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Gradient estimates for mean curvature flow
with Neumann boundary conditions

Masashi Mizuno and Keisuke Takasao

1. Mean curvature flow

We consider the following parabolic partial differential equation:

Oyu ( du )
—=div| —— | + F(z,u,t)'n, z€Q,t>0,
1+ |dul? 1+ |dul?
P B ANV e
du-u|aﬂ=0, t>0,
’u(l’,O) = uO(x)7 T € Q,

where 2 C R" is a bounded domain in an n-dimensional euclidean space with a smooth bound-
ary, v is the outer unit normal vector field on 8, u = u(zx,t) : © X [0,00) — R is an

unknown function, d := (0,,,...,0;,) and div are the usual gradient and divergence on {2,
1 _ ; : ' .
n:= \/TW( du, 1) is the unit normal vector field on the graph of u, F' : 2 x R x [0, 00) —

R™*1 is a given transport term, and ug = ug(z) :  — R is a given initial data. If v is a solution
of (MCF), then the graph of u satisfies mean curvature flow with the transport F' and with the
Neumann boundary condition, namely

V =H + F*, only,t>0,
1) I, LA xR), t>0,
T, = {(z,u(z,t)) : z € O}, t>0,
where V := —2%__n is a normal velocity vector of T';, H := div(—=%=)n is the mean

1+|du|? 1+4|du|?
curvature vector of [';, and F+ = (F - n)n is the transport term(see Figure. 1).

FIGURE 1. Mean curvature flow with the transport F' and with the Neumann
boundary condition.
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We consider an up-to-boundary regularity problem for (MCF). In particular, we study a re-
lationship between up-to-boundary estimates for v := /1 + |du|? and the regularity for the
transport term F'. From the point of partial differential equations, (MCF) is a nonlinear degen-
erate parabolic equation of non-divergence type, hence regularity for solutions of (MCF) is not
clear. When the gradient of solutions is bounded, then the Schauder estimates for (MCF) is ap-
plicable thus existence of classical solutions of (MCF) can be deduced. It is also interesting to
obtain the gradient estimates under reasonable conditions of the transport F'. I will later discuss
blowup/scaling arguments for (MCF) and deduce the reasonable condition of the transport F'.

From the point of geometry, especially geometric measure theory, the volume measure dy, =
/1 + |du|? dzx is important to study regularity for I';. The boundedness of |du| implies rectifi-
ability of u, (besides integrality in our setting). Rectifiability is a basic regularity concept for
geometric measure theory, hence we need to show the gradient estimates for (MCF).

Interior gradient estimates for (MCF) under F' = 0 ware studied by Ecker-Huisken [6] when
the initial surface is C', and by Colding-Minicozzi I [3] when uy is bounded. Takasao [14]
studied the interior gradient estimates for (MCF) when g is C? and the transport F' is bounded
in time and space variables. Huisken [7] studied (MCF) with the Neumann boundary condition
and without the transport F'. He showed the existence of a classical solution of (MCF) under
F = 0. To show the existence of the solution, it is important to derive up-to-boundary a priori
gradient estimates of (MCF). Huisken showed the gradient estimates when the initial data u, is
C% up to boundary and 992 is of class C**. Stahl [12] also considered the gradient estimates
of (MCF) without the transport and obtained some blow-up criterion of the classical solution
of (MCF) under F' = 0. Our arguments are similar to Ecker’s or Takasao’s work [4, 14]. Ecker
deduced the interior gradient estimates for (MCF) under F' = 0 via Huisken’s monotonicity
formula [8]. Takasao obtained an interior monotonicity formula with the bounded transport F'.
In our setting, we need to derive a boundary monotonicity formula for (MCF). From this point,
Buckland [1] obtained the boundary monotonicity formula for (MCF) without the transport.

2. Main results
For fixed Ty > 0 and p, ¢ > 1, we define

To 1 :
@ VFlliszzn = (/ ([ 1Fesop i) dt)
0 T

where J#" is the n-dimensional Hausdorff measure on 2. We give the following assumption to
the transport.

Assumption 1. There exist p,¢ > 1 such that 2 + 2 < 1 and || F| o .2(r,) < 0

Remark 2. By the Meyer-Ziemer inequality (cf. [16, p. 266, Theorem 5.12.4]),

[ 1F (0P #7(2,2) < GIFC Ol o0

for some positive constant C; > 0. Therefore if 2 + % <land F € L90, T, : W(lz'f;)(Q x R)),
then Assumption 1 is fulfilled.

