - Zg(”yn = Jr.ynll)
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Thus, from (3.3), the convexity of the real function ¥(t) = t2 (¢ € (—oo,00)) and the
inequality (3.7), we have

lZn+r — 9”2 = || Irayn — ‘1”2
1
< llyn —ql* - 79(llyn = Jroyall)

= llan(f2n = @) + (1 = a)(Szn = DI = 39190 = Jrasnl)

1
< anlfzn - ‘1"2 + (1 —an)llzn - ¢1||2 - Zg(llyn — Jraynll)

and hence

1

Zg(”yn = Jraynll)) — anll fzn — 4”2 < llzn - ¢1||2 = |znt+1 — ‘1”2'
Since {|lzn — g||} converges, by condition (C1), we obtain

nli)ngog(”yn ~ Jratnll) = 0.
Thus, from the property of the function g in (2.1), it follows that
Jm Jlyn — Jrayall = 0.

Step 4. We show that lim, o || — yn|| = 0. Indeed, from Step 2 and Step 3, it follows

that
lzn — ynll < lTn — Zas1ll + [[To+1 — ynll

< llon = 2nsall + 1rutn — all > 0, (1= 00).
Step 5. We show that limp_,o [[yn — Syn]| = 0. In fact, by (3.4) and Step 4, we have
lvn — Synll < llyn — Szall + |Szn — Synll
< |lyn — Szall + lzn = gall 2 0 (n = ).

Step 6. We show that limy, 0 ||yn — Jryn|| = 0 for » > 0. Indeed, from Lemma 2.2
(Resolvent identity), we obtain
T r
"Jrnyn - ern” = ||Jr (_"yn + (1 b _) Jr,.yn) — Jr¥n
Tn Tn

T T
< —_ _— —
< ‘(rny" + (l rn)Jrn?ln) Un

<p-L
Tn

(3.8)

l%n = Jratnll = 0 (n — o0).

Hence, by Step 3 and (3.8) we have
llyn = Jrymll < lyn = Jratmll + | Iratin = Jrgmll = 0 (n — c0).

Step 7. We show that limsup,,_,..((I—f)g, J(¢—yn)) < 0. To prove this, let a subsequence
{¥n;} of {yn} be such that

ﬁnm_f;p((f = faT(@—yn)) = Jim, (-, T(@—vn;))

and yp; — z for some z € E. From Step 5 and Step 6, it follows that lim;_,c0 ||yn; — Syn; || =
0 and limjo0 [|yn; — Jryn, || = 0 for 7 > 0.
Now let ¢ = lim¢—,o x¢ = lim;_, y; where 3y = tfz: + (1 — t)Sz; and z; = Jy; for r > 0.
Then we can write
Yt —Yn; = t(fze - ynj) + (1= t)(Szs - y”j)
and
Nzt = ynsll = 19rge — ynsll < gt = Ynsll + 1 Irny — Yy l-
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Putting
a;i(t) = (1 = )*|1SYn; — n; (2llz: — Y Il + 1SYn; — Yn,ll) =0 (5 = 00)
and
bi(t) = | Jrtn; — yns 12Nyt = Yn; | + | Frtn; — wmsll) = 0 (G = 0)
by Step 5 and Step 6, and using Lemma 2.1, we obtain
" lze =y 1 < llye — yng 12 + 050)
< (1= t)2)1Sze — yn, 1P + 26(F2e — yn;, T (Yt — ¥n;)) + b5 (2)
< (1= )*(1Szs — Syn; | + |Stn; — yn,11)?
+ 2t(fze — zt, T (% — ;) + 2tl|ze — yn; e — yn;ll
< (1= )2 |lze — ymy |1? + a5(2) + b5(2)
+ 26(f 5t — T4, T (Y — Yny)) + 2818t — Yny I + 2t[2e — o, lllye — 2ell-
The last inequality implies

t 1
((I = fze, T (¥ — yn;)) < 5”% — n; |12 + ﬂ(a,-(t) +bi(t)) + lize — vellllze — yn,ll-
It follows that
. t
limsup((I — f)z1, T (¥t — Uny)) < M2 + ||z — ve|| M, (3.9)
j—oo 2

where M = sup{||z: — yn|| : » > 0 and ¢ € (0,1)}. Recalling (5) in Proposition 3.1, taking
the limsup as t — 0 in (3.9), and noticing the fact that the two limits are interchangeable
due to the fact that J is uniformly continuous on bounded subsets of E from the strong
topology of E to the weak* topology of E*, we have

hﬁi}p((l - e, T(@~yn;)) <0.

Step 8. We show that limp— || — ¢|| = 0. By using (3.3), we have

llznt1 = all < llyn — all = llan(fzn — @) + (1 — 2n)(Szn — g)||-
Applying Lemma 2.1, we obtain

I€n+1 = qll* < llgn — qll?

