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Abstract

This paper is a review of the results contained in [3] where the well
posedness of the Keller‐Segel system defined on a weighted network is
studied. Completing the system with appropriate transmission conditions
at the vertices, we prove global in time existence and uniqueness of a
continuous solution of the problem. An important ingredient of the proof
is a formula for the Gaussian kernel on networks due to Roth [14] that we
briefly recall.

1 Introduction

Given a a network  $\Gamma$ with vertices \{v_{l}\}_{\mathrm{z}=1}^{n} and edges \{e_{ $\gamma$}\}_{J^{=1}}^{m} , we consider the
Keller‐Segel system

\left\{\begin{array}{ll}
\partial_{t}u_{J}=\partial_{xx}u_{J}-\partial_{x}(u_{J}\partial_{x}c_{J}) & \mathrm{o}\mathrm{n} (0, \infty)\times e_{j}, j=1, . . . , m,\\
 $\varepsilon$\partial_{t}c_{J}=\partial_{xx}c_{J}+u_{J}- $\alpha$ c_{J} & \mathrm{o}\mathrm{n} (0, \infty) \times e_{J}, j=1, . . . , m,\\
\sum_{g\in E(v_{\mathrm{t}})} $\kappa$(e_{\mathrm{J}})\frac{\partial u_{J}}{\partial n}(t, v_{l})=0, & t>0, i=1, . . . , n,\\
\sum_{g\in E(v_{1})} $\kappa$(e_{j})\frac{\partial c}{\partial n}L(t, v_{ $\iota$})=0, & t>0, i=1, . . . , n,\\
u_{J}(t, v_{\mathrm{z}})=u_{k}(t, v_{l}) \mathrm{i}\mathrm{f} j, k\in E(v_{ $\iota$}) , & t>0, i=1, . . . , n,\\
c_{J}(t, v_{ $\iota$})=c_{k}(t, v_{ $\iota$}) \mathrm{i}\mathrm{f} j, k\in E(v_{\mathrm{z}}) , & t>0, i=1, . . . , n.\\
u_{J}(0, x)=u_{J}^{0}(x) , c_{J}(0, x)=c_{J}^{0}(x) , & \mathrm{o}\mathrm{n} e_{J}, j=1, . . . , m,
\end{array}\right.
(1.1)
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( E(v_{\mathrm{z}}) denotes the index set of edges incident a vertex v_{ $\iota$} ). The previous system
has been recently considered in [2] to describe the evolution of the ameboid or‐
ganism Physarum polycephalum. Indeed there are experimental evidences that
during its evolution this slime mold arranges a network of thin tubes where
nutrients and chemical signals are transmitted to the different parts of the or‐
ganism according to a chemotactical process (see [12, 15 In [2], the system
(1.1) is analyzed numerically and it is shown that a discrete system obtained
via a finite differences approximation of (1.1) is well posed.

The goal of this paper is to prove the existence of a time global and spatially
continuous solution (u, c) to (1.1) in the case  $\epsilon$>0 (for the case  $\varepsilon$=0 , see [3]).
Observe that system (1.1) is formally equivalent to m Keller‐Segel systems, one
on each of the m edges, coupled via the transition conditions at the vertices of
the network. Coherently with the parabolic nature of the problem (see [11]),
we look for a continuous solution on the whole network and consequently we
prescribe the continuity of u and c at the vertices. Moreover, we require for
u the flux conservation at the vertices, while for c a Kirchhoff type condition
which guarantees the validity of the maximum principle for diffusion equations
on networks. For simplicity reason, the network has no boundary nodes, but
the results can be easily extended to the case of Dirichlet or mixed boundary
conditions.

We consider solution of (1.1) in the following integral sense

u(t, y)=P_{t}u^{0}(y)-\displaystyle \int_{0}^{t}P_{(t-s)}\partial_{x}(u(s)\partial_{x}c(s))(y)ds , (1.2)

c(t, y)=e^{-( $\alpha$/\in)t}P_{(t/ $\varepsilon$)}c^{0}(y)+\displaystyle \frac{1}{ $\epsilon$} \displaystyle \int_{0}^{t}e^{-( $\alpha$/\in)(t-s)}P_{((t-s)/ $\varepsilon$)}u(s)(y)ds , (1.3)

where (P_{t})_{t\geq 0} is the semigroup generated by the laplacian -$\Delta$_{ $\Gamma$} on  $\Gamma$ . The inter‐
est in considering the formulation (1.2)-(1.3) lies in the fact that (P_{t})_{t\geq 0} is given
explicitly through the fundamental solution H=H(t, x, y) of the heat equation
on networks (see [14| ). Then, with this integral formula at hand, the proofs for
local and global existence follow the corresponding arguments in the Euclidean
case, with however some specific modifications due to the network structure. In
particular, it is not possible to use known results about the existence of solu‐
tions of (1.1) on a bounded interval [0, L] with homogeneous Neumann boundary
conditions (see [8] for instance) since the transition conditions at the vertices
involve functions defined on different edges. Moreover, in order to get appropri‐
ate time bounds on the norm of u and c we need to prove optimal L^{p} bounds
for the heat kernel H on  $\Gamma$ , which improve earlier results in [14, 4, 5].

The Keller‐Segel has been introduced in the early seventies in [9] in order to
model the aggregation phenomenon undergone by the slime mold Dictyostelium
discoideum. In this biological context,  u represents the cell concentration of the
organism and satisfies the continuity equation in (1.1), while c is the chemo‐
attractant concentration and solves the diffusion equation in (1.1). In the Eu‐
clidean case, i.e. when (1.1) is considered on a domain of \mathbb{R}^{d} , there is a vast
literature: depending on the space dimension d,  $\epsilon$>0 (double parabolic case)
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or  $\xi$ j=0 (parabolic‐elliptic case) and the initial data u^{0}, c^{0} , different phenom‐
ena can occur, such as global existence, finite or infinite time blow‐up, peaks
formation, threshold phenomena, etc. We refer to [6, 7, 13] and the references
therein for more details on that problem.

The paper is organized as follows. In Section 2 we introduce some basic
definitions concerning the network  $\Gamma$ and the functions defined on it. In Section
3 we recall the fundamental solution of the heat equation on  $\Gamma$ and we deduce
the optimal  L^{p}‐estimates for the heat kernel. Section 4 is devoted to the study
of the Keller‐Segel system on  $\Gamma$.

2 Differential equations on networks

In this section we introduce notations and basic definitions for the study of
differential equations networks.
Let consider a finite, connected and non‐oriented (or undirected) network  $\Gamma$.