We give the boundary gradient estimates for (MCF) with the transports under Assumption 1.
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Theorem 3 (A priori estimates for the gradient). Let 2 C R™ be a convex domain. For ug €
W1e°(Q) and for the transport F under Assumption 1, let u be a classical solution of (MCF).
Then there exists T > 0 depending only on n, p, q and || F | ;s zr,) such that

A3) sup 1+ |du(z,t)]? < 2(1 + [[duo|%,).
0<t<T, zeQ

With the aid of the Leray-Schauder fixed point theorem, we can show the time local existence
of a classical solution of (MCF). For 0 < a < 1, define

sup IF(:L‘, Zyt) - F(y7 w, S)I
(@20, (vw) ) E@xR)x (0,T) [T — Y|® + |z —w|* + [t — 5

"F”Ca'%(ﬂxRx(O,To)) = [o72°
Theorem 4. Let Q C R™ be a convex domain. Let ug € W*°(Q) satisfy compatibility con-
ditions dug - v|po = O and let the transport F satisfy ||F||ce.8 qurxom) < O°for some
0 < a < 1. Then, there exists a unique classical solution u of (MCF) on  x R x [0,T") for
some 0 < T < Ty

In this note, we focus on Theorem 3 since proof of Theorem 4 is more or less standard
arguments once we show Theorem 3. Before proving Theorem 3, we discuss Assumption 1
from the point of blowup/scaling arguments. Consider the scale transform for A > 0

=My, u(z,t)=> wys), t=N\s
Then d,w = (8,,w, ..., 8y, w) = du and (MCF) is transformed into

dw d,w
——_ =div, | —%—=| + \F(\y, \w, \%5) - n.
V1+|dul? Y (\/‘1 +1d yw|2> ( )
To study regularity of du, it is important to investigate the asymptotic behavior of w as A | 0.
When 2 + 2 < 1, then
INF Ay, Mo, A28) || ap = N5 73| Flgagz — 0 as A L0,

thus the transport is small from the point of blowup/scaling arguments and Assumption 1 is the
reasonable condition to obtain the gradient estimates. We remark that Assumption 1 is same
assumption to an inhomogeneous term f = f(z,t) to obtain gradient estimates for inhomoge-
neous heat equations J;u — Au = f (see LadyZenskaja-Solonnikov-Ural’ceva [9, Theorem 11.1
in p.211]).

Figure 2 illustrates the region of (p, ¢) in Assumption 1. Takasao’s result is almost equivalent
to the condition p > n + 1 and ¢ = oco. In fact, for F € L*°(0,T; : W(lz’f’z)(Q x R)) under
p>n+1, weobtain F € L, (2 x R x (0,T5)) by the Sobolev inequality. On the other
hand, the transport F' might not be bounded in time and space variables in our Assumption 1.
Therefore, our results can be regarded as some extension of Takasao’s early result even for the
interior gradient estimates.

3. Monotonicity of the metric

Our main task is to establish the up-to-the-boundary monotonicity formula of the Huisken
type. Let R := |principal curvature of 39”2010(39). For 7 < R, define N, := {z € Q :
dist(z,0Q) < r}. Then for z € 95, there uniquely exists (z) € 0N such that dist(z, Q) =
|z — ¢(x)|. We define the reflection point of = with respect to 9 as & = 2((z) — z. Remark
that z + = 2¢(z) hence ((z) is midpoint between z and Z(see Figure 3).
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FIGURE 2. Region of (p, ) in Assumption 1. Our assumption is the region of
oblique lines and Takasao’s assumption is almost equivalent to the bold line.

T:tangent plane at ((z) *

F=2(@) -z
.= &(=z) + (=) - z)

@

FIGURE 3. The reflection point of € £ N N, with respect to 99 is denoted by Z.

Fix a radially symmetric smooth cut-off function n = n(r) = n(|(, z)|) such that

on
BFSO

<n<l, , sptn C Brjp2, 7m=1onBg.