< (1= 0on)?[1Szn — ql|* + 20m(fTn — 4, T (yn — 9))

< (1 = on)?%n — gl + 200 (fZn — £4, T (¥ — 9))
+2an(fg— ¢, T (yn — 9))

<(@- an)2nxn - 9"2 + 2kan ||lzn — qllllyn — 4l
+ 20m(fq— ¢, T (yn — 9))

<(1- an)z”zn - qI|2 + 2ka ||z ~ ‘I”2
+ 2kan|lzn — gllllyn — znll + 2an(fq — ¢, T (yn — 9))-

It then follows that
llzns1 — gl < (1 —2(1 — k)an + 02)|lzn — ql?
+ 2kay||zn — qllllyn — x|l + 20 (fg — ¢, T (yn — )
< (1 -2(1 = k)an)llza — gll* + ofL?
+ 2kLayp|lyn — zn|l + 2an{(I — £a, T(a—w)),

(3.10)
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where L = sup{||z, — ¢|| : n > 0}. Put
An=2(1-k)a, and

_ apl?

T 2(1-k)

From (C1), (C2), Step 4 and Step 7, it follows that have A\, — 0, Y02, A = oo and
lim sup,, o 0n < 0. Since (3.10) reduces to

lznt1 — ‘1”2 < (A= A)llzn = ‘1”2 + Andn,
from Lemma 2.4 with v, = 0, we conclude that lim,, ||zn — g|| = 0. By Step 4, we also
have limy,_y00 Yn = gq.

Case 2. Assume that {||z, — ¢||} is not a monotone sequence. Then, we can define a
sequence of integers {7(n)} for all n > ngy (for some ng large enough) by

7(n) :=max{k € N: k <n, |lzx —qll < [lzr+1 —qll}-

o

+ (1k_Lk) llyn = 2nll + '1—1;((1 — 1@ T(@—a))-

Clearly, {r(n)} is a nondecreasing sequence such that 7(n) — oo as n — co and
”x‘r(n) - q“ < Ilzr(n)+1 - QH

for all n > ng. In this case, by using the same argument as in Step 2 — Step 8 with {z,(»)},
{y'r(n)}» {Jrq-(n)yr(n)}v {er-r(n)}v {Sz-r(n)}a {Syr(n)}a and {fx'r(n)}v we obtain the following:

Step 2’ limp00 ”x'r(n)+1 - zr(n)” =0

Step 8’ limy, 00 ”y‘r(n) - Jr,.(,,) y-r(n)“ =0.

Step 4’ limp o0 ”z'r(n) - yf(n)” =0.

Step &' limp 0 [|¥r(n) — S¥r@m)ll = 0.

Step 6' lim; o0 ||y.,.(,,) - J,-y,.(n)” =0forr >0.

Step 7’ imsup,_,(( — £)g, T (9 — ¥r(n))) < 0.

Step 8' limy—00 [|Zr(n) — ¢ll = 0 and limp—y00 [|Zr(n)+1 — il = 0.
Thus, from Lemma 2.5, we have

iz = gll < llZr(n)+1 — gll-
Therefore, lim,—o0 ||Zr — ¢|| = 0. This completes the proof. O

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach space. Let C,
A, Jr., S, and f be as in Theorem 3.4. Let {an}€ (0,1) and {r,} C (0,00) satisfy the
conditions (C1), (C2), (C3) and (C4) in Theorem 8.4. Let zy = = € C be chosen arbitrarily,
and let {z,} be a sequence generated by

Zp+1 = Iy, (anfzn + (1 — ap)Sz,), Vn >0.
Let {yn} be a sequence defined by yn = anfrn+(1—0an)Szn. Then {z,} and {y,} converge
strongly to ¢ € A™0 N F(S), where q is the unique solution of the variational inequality
(3.2).
Corollary 3.6. Let E, C, A, J,,, S, and f be as in Theorem 8.4. Let {a,}€ (0,1)

and {rn} C (0,00) satisfy the conditions (C1), (C2), (C3) and (C4) in Theorem 8.4. Let
zo =z € C be chosen arbitrarily, and let {z,} be a sequence generated by

Tnt1 = Jro(anfn + (1 - an)an + 61;), Vn >0,
where {ex} C E satisfies Y ooy |len| < 0o or limp—seo leal = 0. Let {yn} e a sequence

€

an
defined by yn = anfzn + (1 — an)Sz, + en. Then {z,} and {y,} converge strongly to
g € A~'0N F(S), where q is the unique solution of the variational inequality (3.2).



ACCRETIVE OPERATORS AND NONEXPANSIVE MAPPINGS

Remark 3.7. (1) We point out that our iterative algorithms (3.1) and (3.3) for finding
common point in the set of zeros of an accretive operator and the set of fixed points of a
nonexpansive mapping are new ones different from those in the literature (see [6] and others
in References). Thus Theorem 3.2 and Theorem 3.4 develop, and complement the recent
corresponding results studied by many authors in this direction.

(2) If we take fr = u, Vz € C, as a constant function and Sz = x, Vz € C, as the
identity mapping in Corollary 3.6, then the result extends corresponding results of Xu [24]
and Song and Yang [23] in Hilbert spaces to a Banach space setting.

(3) The control condition (C3) in Theorem 3.4 can be replaced by the condition Yp> ¢ |an+1
—ay| < 005 or the condition limy,—ye0 a—’::; = 1, which are not comparable ([7]).

(4) The results in this paper apply to all LP spaces, 1 < p < oc.
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