This means that the underlying graph \mathcal{G} = (V, E) is defined through a non
empty finite set of n vertices or nodes, V :=\{v_{1}, . . . , v_{n}\} , a non empty finite set
of m non‐oriented open edges (or links), E := \{e_{1}, . . . , e_{m}\} , and that between
every pair of nodes v_{i}, v_{j} \in V there exists a path with edges in E . Furthermore,
we assume that the graph has no self‐loops (no edge connecting a vertex to
itself). On the other hand, the graph can contain multiple links, i.e. the map
E \mapsto  V \times  V associating to each non‐oriented edge its endpoints can be not
injective.

Every edge may have a different length. However, we parametrize and nor‐
malize each e_{j} \in  E so that to identify \overline{e}_{j} with the interval [0 , 1 ] . Since the
network is undirected, every edge e_{j} \in E can be parametrized in two different
ways giving rise to two oriented edges e_{j}^{\pm} , i.e. there exist two homeomorphism

$\Pi$_{j}^{\pm} : [0, 1]\mapsto (\overline{e}_{j})^{\pm} , such that $\Pi$_{j}^{+}(0) = $\Pi$_{j}^{-}(1) and $\Pi$_{j}^{+}(1) = $\Pi$_{j}^{-}(0) . We shall
call an oriented edge an arc, and we shall denote by a_{j} any of the two edges

e_{\mathrm{J}}^{\pm}, Moreover, we shall denote by -a_{j} the arc opposite to a_{J}’ and the initial and
terminal endpoints of a_{j} by I(a_{j}) and T(a_{j}) , respectively. We also denote by
E(v_{i}) the set of the index j such that the edge e_{j} has an endpoint at the vertex
v_{\dot{x}}\in V and by d(v_{i}) the degree of v_{i} , i.e. the cardinality of E(v_{i}) .

Next, we define a path C on the network  $\Gamma$ as a finite sequence of (at least
two) arcs, (a_{j_{1}}, . . . , a_{j_{k}}) , k \geq  2 , such that T(a_{j_{1}}) =I(a_{j_{l+1}}) , l = 1 , . . . , k-1.

Thus a path is always oriented. We associate to each path C= (a_{j_{1}}, \ldots, a_{j_{k}})
its length |C| as the number of the arcs composing C . Then, given two points
x and y on  $\Gamma$ , we shall note  C_{k}(x, y) the set of the paths of length k such that
x belongs to the first arc of the path and y belongs to the last arc of the path,
\mathrm{i}.\mathrm{e}.

C_{k}(x, y) := { C=(a_{j_{1}}, \ldots, a_{j_{k}}) : x\in a_{j_{1}} and y\in a_{j_{k}} } , k=2 , 3, . . . .

A geodesic path joining x to y on  $\Gamma$ is any path of minimum length in \mathrm{U}_{k\geq 2}C_{k}(x, y) .
We shall denote \mathcal{L}(x, y) the common length of any geodesic path joining x to y
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and we also define

 $\rho$(x, y):=\mathcal{L}(x, y)-2.

For every x and y belonging to the same \overline{e}_{\mathrm{J}} , we define the distance d(x, y)
as

d(x, y):=|($\Pi$_{J}^{\pm})^{-1}(x)-($\Pi$_{J}^{\pm})^{-1}(y)|, x, y\in\overline{e}_{J}.
Then, for every x and y on  $\Gamma$ , we define the distance of  x to y along C =

(a_{1}, \ldots , a_{Jk})\in C_{k}(x, y) as

d_{C}(x, y) :=d(x, T(a_{\mathrm{J}1}))+d(y, I(a_{Jk}))+|C|-2.

Obviously, d_{C}(x, y) is symmetric with respect to x and y , i.e. d_{C}(x, y) =

d_{-C}(y, x) .

Finally, to each non‐oriented edge e_{g} \in  E we associate a positive weight
 $\kappa$(e_{J}) and we assume that

0<$\kappa$_{0}\leq $\kappa$(e_{j}) \leq$\kappa$_{1}, \forall j=1 , . . . ,
m.

The weights  $\kappa$(e_{J}) shall influence the transmission or the reflection of u through
the nodes. Indeed, for each couple of arcs (a_{ $\iota$}, a_{J}) , we introduce the trans‐
f\mathrm{e}r/reflection coefficient from a_{\mathrm{t}} to a_{J} as

\{
\displaystyle \frac{2 $\kappa$(e_{l})}{\sum_{l\in E(T(a_{l}))} $\kappa$(e_{l})} if T(a_{ $\iota$})=I(a_{J}) and a_{J}\neq-a_{i} (transmission)

$\epsilon$_{(a_{1}\rightarrow a_{\mathrm{J}})} :=

\displaystyle \frac{2 $\kappa$(e_{l})}{\sum_{l\in E(T(a_{l}))} $\kappa$(e_{l})}-1 if a_{g} =-a_{\mathrm{z}} (reflection)

0 otherwise

(2.1)
The weight  $\epsilon$(C) of a path C= (a_{j_{1}}, \ldots , a_{Jk}) is then the product of the trans‐
fer/reflection coefficients of all the pairs of consecutive arcs composing C , i.e.

 $\epsilon$(C) :=\displaystyle \prod_{l=1}^{k-1}$\epsilon$_{(a_{l}},\rightarrow a_{\mathrm{J}l+1}) . (2.2)

It is worth noticing that in case of reflection, the coefficient $\epsilon$_{(a_{ $\iota$}\rightarrow-a_{t})} may
be negative, and so also the weight  $\epsilon$(C) of all path C passing through a_{ $\iota$} and
-a_{ $\iota$} consecutively. Moreover, $\epsilon$_{(a.\rightarrow a_{g})} \neq$\epsilon$_{(a_{g}\rightarrow a_{ $\iota$})} and  $\epsilon$(C)\neq $\epsilon$(-C) , in general.

