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1. Introduction

We consider the two-species chemotaxis system

w = Au — V- (ux1(w)Vw) + pu(l — u), z€N, t>0,

v = Av — V- (vx2(w)Vw) + pov(l —v), z€EN, t>0,
(1.1) wy = dAw + h{u, v, w), e t>0,

Vu-v=Vv-v=Vw- -v=0, r€ed, t>0,

u(z, 0) = up(z), v(z,0) = vo(z), w(z,0) =we(z), z€Q,

where () is a bounded domain in R™ (n € N) with smooth boundary 0Q and v is the out-
ward normal vector to Q. The initial data ug, v and wy are assumed to be nonnegative
functions. The unknown functions u(z,t) and v(z,t) represent the population densities
of two species and w(z,t) shows the concentration of the substance at place z and time ¢.

In a mathematical view, global existence and behavior of solutions are fundamental
theme. However, the problem (1.1) has some difficult points caused by the logistic term
and by generalization of x; and h. For example, we cannot use the Lyapunov function.
To overcome the difficulty, Negreanu-Tello [9, 10] built a technical way to prove global
existence and asymptotic behavior of solutions to (1.1). In [10] they dealt with (1.1)
when d = 0, u; > 0 under the condition

3w > wo; h(T,7,W) <0,

where %, ¥ satisfy some representations determined by w. In [9] they studied (1.1) when
0 < d < 1, u; = 0 under similar conditions as in [10] and

1
(1.2) X; + mxf <0 (i=12).
They supposed in [9, 10] that the functions h, x; for i = 1, 2 generalize of the prototypical
case x;(w) = ﬁ‘u')T, (x0: > 0,0; > 1), h(u,v,w) = u+v —w. As to the special case that
d =1 and h(u,v,w) = u + v — w, Zhang-Li [13] proved global existence of solutions to
(1.1) under the assumption that y; is small and x;(w) < (ﬁuﬁ for o; > 1, x0; > 0 being
small enough.



The purpose of the present paper is to obtain global existence and asymptotic stability
of solutions to (1.1) without the restriction of 0 < d < 1. We shall suppose throughout
this paper that h, x; (i = 1, 2) satisfy the following conditions:

(1.3) xi € C*0([0,00))NL*(0,00) (0< 30 <1), xi>0 (i=1,2),
(1.4) h € C*([0,00) x [0,00) x [0,00)), h(0,0,0) >0,
oh Oh oh
. s — > — > —_— < —
(1.5) 3y > 0; au(u,v,w) >0, 8v(u,v,w) >0, aw(u,v,w) < -7,
(1.6) 36 >0, IM > 0; |h(u,v,w) + dw| < M(u+v+1),
(1.7) 3k; > 0; —xi(w)h(0,0,w) < k; (i=1,2).

We also assume that
(18)  3p>m; 2xw) + ((d- Vp+ Vd— D +4dp) [u(w)? <O (1 =1,2).

The above conditions cover the prototypical example x;(w) = (11% (x0;: > 0, 0; > 1),
h(u,v,w) = v+ v — w. We assume that the initial data ug, vo, wo satisfy

(1.9) 0<wu€C(0)\ {0}, 0< v eC@)\ {0}, 0<weW"(Q) (3g>n).

Now the main results read as follows. The first theorem is concerned with global
existence and boundedness in (1.1).

Theorem 1.1. Let d >0, p; > 0 (i = 1,2). Assume that h, x; satisfy (1.3)-(1.8). Then
for any ug, vo, wo satisfying (1.9) for some q > n, there exists an ezactly one pair (u,v,w)
of nonnegative functions

u, v, w € C(Q x [0,00)) NC?(Q x (0,00)) when d >0,

u, v, w € C([0,00); WH(Q)) N C*((0,00); WH(Q)) when d =0,

which satisfy (1.1). Moreover, the solution (u,v,w) is uniformly bounded, i.e., there exists
a constant C > 0 such that

lw(t)llzoo @) + V()] Loy + [lw(E)llzeo@) < C1 for all £ > 0.