For0 <t < s < Ty and (z, 2), (y,w) € Ng x R, define the n-dimensional backward and
reflected backward heat kernels as

2=l
w,8 ) 7t = n - )
@ Pl (B:2,1) (dn(s —t))2 &P ( 4(s —t)
- > |2 _ 2
[’(?lws)(xvz,t) = p(yws)(£7zat) = — L = €XP (_lx y| ha 'Z wl ) .
” T (4n(s —1))= 4(s —t)

For fixed 0 < ¢ < s and (z, 2), (y, w) € Ng x R, define a truncated version of p and p as

P = P1($a Z,t) = 77([(15, Z) - (ya w)l)p(y,w,s)(za 2, t);

®) P2 = p2(2, 2,8) 1= 1(((E ) — (1, 0) ) Biys) (@ 1)-

To derive Huisken’s monotonicity formula,

. Dp)?
6) % +tr((I —e®e)D?*p) + 0p =0
is the crucial identity, where e € R"*! with |e] = 1. In [11], a similar inequality for the
reflected backward heat kernel was obtained.
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Lemma 5 ([11]). There is a constant Co > 0 such that for e € R"*! with le| = 1 and
p= ﬁ(y,w,s)(l" Z, t)r

2 —yl+]2—wl  (Z—yl+]z—w])? 5
s—t . (s —t)?

. Dp)?
@) %Hr(([—e@e)DzﬁH&ﬁ <Gy (
for0 <t < sand(z,2), (y,w) € Ngja xR
We also use the following identity about the second fundamental form of I';.

Lemma 6. Let u be a classical solution of (MCF) and let v := /1 + |du|?. Then

2
®  Ow—Anv- (d—“ - dv) - 2P0 ar ),

where Dr,, Ar,, and A, are the surface gradient, the surface Laplacian, and the second funda-
mental form associated to Ty, respectively.

Proof of Lemma 6 is given in Takasao [14]. A key identity is

—v*(Dr,h-€,41) =0

2|Dr,v|?
—Arv + A + I—Z’L

given by Ecker-Huisken [5].

We use the following identities which give a relationship between the normal derivative of
|du|? and the second fundamental form of the boundary. It is a simple observation and has been
used in a number of papers (see for [2, 10, 13]). Proof of the following Lemma 7 is given in
[11, Lemma 4.2] or Tonegawa [15, Lemma 3.1] for instance.

Lemma 7. Let Q be a convex domain and let u € C*(Q) satisfy du - ul oq = 0- Then
9) (d]du|2 . l/)la(gxm) <0.
Now we give the boundary monotonicity formula of Huisken type with the transport F'.

Proposition 8 (Boundary monotonicity formula). Let u be a classical solution of (MCF) and
let v := /1 + |du|? Then for (y,w) € Ngjs x Rand0 <t <s,

d 2 D 2
& [ oo+ mann <= [ ot m) (|At|2v 3 APy aq n)) "
T T

v / v(py + p2) (F - n)? ™
I

(10
+ C3™ () + Cu(s — t)'% / v(pr + p2) A"

It
+Cs / vdI",
T:Nspt p2

where Cs, Cy, Cs > 0 are positive constants depending only on n and R.
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Proof. Fori=1,2

d . d
@ . vp; dF¥ —E‘/va,-vdz

=/93tvpiv dm+[1v82n+1pi8tuvdz
(€3))

+/v8tp,-vd:l:+/vp,-6tvdx
Q Q

= Byvp; + vOp; + V0, piBiu) A" + | pidu - d(Ou) dz,
r " Q

where we denote p; = p;(z, u(z, t), t) for simplicity. Using the integration by parts,
/pidu -d(Bu) dz = / pi@ - d(Qpu)v dz
Q Q U

= —/ dv - d—up,-atu dx — / (dpi + Ba,.,, pidu) - d—“atu vdz
Q v Q v
— / p; div (d_u) Oruvdx
Q v

B duy\ OGu du n
- /F | (dv- ) pe 2% astem - [ (s + Buopi) - 2ot
+ / pihdyu dA™,
Ty

where h = — div(%*). Note that

dul? | du 1 du
Oz i1 PIV — az,.ﬂpi—l C_ dp; - — = Oz, pi— — dp, - — = (Dp; - m),
v v v
where D = (d, 0,,,,) = (0s,, ..., 0s,,,). Hence we obtain

d vp; dFH#" = | Bwp; dIH" + / v0,p; ™ + / v(Dp; - n)@ﬁ A"
dt T ) I T, v

—/ (dv-d—u>piat—udﬁf"+/ 'upih% d#".
e v v e v

Using (MCF), we obtain 8,u = (—(H - n) + (F - n))v and

(v(Dps - ) + vpy(H - m)) 2

v

= (v(Dp; -n) +vpi(H -n)) (—(H -n) + F - n)
1,2 1,2

- 222 LB

3

(5 ) )