A function u defined on the network  $\Gamma$ is a collection of  m functions (u,)_{J^{=1}}^{m}
such that u_{\mathrm{J}} :=u_{1\overline{e}_{J}} . To every function u on  $\Gamma$ we associate the vector valued
function \~{u}=(\~{u} \mathrm{l}, . . . , \~{u}_{7n}) defined on [0 , 1 ] such that ũ, := u\circ$\Pi$_{j}^{\pm} Then, we
denote u_{J}'(x) and u_{J}''(x)_{)}x\in e_{j} , the derivatives \~{u}_{J}'( $\xi$) and ũS’ (  $\xi$ ) with respect to
 $\xi$ \in (0,1) ,  $\xi$ = ($\Pi$_{J}^{\pm})^{-1}(x) . We also define the exterior normal derivative of u_{J}

at the endpoints of the arc a_{J} as

\displaystyle \frac{\partial u_{J}}{\partial n}(I(a_{J}))=-\lim_{h\rightarrow 0^{+}}\frac{\tilde{u}_{J}(h)-\tilde{u}_{J}(0)}{h} and \displaystyle \frac{\partial u_{J}'}{\partial n}(T(a_{\mathrm{J}}))=\lim_{h\rightarrow 0^{-}}\frac{\tilde{u}_{j}(1+h)-\tilde{u}_{J}(1)}{h}
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Next, we define the space of continuous functions on  $\Gamma$

 C^{0}( $\Gamma$) := {u=(u_{j})_{j=1}^{rn} : u_{\mathrm{J}}(v_{l})=u_{k}(v_{l}) if j, k\in E(v_{l}) , i=1 , . .. , n},

the integral of a function u over  $\Gamma$

\displaystyle \int_{ $\Gamma$}u(x)dx :=\sum_{J^{=1}}^{m} $\kappa$(e_{J})\int_{0}^{1}\tilde{u}_{J}( $\xi$)d $\xi$,
the Lebesgue spaces

L^{p}( $\Gamma$) :=\displaystyle \{u=(u_{J})_{=1}^{m} : \Vert u\Vert_{L^{p}( $\Gamma$)}^{p} :=\sum_{j=1}^{m} $\kappa$(e_{\mathrm{J}})\Vert\tilde{u}_{J}\Vert_{L^{\mathrm{p}}(0,1)}^{p} <\infty\}, p\in[1, \infty) ,

L^{\infty}( $\Gamma$):=\displaystyle \{u=(u_{J})_{J^{=1}}^{m} : \Vert u\Vert_{L^{\infty}( $\Gamma$)} :=\max_{1\leq J\leq $\tau$ n} $\kappa$(e_{\mathcal{J}})\Vert\~{u}_{g}\Vert_{L^{\infty}(0,1)}\},
and the Sobolev spaces

W^{1,\infty}( $\Gamma$) :=\{u\in C^{0}( $\Gamma$) : u'\in L^{\infty}( $\Gamma$)\},

H^{r}( $\Gamma$) :=\displaystyle \{u\in C^{0}( $\Gamma$) : \Vert u\Vert_{H^{f}( $\Gamma$)}^{2} :=\sum_{j=1}^{m} $\kappa$(e_{\mathcal{J}})\Vert\~{u}_{g}\Vert_{H^{r}(0,1)}^{2} <\infty\}.
3 The heat equation on networks

Aim of this section is to review some of the main properties of the fundamental
solution of the heat equation on networks. The fundamental solution has been
computed by Roth [14] for a finite network and generalized to the case of an
infinite homogeneous tree and a countable graph by Cattaneo [4, 5]. However,
some properties, such as the optimal L^{1} and L^{\infty} time decay, are not contained in
the cited papers. We start introducing the operator (D(-\triangle_{ $\Gamma$}), -\triangle \mathrm{r}) , where the
domain D(-\triangle \mathrm{r}) is the set of the function u in H^{2}( $\Gamma$) satisfying the transmission
conditions of Kirchhoff type at every vertex v_{l} \in V,

D(-\triangle_{ $\Gamma$}) :=\displaystyle \{u\in H^{2}( $\Gamma$) : \sum_{\mathrm{J}\in E(v_{\mathrm{t}})} $\kappa$(e,)\frac{\partial u_{J}}{\partial n}(v_{l})=0, i=1, . . . , n\},
and, for all u\in D(-\triangle_{ $\Gamma$}) , the laplacian \triangle_{ $\Gamma$} on  $\Gamma$ is naturally defined as \triangle_{ $\Gamma$}u=
u Then, -\triangle \mathrm{r} is densely defined in the Hilbert space L^{2}( $\Gamma$) endowed with the
scalar product

(u, v)_{L^{2}( $\Gamma$)}=\displaystyle \sum_{J^{=1}}^{m} $\kappa$(e_{J})\int_{0}^{1}\tilde{u}_{J}'( $\xi$)\tilde{v}_{j}'( $\xi$)d $\xi$.
It is also symmetric and positive and consequently accretive. Thanks to the
transmission conditions, it can be also proved that -\triangle \mathrm{r} is m‐accretive and
therefore self‐adjoint (see for instance (10 | ). Hence, we can associate to -\triangle \mathrm{r} \mathrm{a}
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semigroup of contractions on L^{2}( $\Gamma$) , say (T(t))_{t\geq 0} , whose generator is \triangle_{ $\Gamma$} . To
conclude, given any f\in L^{2}( $\Gamma$) , the function u(t)=T(t)f is the unique solution
of the heat equation

\left\{\begin{array}{ll}
\partial_{t}u=\triangle_{ $\Gamma$}u & \mathrm{o}\mathrm{n} (0, \infty)\times $\Gamma$,\\
u(0)=f & \mathrm{o}\mathrm{n}  $\Gamma$,
\end{array}\right. (3.1)

in the space C([0, \infty), L^{2}( $\Gamma$))\cap C((0, \infty), D(-\triangle_{ $\Gamma$}))\cap C^{1}((0, \infty), L^{2}( $\Gamma$)) .
Problem (3.1) can be also written as a system of m heat equations coupled

through the continuity and transmission conditions at the vertex, i.e.

\left\{\begin{array}{ll}
\partial_{t}u_{J} =\partial_{xx}u_{j} & \mathrm{o}\mathrm{n} (0, \infty)\times e_{g}, j=1, . . . , m\\
u_{J}(0)=f, & \mathrm{o}\mathrm{n} e_{g}, j=1, .. . , m\\
u_{J}(t, v_{i})=u_{k}(t, v_{l}) \mathrm{i}\mathrm{f} j, k\in E(v_{l}) , i=1, . . . , n & t>0 (\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{y})\\
\sum  $\kappa$(e_{\mathrm{J}})\frac{\partial u}{\partial n}L(t, v_{ $\iota$})=0, i=1, . . . , n & t>0 (\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{m}\mathrm{i}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n})\\
g\in E(v_{ $\iota$}) & 
\end{array}\right.
(3.2)

These transmission conditions together provide, for each node v_{ $\iota$} , a system of
d(v_{\mathrm{z}}) equations for the d(v_{l}) components u_{J} of the solution u such that j \in

 E(v_{l}) . Moreover, they reduces at the vertex v_{\mathrm{z}} of degree 1, d(v_{\mathrm{z}}) = 1 , to the
homogeneous Neumann boundary condition.