Remark 1.1. When 0 < d < 1, we note that the condition (1.8) in Theorem 1.1 relaxes
(1.2) assumed in [9], because the following relation holds:

(d=1Dp++/(d—1)?p? +4dp 1
< .
1-d
Now the second one, which gives asymptotic stability in (1.1), read as follows. We first

introduce some notation. Since Theorem 1.1 guarantees that u, v and w exist globally
and are bounded and nonnegative, it is possible to define nonnegative numbers a, 5 by

(1.10) o= (ugl,go)(el ho(u, v, w), B = (ufff,fifez ho(u, v, w),

where I = (0, C;)® and C, is defined in Theorem 1.1.

95



Theorem 1.2. Letd > 0, u; > 0 (i = 1,2). Under the conditions (1.3)~(1.9) and

16p1dy
a? + 2+ 2ap’

16p2dy

2
x2(0)" < a?+ 2+ 2af’

(1.11) a>0, 8>0, x1(0)% <
the unique global solution (u,v,w) of (1.1) satisfies that there exist C > 0 and A > 0 such
that

lu(®) = Lo + l[v(t) = Uiz + w(t) — Bl < Ce™ (¢ >0),
where W > 0 such that h(1,1,w) = 0.

Remark 1.2. From (1.4)—(1.6) there exists @ such that h(1,1,w) = 0. Indeed, if we
choose W > 3M /6, then (1.6) yields that h(1,1,w) < 3M — 6w < 0. On the other hand,
(1.4) and (1.5) imply that h(1,1,0) > h(0,0,0) > 0. Hence, by the intermediate value
theorem there exists w > 0 such that

h(1,1,) = 0.

The strategy for the proof of Theorem 1.1 is to construct estimates for fn uP and fﬂ vP.
One of the keys for this strategy is to derive inequality

w5 [t <o [ el o [ wiwr) L

for some positive constants a, b, where

fi(w) = exp {/Ow x1(s) ds}.

Negreanu-Tello [9, 10] proved a similar differential inequality for “all” p > 1 and 7 :=
p(—’:iz;zpl)' In this work we derive (1.12) for “some” p > n and some r = r(d,p) > 0 by
modifying the proof in [9, 10]. This enables us to improve the previous work and to
remove the restriction of 0 < d < 1. On the other hand, the strategy for the proof of
Theorem 1.2 is to modify an argument in [8]. The key for this strategy is to construct

the following energy estimate:

Ty -

with some function E(t) > 0 and some € > 0. This strategy enables us to improve the
conditions assumed in [7].

This paper is organized as follows. In Section 2 we collect basic facts which will be used
later. In Section 3 we prove global existence and boundedness (Theorem 1.1). Section 4
is devoted to the proof of asymptotic stability (Theorem 1.2).
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2. Preliminaries

In this paper we need the following well-known facts concerning the Laplacian in
supplemented with homogeneous Neumann boundary conditions (for details, see [4, 5]).

Lemma 2.1. Suppose k > 0. Let A denote the realization of the Laplacian in L*(2) with
domain {z € W25(Q)|Vz-v =0 on 00} for s € (1,00). Then the operator —A + k is
sectorial and possesses closed fractional powers (—A + k)7, n € (0,1), with dense domain
D((—A+k)"). Moreover, the following holds.

(i) If m € {0,1}, p € [1,00] and q € (1,00), then there ezists a constant c; > 0 such
that for all z € D((—A + k)7),

2llwma) < cll(—A + k)2l o),
provided that m < 2n and m —n/p < 29 —n/q.

(ii) Suppose p € [1,00). Then the associated heat semigroup (e'®);>o maps LP(SY) into
D({(—=A + k)7") in any of the space L4(QY), ¢ > p, and there exist c; > 0 and A > 0
such that for all z € LP(Q),

(=4 + k)"e @9 2 Loy < ot EGDe ™| 2| oy (2> 0).

(iii) Letp € (1,00). Then there exists A > 0 such that for every € > 0 there exists c3 > 0
such that for all R™-valued w € C§°(£2),

(2.1) [[(—A+ k)"et4 v - wHLP(Q) < egt™ ie Wl oy (8> 0).

Accordingly, the operator (—A +k)"e*AV- admits a unique extension to all of LP()
which, again denoted by (—A+k)"etAV -, satisfies (2.1) for all R*-valued w € LP(S).