12
S'U|D pil _

(2

v(Dtp; - H) + %vpi(F -n)?,



where D+ p; = (Dp; - n)n. Therefore,
du\ Owu

d
ol ) n & ) n _ Rbaind Wit n
o /F, vp; A _/I‘, Oyvp; dH¥ 5 (d’u ” )p, . dr¥

(3

D_L 2
+/ v (&pi + DZplF _ (D*p; - H)) dst"
T Pi
1
+ —/ vpi(F -n)2 dt™.
4 Jr,
According to the divergence theorem on I',,

—/ v(Dtp;- H)ds#™ = | divr,(vDp;) d#™ —/ v(Dp; - v) d#" !
Iy

It T

= [ Dr,v- Dp;dF#" + / vtr((I — n ® n)D?p;) dH#™
e

T

—/ v(Dp; - v) dA"?
ar,

= —/ p,‘Art’Ud%n-f-/ vtr((I—n@n)szi)d.%”"
It

Te

+ (ps(Dr,v - v) —v(Dp; - v)) ™1
ar,

where v = (v,0), divr, is the surface divergence, Ar, is the surface Laplacian, and Dr, =
(I — v ® v)D is the surface gradient associated to I';. Remarking that

(du, dv) n,
V14 |dul?
we obtain Dr,v - v = dv - v from the Neumann boundary condition. Using (6) and (7), we
obtain

Dr,v = (dv,0) +

|D*py|?

(12) T +tr((I - n®@n)D?py) + dp1 < Ce
1
and
DL 2
(13) |—:‘|— +tr((I — n ® n)D?py) + Oipa

2 —yl+lz—wl (8 —yl+ |z —w])®
<C : C
< 7( s ¢ + (s =12 p2+Cg
for some constants Cg, C7, Cs > 0 depending only on n and R.

To compute the integrations of (13), we decompose the integrations as

T-yl+lz—w F ol —w
/med‘;fms/ . yL_Ll_pzd%n
e st Len{jg—y|+|z—w|<(s-t)4} s—t
T—yl+|z—w
+ [ e ul+lz—ul
T {[z—y|+lz—w|>(s—t) T} s—t
= Il + I27

p2 A"
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and
= )3 ~ )3
[t e JRCETTESCETY i
I (s—1) Ten{|3—y|+|z—w|<(s—t) T2 } (s—1)
~ a3
. R TESCET)
Ten{|Z—y|+|z—w|2(s-t)12} (s -1
= I3 + I4.
I, and I are estimated as
(14) I <(s— t)_%/ vpe dI", I3 < (s— t)"%/ v A"
FL r‘e

I, and I are estimated as

h<—2 ik o[ —y| + |z — w]) d™

28 —— == s—t -— —

(47I‘(S - t))1+—i T'eNspt p2
<G [ u(a-yl+le-upde,
T'yNspt p2

15
(15) (am)?

L < 2+Ee_4\/§T'/ v(|Z —y| + |z — w|)® d"
)2 T':Nspt p2

(4n(s —1t)
<G o(E-yl+le-ulPar
T¢Nspt p2
for some constant Cy > 0 depending only on n. Using (14), (15), |Z — y| + |z — w| < R when
(z,z) € spt pa, and D(py + p2) - V| 5, = 0, we obtain

d
—/ v(p1 + p2) dFH" < / (o1 + p2) (@v — Ar,v — (dv . d_u) %> dH#"
dt I: I . v v

+ i/ (p1 + p2)v(F - m)? do#™
Tt
+ (Cs + Ca)H™(Ty) +2(s — t)3 / vpy I
T
+2Cy / vd A" + / (p1 + p2)(Dr,v - v) do™!
T'¢Nspt p2 ol

where C1g = Co(R + R3). Using (8) and (9), we obtain (10) with C3 = Cs + Cs, Cy = 2, and
Cs = 2Chp. O

4. Gradient estimates

We deduce the integral estimates for the transport terms.
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Lemma 9. Let F € LELIT,) with 1 — 2 - % > 0, u be a classical solution of (MCF), and
v := /1 + |dul|?. Then there is a constant Cy; > 0 depending only on n, p, q, and Ty such that