Finally, it is worth noticing that the choice of the orientation of the edges e_{\mathrm{J}}

has no consequences, since the heat equation (3.1)-(3.2) and the problem (1.1)
are invariant under the transformation  $\xi$\rightarrow (1- $\xi$) that commute $\Pi$_{J}^{+} into $\Pi$_{J}^{-}
and vice versa, as well as all the definitions given above. On the other hand,
orientation appears to be necessary for the construction of the fundamental
solution of the heat equation on  $\Gamma$ below, that we shall use for the resolution
of (1.1). For the analysis of (3.1)-(3.2) through the abstract semigroup method
see [10] and the references therein.

Let G(t, z)=\displaystyle \frac{1}{\sqrt{4 $\pi$ t}}e^{-\frac{z^{2}}{4\mathrm{t}}} denote the heat kernel on (0, \infty) \times \mathbb{R} , and consider
the function defined on (0, \infty) \times $\Gamma$\times $\Gamma$ as

 H(t, x, y)=$\delta$_{ $\iota$,g}$\kappa$^{-1}(e_{x})G(t, d(x, y))+L(t, x, y) , (3.3)

for x \in\overline{e}_{l}, y\in\overline{e}_{J}, i, j \in \{1, . . . , m\} , where $\delta$_{l}J is the usual Kronecker’s delta
function and

L(t, x, y)=\displaystyle \sum_{k\geq $\rho$(x,y)}\sum_{C\in C_{k+2}(x,y)}$\kappa$^{-1}(e_{\mathrm{t}}) $\epsilon$(C)G(t, d_{C}(x, y)) . (3.4)

The first term in (3.3) is simply the restriction of the fundamental solution of
the heat equation on each edge of the network. The second term is determined
in such a way that the function H satisfies the continuity and transmission
conditions in (3.2) with respect to y , for any fixed x \in  $\Gamma$ . More specifically,
since the network is composed of  m edges, it holds, for all k\in \mathbb{N} , that

caxd (C_{k+2}(x, y))\leq 2 (\displaystyle \max_{ $\iota$=1,\ldots,n}d(v_{l}))^{k+1} \leq 2m^{k+1} (3.5)
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Hence, the sum with respect to the paths C \in  C_{k+2}(x, y) in (3.4) is finite.
We also have that the coefficients (2.1) are uniformly bounded : |$\epsilon$_{(a_{\mathrm{z}}\rightarrow a,)}| \leq

 2$\kappa$_{1}$\kappa$_{0}^{-1} :=\overline{ $\epsilon$}, i, j=1 , . . . , m . Therefore, by (3.5), we get

|L(t, x, y)| \displaystyle \leq$\kappa$_{0}^{-1}\sum_{k=0}^{+\infty}(\overline{ $\epsilon$}m)^{k+1}\frac{e^{-k^{2}/4t}}{\sqrt{ $\pi$ t}} <\infty.
The latter estimate implies that the series giving L(t, x, y) is normally con‐
vergent over [t_{1}, t_{2}] \times  $\Gamma$ \times  $\Gamma$ , for any fixed  t_{1}, t_{2} > 0 . Therefore, the asso‐
ciated vector valued function \tilde{H} = \tilde{H}(t,  $\xi$,  $\eta$) is continuous with respect to
(t,  $\xi$,  $\eta$) \in (0, \infty) \times [0 , 1 ] \times [0 , 1 ] , component by component. Similarly, for any
fixed  $\xi$ \in (0,1) , the derivatives \partial_{t}\overline{H}, \partial_{ $\eta$}\tilde{H} and \partial_{ $\eta \eta$}\tilde{H} exist and are continuous
with respect to (t,  $\xi$, ?7)\in(0, \infty) \times(0,1) \times (0,1) . They can be computed differ‐
entiating under the sum sign and \tilde{H} satisfies the heat equation \partial_{t}\tilde{H} =\partial_{ $\eta$}{}_{ $\eta$}\tilde{H},
component by component. These and other properties of the function H are
resumed below.

Theorem 3.1 ([14]). Let H be the function defined in (3.3). Then,

(i) H is continuous on (0, \infty) \times $\Gamma$\times $\Gamma$ ;

(ii) \partial_{t}H(t, x, y) exists for all (t, x, y)\in(0, \infty)\times $\Gamma$\times $\Gamma$ and it is continuous on
(0, \infty)\times $\Gamma$\times $\Gamma$ ;

(iii) the derivatives \partial_{ $\eta$}\tilde{H}(t,  $\xi$,  $\eta$) and \partial_{ $\eta \eta$}\tilde{H}(t,  $\xi$,  $\eta$) , exist for all (l,  $\xi$,  $\eta$) \in(0, \infty)\times
(0,1)\times (0,1) and are continuous on (0, \infty) \times (0,1) \times (0,1) ;

(iv) H(t, x, \cdot)\in D(-\triangle_{ $\Gamma$}) for all (t, x) \in(0, \infty) \times $\Gamma$ ;

(v) \partial_{t}H(t, x, y)=\partial_{yy}H(t, x, y) for all (t, x, y)\in(0, \infty)\times $\Gamma$\times $\Gamma$ ;

(vi) for all  f\in C^{0}( $\Gamma$) , \displaystyle \int_{ $\Gamma$}H(t, x, y)f(x)dx\rightarrow f(y) for t\rightarrow 0^{+} , uniformly with
respect to  y\in $\Gamma$ ;

(vii) for all  f\in C^{0}( $\Gamma$) , the function

 P_{t}f(y):=\displaystyle \int_{ $\Gamma$}H(t, x, y)f(x)dx, (t, y)\in(0, \infty)\times $\Gamma$
with  P_{0}f=f is the unique continuous solution of the initial valued problem
(3.1).

Moreover, H is symmetric with respect to x,  y\in  $\Gamma$, i.e. H(t, x, y) =H(t, y, x)
for all  t\in (0, \infty) and the properties above hold true with respect to x , for any
fixed y.