Lemma 2.2. Let d > 0, u; > 0 (i = 1,2). Assume that h, x; satisfy (1.3), (1.4), (1.6).
Then for any ug, vo, wo satisfying (1.9) for some q > n, there exist Tmax € (0, oo] and an
exactly one pair (u,v,w) of nonnegative functions

u, v, w € C(Q x [0, Tmax)) N C*(Q x (0, Trnax)) when d >0,

u, v, w € C([0, Trmax); WH(2)) N C*((0, Tinax); WH4(R))  when d =0,

which satisfy (1.1). Moreover,

either Toa =00 or  lim (Ju(®)llu=( + [00) lz=i@) + l00)lz(e) = oo

Proof. We first consider the case d > 0. The proof of local existence of classical solutions
to (1.1) is based on a standard contraction mapping argument, which can be found in
[11, 12]. The case d = 0 is show in [10]. Finally the maximum principle is applied to
yield u > 0, v > 0, w > 0 in Q x (0, Trpax)- O
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3. Global existence and boundedness

Let (u,v,w) be the solution to (1.1) on [0, Tinax) as in Lemma 2.2. We introduce the
functions fi = fi(w) and fo = fo(w) by

(3.1) fi(w) :=exp {/Ow xi(s) ds} fori=1,2

to prove the following lemma.

Lemma 3.1. Letd > 0, u; > 0 (¢ = 1,2). Assume that x; satisfy (1.3) and (1.8) with
some p > n. Then there exists r = r(d,p) > 0 such that

62 g [wsm <o [vira-w-r [ eime@hw),

d
63) g [vh < [ w500 -1 [P e,
dt Jo Q Q
Proof. We let p > 1 be fixed later. From the first and third equations in (1.1) we have
d
G s =p [V (Fu - wa@)Ve) 4o [ @50 -w)
dt Jo Q Q
- rd/ P [T xa(w)Aw — r/ P 7 xa(w)h(u, v, w).
Q Q
Denoting by I; and I the first and third terms on the right-hand side as

Li=p / P (Va - ux () V),
Q

I = —Td/upff’xl(w)Aw,
Q
we can write as
d
6o G [err = [ a0 - [ i),
Q Q2 Q

We shall show that the following inequality:
dp>n, 3r>0; L +1, <0.
Noting that

Y (%) = Vu — ux; (w) Vu,

s s (55(3)
[ s (o (3)
s (3) 55 )

—p(-r+p- 1)/Q (%)p_l )V (%) V.

we obtain
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Similarly, we see that

—rap [ (£)" 5@ (3) - ve
bra (7> £ (=1 + Dha@)? + X% (w)) [Vul.

1
Therefore it follows that

L+ i

By
~0o-n-a+dm [ (£)7 5wy (5 ve
+ [ () 57 arer + Pl + drid ) (9

s [ (3 o (3) o

o[ (5) a | (P e +p>) b} -+ drx ()] (VP

2

2

fi 4p(p — 1)
Here we write as
((p(p —-1)— (1 +d)pr)
4p(p — 1)

+dr(—r+ p)) D (w))? + dTX'l(w)

2
4p(p 0 (7% + 207 + a3),

where a,, az, a3 are given by

ap == ((d - 1)’ + 4d) 2 (w)P?,

= (p—1) (p(d - Dha(w)* + 2dx3 (w)) ,

ag := p(p — 1)’ (w)]*.

Then there exists p > n such that the discriminant
D, = 4(p - 1)* [(pxi(d — 1) +2dx})* — pxi(p(d — 1) + 4d)]
is nonnegative in view of (1.8). Therefore we have that there exists 7 > 0 such that
L+L<O.

Hence (3.4) implies

d
p / W fT < p / wiT(l-u)—r / P fi xah(u, v, w).
Q Q

This means that (3.2) holds. In the same way, we obtain (3.3). O



Lemma 3.2. Letd > 0, p; > 0 (i = 1,2). Assume that h, x; satisfy (1.3)-(1.5), (1.7),
and (1.8) with some positive constants k; (i = 1,2) and p > n, then

/p +rk

(3.5) [w(t)] oy < (e”XIHLI(O,co)) maX{HUOHLP(Q), %lml/p}
r/p + rk

(3.6) Hv(t)HLp(n) < (eIIX2IIL1(0,°o)> max {“UOHLP(Q), Emp__llﬂll/p}

Proof. From the mean value theorem, the condition (1.5) and the fact that u, v > 0, it
follows that for some &;, &, satisfying 0 < & <wuand 0 < & <w,

oh oh
hu,v,w) = a(&, v, w)u + %(0, &, w)v + h(0,0,w)
> h(0,0,w).