§ 1 S
/ dt (P1+Pz)du-d(F~n)d%’"+Z/ dt/ v(p1 + p2)(F - n)? ds#™
0 T 0 T

1 [* s D 2
10 < i [t [+ miadoar+ [ a (o1 + p2) 25 e
1] T 0

2 T v
+Cullvlle(X + 1 Fllzzrary)?
for0 < s < Ty,

Proof. We focus on the integral estimates of (p; + p2)du - d(F - n). For simplicity, set p :=
p1 + p2. Then

/ (du- d(F -n))do™ = / A(du - d(F - n))vdz
s Q

=— /(ﬁAuv + (du - dp)v + p(du - dv))(F - n) dz
Q

= —/n (;‘)Au+ (du - dp) +ﬁ((i—u -dv))(F -n) dI".

Here

hence,
/ pdu - d(F - n)dH#™ = / poh(F - n) ds#™
It Ie
_(du n
_2/13'0(7 -dv)(F~n)djf
- / (du- d(3(z, u, 1)))(F - n) dA"
Ty
= Il + I2 -+ Ig.
We focus on an integral estimate of /3. Because
|du - d(p(z, u,1))| = |du - dp + |dul* b, | < v?| DA,
we obtain
(< [ |DAIF -] dse™
Te

Then using the Holder inequality,

1

8 s 2; ?
a7 [ il < ol ( [ a ( / IDﬁI”'d%”")p) 1P llzzceo,
0 0 T,

where %+ = land ; + & = 1. Using the convexity of 2, | — y| > |z — y|; hence,

eyt - wf?
8(s—1) ’

1
Dp| < Cip——F 7 ex
|Dpl < Sy p(
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where C}, > 0 is some constant depending only on n. Thus we have

DplF' dA#™ < Cly(s —t ‘%,_nTler%;
i 12
t

or
1
s , f,; v l1-n_2)
/ dt( \DpIP djf”) <ot L 0
0 T,
Therefore, using (17) we obtain
s 1_n_1
(18) | 1mlde < CuTd F T WP iz,

As the similar argument as above, we also obtain

/Os(|11| + |12[)dt+/0s dt/nv(pl + po)(F - m)? dt™

s s D 2
19 < l/ dt/ ﬁ|At|2vd,}f”+/ dt/ PLEpp
2o I 0 T: v

1-n2_2
+CuTy 7 IS F I Lo,

for a positive constant C;3 > 0 depending only on n, p, g. Combining (18) and (19), we obtain
(16). 0

Proof of Theorem 3. We only focus on the gradient estimates near the boundary 0. Fix
(yw) € Ngia x Rand 0 < T < Tp. For 0 < t < s < T, using (10) and (16) and
H (L) < [[v]loo €,

d (3
7 /n v(p1 + p2) dH

tl
<Cys—t)F / v(pr + p2) A" + Cra(1 + | Fllzzrsey)® / (1), dt,
0

I

where Cy4 > 0 is a positive constant depending only on n, p, ¢ and [Q2|. By the Gronwall
inequality for 0 < ¢t < s,

exp (—04 /ot(s - 'r)"% d‘r) \/I‘t v(p((z, 2),t) + p2((z, 2), 1)) dHE"
< /r o(z,0)(p1((z, 2), 0) + pa((, 2), 0)) dH™

+ O+ IFllizzgey [ exp (40u(s =)t = b)) I, )l dr
< 2ljv(-, 0)1% + CuuT (1L + || Fll 2 zr,)? Sup. l[o(-, )13

As t — s, we obtain

0(0:5) < 20, 0) I + CuuT (L + 1 Fllzzzzry)” sup (-, 1)



Now, select (y, s) such that v(y, s) = supge;er [|[U(+, t)[lo. Then,
0 sup [v( t)lleo < 200 0)1% + CraT (1 + | Fllzzzery)® sup (v, 8)lI5-
o<t<T o<t<T
Suppose for a contradiction that there exists C' > 2 such that
sup [[v(-,t)lleo > Cllo(-, )13
0<t<T
for all 0 < T < Tj. Then (20) implies that

T sup, llv(- t)Hoo
Cru——e (1 + | Flrrarn)? sup |[o(-, )2, > st " -2>C-2>0,
14||v(-,0)||§o( 1Fllzzewo)” sup (o) lo(-, 0)]1Z,

which is contradiction as taking 7" | 0. O
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