The function H is also the unique function satisfying properties (i)-(vii) in
Theorem 3.1. As observed in [14], (P_{t})_{t\geq 0} is a strongly continuous semigroup
on L^{2}( $\Gamma$) , whose infinitesimal generator is the closure of -\triangle \mathrm{r} in L^{2}( $\Gamma$) . It is
obviously the same semigroup determined in [10] by variational methods.
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It is worth noticing that H is not a priori positive since the weights  $\epsilon$(C) could
be negative. Furthermore, the spatial symmetry of H is due to the symmetry
of G and to fact that changing x with y in (3.3)-(3.4) , the path C changes into
-C and $\kappa$^{-1}(e_{ $\iota$}) $\epsilon$(C)=$\kappa$^{-1}(e_{J}) $\epsilon$(-C) , (see (2.1)-(2.2) ). The construction of H

has been done in [14] in the case  $\kappa$(e_{J}) =1, \forall j . The generalization to the case
of a weighted graph has been considered in [4, 5].

We close this section showing the optimal decay in time of H and its deriva‐
tives. For the proof we refer to [3, Appendix \mathrm{B} ]

Proposition 3.2. Let H be defined as en (3.3). Then,

\displaystyle \int_{ $\Gamma$}H(t, x, y)dy=1, \forall(t, x)\in (0, \infty) \times $\Gamma$ , (3.6)

and there exist constants  C_{ $\iota$}>0, i=1 , . . . , 4, such that for all t>0 it holds

\displaystyle \sup_{x\in $\Gamma$}\Vert H(t, x, \cdot)\Vert_{L^{1}( $\Gamma$)} \leq C_{1} , (3.7)

\Vert H(t)\Vert_{L^{\infty}( $\Gamma$ \mathrm{x} $\Gamma$)} \leq C_{2}(1+t^{-1/2}) , (3.8)

\displaystyle \sup_{x\in $\Gamma$}\Vert\partial_{y}H(t, x, \cdot)\Vert_{L^{1}( $\Gamma$)}+\sup_{y\in $\Gamma$}\Vert\partial_{y}H(t, \cdot, y)\Vert_{L^{1}( $\Gamma$)} \leq C_{3}(1+t^{-1/2}) , (3.9)

\Vert\partial_{y}H(t)\Vert_{L^{\infty}( $\Gamma$\times $\Gamma$)} \leq C_{4}(1+t^{-1}) . (3.10)

Moreover, since H is symmetric with respect to x and y , all the above properties
hold true changing x with y.

4 The Keller‐Segel system on the network

According to the notations and definitions of the previous section, system (1.1),
endowed with the natural continuity and transmission conditions, can be written
on the network  $\Gamma$ as following

\partial_{t}u_{j}=\partial_{yy}u_{J} -\partial_{y}(u_{J}\partial_{y}c_{J}) on (0, \infty)\times e_{g}, j=1 , .. . , m , (4.1)

 $\varepsilon$\partial_{t}c_{J}=\partial_{yy}c_{J}+u_{j}- $\alpha$ c_{J} on (0, \infty)\times e, , j=1 , .. . , m , (4.2)

u_{J}(0, y)=u^{0}(y) and c_{j}(0, y)=c_{J}^{0}(y) , y\in $\Gamma$, j=1 , . . . , m , (4.3)

\displaystyle \sum  $\kappa$(e_{\mathcal{J}})\displaystyle \frac{\partial u_{J}}{\partial n}(t, v_{l})=0, t>0, i=1 , . . . , n , (4.4)
g\in E(v_{ $\iota$})

\displaystyle \sum  $\kappa$(e_{J})\displaystyle \frac{\partial c_{J}}{\partial n}(t, v_{l})=0, t>0, i=1 , . . . , n , (4.5)
\mathrm{J}\in E(v_{\mathrm{z}})

u_{J}(t, v_{l})=u_{k}(t, v_{l}) if j, k\in E(v_{ $\iota$}) , t>0, i=1 , . . . , n , (4.6)

c_{J}(t, v_{l})=c_{k}(t, v_{ $\iota$}) if j, k\in E(v_{\mathrm{z}}) , t>0, i=1 , . . . , n . (4.7)

As for problem (3.2), there is no coupling among the m systems (4.1)-(4.2)-
(4.3) on each edge e_{J} . The systems are coupled only through the transmission
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conditions (4.4) and (4.5), which express the conservation of the flux at the
vertices for u and c (Kirchhoff condition), and through the continuity conditions
(4.6) and (4.7). Again, conditions (4.4)-(4.7) give exactly 2d(v_{l}) equations for
the 2d(v_{\mathrm{t}}) functions u_{J}, c_{J} such that j \in  E(v_{\mathrm{z}}) . Furthermore, conditions (4.4)
and (4.5), together with the continuity of u , guarantee the conservation of the
initial mass

\displaystyle \int_{ $\Gamma$}u(t, y)dy=\int_{ $\Gamma$}u^{0}(y)dy=:M, t>0 . (4.8)

Indeed

\displaystyle \frac{d}{dt}\int_{ $\Gamma$}u(t, y)dy=\sum_{g=1}^{m} $\kappa$(e_{\mathrm{J}})\frac{d}{dt}\int_{0}^{1}\overline{u}_{j}(t,  $\eta$)d $\eta$
=\displaystyle \sum_{J^{=1}}^{rn} $\kappa$(e_{J})\int_{0}^{1}(\partial_{ $\eta \eta$}\overline{u}_{J}(t,  $\eta$)-\partial_{ $\eta$}(\tilde{u}_{J}(t,  $\eta$)\partial_{ $\eta$}\tilde{c}_{J}(t,  $\eta$)))d $\eta$
=\displaystyle \sum_{J^{=1}}^{m}f_{\overline{1!}}(e_{J})[\partial_{ $\eta$}\tilde{u}_{j}(t,  $\eta$)-\tilde{u}_{J}(t,  $\eta$)\partial_{ $\eta$}\tilde{c}_{J}(t,  $\eta$)]_{0}^{1}
=\displaystyle \sum_{l=1}^{n}\sum_{g\in E(v_{ $\iota$})} $\kappa$(e_{j})[\frac{\partial u_{J}}{\partial n}-u_{J}\frac{\partial c_{J}}{\partial n}](t, v_{l})=0.

Remark 4.1. A different but again natural condition that one can impose at
the vertices instead of (4.4) is the conservation of the total flux

\displaystyle \sum_{g\in E(v,)} $\kappa$(e_{J})[\frac{\partial u_{J}}{\partial n}-u_{j}\frac{\partial c_{J}}{\partial n}](t, v_{l})=0, t>0, i=1 , . . . , n.

However, the latter together with the continuity of u at the vertices and the
Kirchhoff condition (4.5) imply (4.4).