This together with the condition (1.7) leads to

(3.7) —r/ﬂu”f{’xl(w)h(u,v,w) < —r/nupfl_rxl(w)h(O, 0, w)

< kyr / uPfir.
Q
Combining (3.2) with (3.7), we obtain

d
¥ / wfiT < (up + ki) / uP fiT — mp / WPt T

Hence the Holder inequality gives

d 1 (P+1)/P
o / W < (up+ k) / WP fTT — mp|Q P ( / u”f{’) .
Q Q

Solving this differential inequality, we infer

1/p 1/p
(forser)" <mae] (frre)" it bgr].
Q Q PH1

Recalling the definition (3.1), we notice the relation 1 < fi(w) < e”’“"L‘@»w), which yields
(3.5). In the same way, we obtain (3.6). O

Remark 3.1. When d = 0, (3.2), (3.3), (3.5) and (3.6) still hold for all p > 1. Indeed,
we have only to choose r = 1 — p in the above proof.

Proof of Theorem 1.1. First consider the case d > 0. We let 7 € (0, Tiax). In view of
Lemma 2.2 it is sufficient to make sure that

l[u(@)llze@ < Cu(7), 0(B)llze@) < Co(r),  llw(B)llze@) < Cu(7), T € (7, Tmax)
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holds with some C,(7), Cy(7), Cuw(7) > 0. Welet p € (”;—p", l). This means 1 < 2p — 2.
Writing as

wy = d(A — §/d)w + h(u,v,w) + dw,

and applying the variation of constants formula for w, we have
t
w(t) = eMB=/dy, +/ edt=9B=8/D) (R (y(s), v(s), w(s)) + dw(s))ds.
0

From Lemma 2.1 and (1.6) we obtain that for all ¢ € (7, Trax),

lw®)llwre@) < e l[(=A +8/d)° wt) Loy
< creat™ e ||lwol| Loy

¢
+ CIC2/ (t — s)"Pe | h(u(s), v(s), w(s)) + 6w(s)||Lo(o) ds
0
t
< c16a7Pe ™ |wo|| oy + 010204/ (t — ) Pe =9 gs,
0

where ¢; ;== sup {M(|[u(s)l|zr(q) + llv(s)|lzr(@) + 1)} (< 00 by Lemma 3.2). Noting
0<s5<Tmax

that

t 00

/ (t —s) e Mt=9)ds < / r~Pe Mdr < oo,
0 0
we deduce that
(3.8) lw(t) [lwiee@) < c1ca (T"’e_)‘r + 04/ r_"e_)‘rdr) =: Cy(1).
0

Since (1.8) implies x} < 0, it follows from (3.5) and (3.8) that for all ¢ € (7/2, Trax),
(3.9) lu(®)x1 (w®) V@)l @) < x2(0)[[u(@) e @) Vo)l 2o

<x(0) sup u®)lze@Culr/2) = ¢s.

max

Employing the variation of constants formula for u yields

u(t) = /DAy (2) / DY u(s)x (w(e)) Vu(s)) ds
T/2

t
+/ e(:—s)(A—l)[(M1 + 1u(s) — Nlu(s)z] ds
/2

=Ji+Jo+J;3 te (T, Tmax).
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22
By Lemmas 2.1 and 3.2 we see that for all t € (7, Trax),

(t-r/2)(8-1) (Z)
e u D)
<e H(_A +1)7et=T/D(B=Dy (I)

2
T\~ T
<aen(t=3) e u(3)
=% 2 € “\3 Lr(R)

< 2c1cm ™™ sup  ||u(t)|lre(e)-

S£< max

Let ne (2 1) andge(o’%—n). Thenweobservethat0<2n—§andn+£+%<1-

Vil = -

LP(Q)

Using Lemma 2.1 and (3.9), we obtain
12l ooy < /f; le=YEDY - (u(s)xa (w(s)) Vau(s)) =) ds
<a /;2 (=4 + 1)7et=YEDV - (u(s)x1 (w(s)) Veo(s)) | o) ds
<ac ;Z(t = 8) 72 u(s)xa (w(s)) Vau(s) | oo ds

oo
< 010305/ T—(n+€+1/2)e—(l/+1)r dr.
0

Since the Neumann heat semigroup (e*2);>o has the order preserving property, we infer

t 2 9
Js =/ olt=5)(A-1) [—m (u(s) _ #12: 1) Lt ] ds
T 1

/2 4
2 t
<t 1) / =92 g
T 4w Jrp

and moreover, by the maximum principle we have

2 t
g <t / R
4 Jrpe

(ﬂ'l + 1)2(1 _ 6_1/2).

S__—_

4

Therefore we obtain that there exists C,(7) > 0 such that

u(t) < [Nz + 1 2lleoe) + J3
< Cu(1), t€ (7, Tmax)-

The positivity of u yields that

[u(®)lle@) < Cu(7), T € (7, Tmax)-
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The same argument as for u gives the L®(2) bound for v. This completes the proof in
the case d > 0.
Next consider the case d = 0. From Remark 3.1 we have

P + (p - 1)kl IQll/p}

)y < exp{llxallzs o} max{nuonm, o

for all p > 1. Taking the limits as p — 0o, we obtain the L>°(£2) bound for u, and similarly
for v. The L* bound for w follows from

t
w(t) = e %y +/ e~ (hi(u, v, w) + dw).
0

This completes the proof when d = 0. O

4. Asymptotic behavior

In this section we will establish asymptotic stability of solutions to (1.1). For the proof
of Theorem 1.2, we shall prepare some elementary results.

Lemma 4.1 ([1, Lemma 3.1]). Suppose that f : (1,00) — R is a uniformly continuous
nonnegative function satisfying f1°° f(t)dt < co. Then f(t) = 0 ast — oo.

Lemma 4.2. Let a1, as, a3, as,as € R. Suppose that

(4.1) a3 >0, az3>0 a—a—%——a—é-

. 1 ) 3 ) 5 40,1 4(13
Then

(4.2) a1z? + axzz + agy? + asyz + a5z > 0

holds for all x,y,z € R.

Proof. From straightforward calculations we obtain
alz2 + asxz + a;;y2 + asyz + a5z2
a3z’ a4z’ a2  a\ ,
-—-al(x-l-ﬂ) +a3(y+§£) +(a5—'4—a1—4-—%>z.
In view of the above equation, (4.1) leads to (4.2). O

Now we will prove the key estimate for the proof of Theorem 1.2.

Lemma 4.3. Let (u,v,w) be a solution to (1.1). Under the conditions (1.3)-(1.9) and
(1.11), there exzist 6;,62 > 0 and € > 0 such that the nonnegative functions E; and Fy
defined by

E\(t) :=/Q(u—1—logu)+61£/9(v—l—logv)+%/a('w—zﬂ)2



and

Fl(t):z/n(u—l) +/Q(v—1) +/Q(w—7f5)
satisfy
(4.3) %El( )< —eFi(t)  (t>0).

Proof. Thanks to (1.11), we can choose §; = g > 0 and §; > 0 satisfying

x1(0)2(1 +61) pax2(0)%(1 + &) <§, < 4p1v6
4d ' dpsd 226 + B

(4.4)
We denote by A;(t), B1(t), C1(t) the functions defined as
Ai(t) = / (u—1-logu), Bi(t) =/Q(v —1—logv),
Cu(t) = / (w — )2,

and we write as

Ei(t) = Ai(t) + 51%31@) + 8,01 (2).

The Taylor formula applied to H(s) = s —logs (s > 0) yields A;(t) = [,(H(u) —
is a nonnegative function for ¢ > 0 (more detail, see [1, Lemma 3.2]). Similarly, we have

that B, (t) is a positive function. By straightforward calculations we infer

iAl(t):—m/(u—n?— quu/nwvu-w,

u? u

—Bl —Nz/(’U — 1 IV’UI / %@V’U . V'w,
Q

—C’l(t)—/ (u—1)(w—ib)+/nh,,(v—1)(w—a)+/ﬂhw(w—ﬁ)2

—d/ |Vw|?

with some derivatives h,, h, and h,. Hence we have
d
(4.5) EEl(t) = I3(t) + Lu(t),

where

L(t) == —m /Q(u —1)2 =6y /Q(v -1+ 52/Qhu(u - 1) (w—w)

+62/ﬂhv(v—1)(w—ﬁ)+62/nhw(w—ﬁ)2
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and
2 2
(4.6) [4(t) - ﬂ +/ MVUVU} _ (51& Ivvl
a v o U pe Jo v?
+61E/MVU~Vw—d§2/|Vw|2,
M2 Jo Y Q

At first, we shall show from Lemma 4.2 that there exists £, > 0 such that

@7) Lt) < —e; ( /Q (w—172+ /Q (v—172+ /ﬂ (w - m?) .