Remarts 4.2 (Energy). As for the euclidian case, solutions of the Keller‐Segel
system (1.1) on  $\Gamma$ that satisfy the continuity and transmission conditions (4.4)-
(4.7), satisfy also the energy dissipation equation

\displaystyle \frac{d}{dt}\mathcal{E}(u(t), c(t))=-\int_{ $\Gamma$}u(t, x)|\partial_{x}(\log u-c)|^{2}(t, x)dx- $\varepsilon$\int_{ $\Gamma$}(\partial_{t}c(t, x))^{2}dx,
where \mathcal{E} is the usual free energy associated to the Keller‐Segel system, i.e.

\displaystyle \mathcal{E}(u, v) :=\int_{ $\Gamma$}u\log udx-\int_{ $\Gamma$}ucdx+\frac{1}{2}\int_{ $\Gamma$}|\partial_{X}c|^{2}dx+\frac{ $\alpha$}{2}\int_{ $\Gamma$}c^{2}dx.
In this section we consider solutions of the Keller‐Segel system in the integral

form (1.2)-(1.3) . Then, for f integrable over  $\Gamma$ , we introduce the notation

(H(t)*f)(y):=\displaystyle \int_{ $\Gamma$}H(t, x, y)f(x)dx, y\in $\Gamma$.
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Thanks to the continuity of the heat kernel H on  $\Gamma$ , if  u is continuous on  $\Gamma$ and  c

satisfies the Kirchhoff condition (4.5), equations (1.2)-(1.3) read equivalently as

u(t, y)=(H(t)*u^{0})(y)+\displaystyle \int_{0}^{t}(\partial_{x}H(t-s)*(u(s)\partial_{x}c(s)))(y)ds , (4.9)

c(t, y)=e^{-\frac{ $\alpha$}{ $\varepsilon$}t}(H(t$\varepsilon$^{-1})*c^{0})(y)+\displaystyle \frac{1}{ $\epsilon$}\int_{0}^{t}e^{-\frac{ $\alpha$}{ $\epsilon$}(t-s)}(H((t-s)$\varepsilon$^{-1})*u(\mathcal{S}))(y)ds.
(4.10)

It is worth noticing that thanks to property (3.6), any integral solutions (4.9)-
(4.10) satisfies the mass conservation (4.8).

Theorem 4.3 (Local existence). Let  $\varepsilon$ > 0,  $\alpha$ \geq  0 and assume u^{0} \in  L^{\infty}( $\Gamma$) ,
c^{0} \in  W^{1,\infty}( $\Gamma$) . Then, there exist T=T(\Vert u^{0}\Vert_{L^{\infty}( $\Gamma$)}, \Vert\partial_{x}c^{0}\Vert_{L^{\infty}( $\Gamma$)},  $\epsilon$) >0 and a
unique integral solution (4.9)-(4.10) of the Keller‐Segel system with

u\in L^{\infty}((0, T);C^{0}( $\Gamma$)) , c\in L^{\infty}((0, T);W^{1,\infty}( $\Gamma$)) ,

satisfying the transmission conditions (4.4) and (4.5) and the mass conservation
(4.8).

Proof. For u_{0} given, A :=\Vert u^{0}\Vert_{L^{\infty}( $\Gamma$)}, K :=\displaystyle \sup_{t>0,y\in $\Gamma$}\Vert H(t, \cdot, y)\Vert_{L^{1}( $\Gamma$))} >1 and
T>0 to be chosen later, let

B:= { u\in L^{\infty}((0, T)\times $\Gamma$) : u(0, y)=u^{0}(y) and \displaystyle \sup_{0\leq t<T}\Vert u(t)\Vert_{L^{\infty}( $\Gamma$)} \leq KA+1 }

and d(u_{1}, u_{2}) :=\displaystyle \sup_{0\leq t<T}\Vert u_{1}(t)-u_{2}(t)\Vert_{L}\infty( $\Gamma$) .

Next, for u\in B fixed, c_{0} given and c defined through u by (4.10), we define
on B the map

 $\Psi$(u)(t, y) :=(H(t)*u^{0})(y)+\displaystyle \int_{0}^{t}(\partial_{x}H(t-s)*(u(s)\partial_{x}c(s)))(y)ds, (t, y) \in(0, T)\times $\Gamma$.

(4.11)
Since (B, d) is a non empty complete metric space, we shall prove the claimed
local existence using the Banach fixed point theorem.

First step:  $\Psi$(B) \subset B . From (4.11) we have for  y\in $\Gamma$

| $\Psi$(u)(t, y)| \displaystyle \leq KA+$\kappa$_{0}^{-2}\sup_{0\leq s<T}\Vert u(s)\Vert_{L^{\infty}( $\Gamma$)}\int_{0}^{t}\Vert\partial_{x}H(t-s, \cdot, y)\Vert_{L^{1}( $\Gamma$)}\Vert\partial_{x}c(s)\Vert_{L^{\infty}( $\Gamma$)}ds.
(4.12)

Next, owing to the property \partial_{y}H(t, x, y) = -\partial_{x}H(t, x, y) , by (4.10) we get for
any  y\in $\Gamma$

\displaystyle \partial_{y}c(t, y)=e^{-( $\alpha$/\in)t}(\partial_{y}H(t$\varepsilon$^{-1})*c^{0})(y)+\frac{1}{ $\epsilon$}\int_{0}^{t}e^{-( $\alpha$/\in)(t-s)}(\partial_{y}H((t-s)$\varepsilon$^{-1})*u(s))(y)ds
=-e^{-( $\alpha$/ $\varepsilon$)t}(\displaystyle \partial_{x}H(t$\varepsilon$^{-1})*c^{0})(y)+\frac{1}{ $\varepsilon$}\int_{0}^{t}e^{-( $\alpha$/ $\varepsilon$)(t-s)}(\partial_{y}H((t-s)$\epsilon$^{-1})*u(s))(y)ds.

(4.13)
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Furthermore, we observe that embedding the non‐oriented network  $\Gamma$ into the
oriented one (V, \{e_{\mathrm{j}}^{\pm};j = 1, \ldots, m denoted by  2 $\Gamma$ , by construction the fun‐
damental solution  H of the heat equation (3.2) on  $\Gamma$ is also solution on  2 $\Gamma$ and
\displaystyle \int_{2 $\Gamma$}H(t, x, y)f(x)dx=2\int_{ $\Gamma$}H(t, x, y)f(x)dx , for any f integrable on  $\Gamma$ (and so
on  2 $\Gamma$) . Therefore, for any y\in $\Gamma$,

\displaystyle \int_{ $\Gamma$}\partial_{x}H(t$\varepsilon$^{-1}, x, y)c^{0}(x)dx=\frac{1}{2}\int_{2 $\Gamma$}\partial_{x}H(t$\epsilon$^{-1}, x, y)c^{0}(x)dx
=\displaystyle \frac{1}{2}\sum_{J^{=1}}^{m} $\kappa$(e,)\int_{0}^{1}\partial_{ $\xi$}\tilde{H}, (t$\varepsilon$^{-1},  $\xi$,  $\eta$)\tilde{c}_{J}^{0}( $\xi$)d $\xi$

+\displaystyle \frac{1}{2}\sum_{j=1}^{7n} $\kappa$(e_{g})\int_{0}^{1}\partial_{ $\xi$}\tilde{H}_{\mathrm{J}}(t$\varepsilon$^{-1},1- $\xi$,  $\eta$)\tilde{c}_{j}^{0}(1- $\xi$)d $\xi$
=\displaystyle \frac{1}{2}\sum_{J^{=1}}^{m} $\kappa$(e_{j})[\tilde{H}_{\mathcal{J}}(t$\varepsilon$^{-1},  $\xi$,  $\eta$)\tilde{c}_{J}^{0}( $\xi$)]_{0}^{1}-\frac{1}{2}\sum_{j=1}^{m} $\kappa$(e_{J})\int_{0}^{1}\tilde{H}_{j}(t$\varepsilon$^{-1},  $\xi$,  $\eta$)\partial_{ $\xi$}\tilde{c}_{J}^{0}( $\xi$)d $\xi$

+\displaystyle \frac{1}{2}\sum_{j=1}^{m} $\kappa$(e_{J})[\tilde{H}_{\mathcal{J}}(t$\varepsilon$^{-1},1- $\xi$,  $\eta$)\tilde{c}_{J}^{0}(1- $\xi$)]_{0}^{1}
+\displaystyle \frac{1}{2}\sum_{j=1}^{rn} $\kappa$(e_{J})\int_{0}^{1}\tilde{H}_{\mathrm{J}}(t$\varepsilon$^{-1},1- $\xi$,  $\eta$)\partial_{ $\xi$}\tilde{c}_{J}^{0}(1- $\xi$)d $\xi$=-(H(t$\epsilon$^{-1})*\partial_{x}c^{0})(y) ,

and (4.13) becomes

\displaystyle \partial_{y}c(t, y)=-e^{-( $\alpha$/\in)t}(H(t$\epsilon$^{-1})*\partial_{x}c^{0})(y)+\frac{1}{ $\varepsilon$}\int_{0}^{t}e^{-( $\alpha$/ $\epsilon$)(t-s)}(\partial_{y}H((t-s)$\varepsilon$^{-1})*u(s))(y)ds.
Using (3.7) we arrive at the following estimate for the spatial derivative of c

|\partial_{y}c(t, y)|\leq \displaystyle \frac{K}{$\kappa$_{0}}\Vert\partial_{x}c^{0}\Vert_{L^{\infty}( $\Gamma$)}+( $\varepsilon \kappa$_{0})^{-1}\sup_{0\leq s<T}\Vert u(s)\Vert_{L^{\infty}( $\Gamma$)}\int_{0}^{t}\Vert\partial_{y}H(\frac{t-s}{ $\varepsilon$}, \cdot, y)\Vert_{L^{1}( $\Gamma$)}ds,
and by (3.9)

\Vert\partial_{y}c(t)\Vert_{L\infty( $\Gamma$)} \leq$\kappa$_{0}^{-1}K\Vert\partial_{x}c^{0}\Vert_{L^{\infty}( $\Gamma$)}+C(KA+1)($\varepsilon$^{-1}t+$\varepsilon$^{-\frac{1}{2}}t^{\frac{1}{2}}) , (4.14)

where C > 0 does not depend on  $\epsilon$ . Finally, plugging (4.14) into (4.12) and
using the decaying properties of  H again, we get for t\in(0, T)

\Vert $\Psi$(u)(t)\Vert_{L\infty( $\Gamma$)} \displaystyle \leq KA+C(KA+1)\int_{0}^{t}(1+(t-s)^{-1/2})\Vert\partial_{x}c(s)\Vert_{L^{\infty}( $\Gamma$)}d_{\mathcal{S}}
\leq KA+\overline{C}(t+t^{1/2})(1+$\epsilon$^{-1}t+$\epsilon$^{-\frac{1}{2}}t^{\frac{1}{2}}) ,

where \tilde{C}=\tilde{C}(K, A,  $\Gamma$, ||\partial_{x}c^{0}\Vert_{L^{\infty}( $\Gamma$)}) . Therefore, for T=T(\Vert u^{0}\Vert_{L^{\infty}( $\Gamma$)}, \Vert\partial_{x}c^{0}||_{L^{\infty}( $\Gamma$)},  $\varepsilon$)
positive and sufficiently small, it holds

\displaystyle \sup_{0\leq t<T}\Vert $\Psi$(u)(t)\Vert_{L( $\Gamma$)}\infty \leq KA+1.
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To obtain the claim, we also observe that  $\Psi$(u)(0, y)=u^{0}(y) since by definition
H(0)*u^{0}=u^{0}.

Second step:  $\Psi$ is a contraction map on  B . Let u_{1} , u_{2} \in B . By (4.11) and
arguing as in the previous step, we get for all (t, y) \in (0, T) \times $\Gamma$

| $\Psi$(u_{1})- $\Psi$(u_{2})|(t, y)\displaystyle \leq\int_{0}^{t}|\partial_{x}H(t-s)*[(u_{1}-u_{2})\partial_{x}c_{1}+u_{2}(\partial_{x}c_{1}-\partial_{x}c_{2})](\mathcal{S})|(y)d_{\mathcal{S}}
\displaystyle \leq d(u_{1}, u_{2})$\kappa$_{0}^{-2}\int_{0}^{t}\Vert\partial_{x}H(t-s, \cdot,y)\Vert_{L^{1}( $\Gamma$)}\Vert\partial_{x}c_{1}(s)\Vert_{L^{\infty}( $\Gamma$)}ds

+(KA+1)$\kappa$_{0}^{-2}\displaystyle \int_{0}^{t}\Vert\partial_{x}H(t-s, \cdot, y)\Vert_{L^{1}( $\Gamma$)}\Vert(\partial_{x}c_{1}-\partial_{x}c_{2})(s)\Vert_{L^{\infty}( $\Gamma$)}ds,
(4.15)

and for all t\in(0, T)

\Vert(\partial_{y}c_{1}-\partial_{y}c_{2})(t)\Vert_{L^{\infty}( $\Gamma$)} \leq Cd(u_{1}, u_{2})($\epsilon$^{-1}t+$\varepsilon$^{-\frac{1}{2}}t^{\frac{1}{2}}) . (4.16)

Plugging (4.14) and (4.16) into (4.15) and using (3.9), we arrive at

\Vert ( $\Psi$(u_{1})- $\Psi$(u2))(t)\Vert_{L^{\infty}( $\Gamma$)} \leq\tilde{C}d(u_{1}, u_{2})(t+t^{1/2})(1+$\varepsilon$^{-1}t+$\varepsilon$^{-\frac{1}{2}}t^{\frac{1}{2}}) .

Hence, for T sufficiently small again,  $\Psi$ is a contraction on  B.

Third step : conclusion. By the previous steps, it follows that there exists
a unique fixed point u \in  B of  $\Psi$ and that (u, c) satisfies the integral system
(4.9)-(4.10) . Furthermore, c is continuous on  $\Gamma$ and satisfies the transmission
condition (4.5) because  H is continuous on  $\Gamma$ and satisfies the same condition.
Again because of the regularity of  H, u is differentiable on  $\Gamma$ and  c is twice
differentiable. Consequently, performing an integration by part on each edge in
the second term of the r.h. \mathrm{s} . of (4.9), u can be also written as

u(t, y)=(H(t)*u^{0})(y)+\displaystyle \int_{0}^{t}\sum_{i=\mathrm{I}}^{n}H(t-s, v_{ $\iota$}, y)\sum_{j\in E(v_{t})} $\kappa$(e_{g})u_{J}(s, v_{ $\iota$})\frac{\partial c_{j}}{\partial n}(\mathcal{S}, v_{\mathrm{t}})ds
-\displaystyle \int_{0}^{t}(H(t-s)*\partial_{x}(u(s)\partial_{x}c(s)))(y)ds,

implying that u(t) \in C^{0}( $\Gamma$) holds true for all  t\in (0, T) . Finally, the continuity
of u together with (4.5) gives that

u(t, y)=(H(t)*u^{0})(y)-\displaystyle \int_{0}^{t}(H(t-s)*\partial_{x}(u(s)\partial_{x}c(s)))(y)ds.
So that u satisfies (4.4) and the proof is complete. \square 

We conclude this section showing the existence of a classical solution of
system (4.1)-(4.7) in (0, T) for any T > 0 , i.e. we do not exclude that the
solution blow‐up for  T\rightarrow+\infty . More specifically, we shall prove the following.
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Theorem 4.4 (Global existence and positivity). Under the hypothesis of Theo‐
rem  4\cdot 3_{f} for all T>0 there exists a solution (u, c) of the Keller‐Segel system on
the time interval [0, T] . Moreover, if the initial data u^{0} and c^{0} are nonnegative,
the solution (u, c) is nonnegative.

Proof. The global existence result is obtained by extending the local in time
solution obtained in Theorem 4.3. Indeed, let T_{\max} be the maximal time of
existence of the obtained local solution. Then, the limits as t \rightarrow  T_{\max}^{-} of u

and c exist and depend only on \Vert u^{0}\Vert_{L^{\infty}( $\Gamma$)}, ||\partial_{x}c^{0}\Vert_{L^{\infty}( $\Gamma$)} and  $\varepsilon$ . Therefore, it
is possible to extend (u(t), c(t)) behind T_{7nax} , iteratively as many time as it is
necessary to reach T>0.

In order to obtain the positivity of the solution (u, c) when the initial data are
positive, we analyze the time evolution of \displaystyle \int_{ $\Gamma$} $\phi$(u(t, y))dy , where  $\phi$ is a smooth
function on \mathbb{R} such that  $\phi$(z) > 0 if z < 0,  $\phi$(z) =0 if z \geq  0 and there exists

C>0 such that 0\leq$\phi$''(z)z^{2} \leq C $\phi$(z) , for all z\in \mathbb{R} . Owing to (4.1) and to the
Kirchhoff conditions (4.4) and (4.5), we have for any  $\delta$>0

\displaystyle \frac{d}{dt}\int_{ $\Gamma$} $\phi$(u(t, y))dy=\sum_{J^{=1}}^{m}$\kappa$^{-}(e_{J})\int_{0}^{1}$\phi$'(\tilde{u}_{J}(t,  $\eta$))(\partial_{ $\eta \eta$}\tilde{u}_{j}-\partial_{ $\eta$}(\tilde{u}_{J}\partial_{ $\eta$}\tilde{c}_{J}))(t,  $\eta$)d $\eta$
\displaystyle \leq-\sum_{J^{=1}}^{m} $\kappa$(e_{J})\int_{0}^{1}$\phi$''(\overline{u}_{J})(\partial_{ $\eta$}\overline{u}_{J})^{2}(t,  $\eta$)d $\eta$

+\displaystyle \sum_{J^{=1}}^{m}L(0,1)\int_{0}^{1}$\phi$''(\tilde{u}_{J})|\~{u}_{\mathrm{J}}||\partial_{ $\eta$}\tilde{u}_{J}|(t,  $\eta$)d $\eta$
\leq (\displaystyle \frac{ $\delta$}{2}-1)\int_{ $\Gamma$}$\phi$''(u)(\partial_{y}u)^{2}(t, y)dy+\frac{$\kappa$_{0}^{-1}}{2 $\delta$}\Vert\partial_{y}c(t)\Vert_{L( $\Gamma$)}^{2_{\infty}}\int_{ $\Gamma$}$\phi$''(u)u^{2}(t, y)dy.

Choosing  $\delta$<2 , by the properties of  $\phi$ we get the differential inequality

\displaystyle \frac{d}{dt}\int_{ $\Gamma$} $\phi$(u(t, y))dy\leq\frac{C$\kappa$_{0}^{-1}}{2 $\delta$}\Vert\partial_{y}c(t)\Vert_{L( $\Gamma$)}^{2}\infty\int_{ $\Gamma$} $\phi$(u(t, y))dy.
Applying the Gronwall lemma, we obtain that  $\phi$(u(t, y))=0 , so that u(t, y) ) \geq
 0.

The positivity of c does not follow from (4.10), since H is not a priori positive,
as observed before. Instead, it follows from the maximum principle for parabolic
equations on network [1], taking also into account that u is positive. \square 
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