To see this, we put
9i(e):==m—¢,  ge) =i — ¢,

()_(_6h “5)— h"lzt 62_ h’12) 62
RS L O

Since p; > 0 and 6; = g > 0, we have ¢;(0) = g3 > 0 and g2(0) = ;19 > 0. In light of
(1.5) and the definitions of d2, @, 8 > 0 (see (1.10) and (4.4)) we obtain

h? h2
0) =8 (—hy— [y )5
9:(0) 2( (4M1 451#1) 2)
O¢2 BZ ) )
>4 - —+ o
=" (7 (4M1 4, )

06261 + ,6
> - .
> 0y ('Y ( 400 ) 62) >0

Combination of the above inequalities and the continuity of g; for ¢ = 1,2,3 yield that
there exists €, > 0 such that g;(¢;) > 0 hold for 2 = 1,2, 3. Thanks to Lemma 4.2 with

a; = p1 — €1, G2 = —0hy, asz = 01 — €1,
ag = —doh,, a5 = —bhy — ey,
z=ult)—1, y=uv(t)-1, z = w(t) — W,

we obtain (4.7) with &; > 0. Lastly we will prove
(4.8) Li(t) <0.

Noting that x; < 0 (from (1.8)) and then using the Young inequality, we have
/ Xl(w)Vu Vw < X1(0)/ |V - V|
Q U Q u

X1(0)2(1+61)/ !VU'Z d52 / 2
<
< an ), e Tixe ),V
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and

&’—L—l/ M) Gy G < xa(0)5 2 / -——IW;}vwl
Q

H2 v
<X2(0)251(1+51) m’ [V | dods /IV 2
- 4déy 7% Q v2 1+5

Plugging these into (4.6) we infer

x1(0)*(1 +41) |Vu?
LB<-|1-
a(t) < (1 4d5, A
e (1 0P 8)) [T
H2 4dpi20; o v?
We note from the definition of §, > 0 that
x1(0*(1 +61)
1] A A TR
s,
px2(0)*(1 + 1)
l- " .
4d[.L252 >0

Thus we have (4.8). Combination of (4.5), (4.7) and (4.8) implies the end of the proof. O

Lemma 4.4. Let (u,v,w) be a solution to (1.1). Under the conditions (1.3)—(1.9) and
(1.11), (u,v,w) has the following asymptotic behavior:

lu(®) = Ul = 0, [[v() = Ulzeoi@) = 0, [|w(t) = Dllz=(@) =0 (¢ = 00).

Proof. Firstly the boundedness of u, v, Vw and a standard parabolic regularity theory
([6]) yield that there exist § € (0,1) and C > 0 such that

+ |lwl| <C forallt>1

+ ”'U” 02+6 1+?(Qx[l t]) —_

”u”C“‘"”g(ﬁx[l,t]) C20 1+ @x[1,4)
Therefore in view of the Gagliardo—Nirenberg inequality

n+2

n 2
(49) Il < clolE e I61ER, (0 € WH=(),
it is sufficient to show that

llu(t) = Uz = 0, [lo(t) = 1|2 = 0, [w(t) — @2 =0 (& — 00).

fl(t):=/Q(u—1)2+/Q(v—1)2+/Q(w—ﬁ)2

We have that f;(t) is a nonnegative function, and thanks to the regularity of u,v,w we
can see that fi(t) is uniformly continuous. Moreover, integrating (4.3) over (1,00), we
infer from the positivity of E(¢) that

We let

/ " h#ydt < LB < oo,
1 £
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Therefore we conclude from Lemma 4.1 that f;(¢) — 0 (¢ — 00), which means

/Q(u—l)Q—i-/Q(v—1)2+/ﬂ(w—-&7)2—)0 (t = o0).

This implies the end of the proof. 0O

Lemma 4.5. Let (u,v,w) be a solution to (1.1). Under the conditions (1.3)-(1.9) and
(1.11), there exist C > 0 and A > 0 such that

[u(t) = Ulze@) + [0(t) = Lllze(@) + [w(t) = Dl|z=@) < Ce™ (¢ >0).
Proof. From the L’Hopital theorem applied to Hi(s) := s —log s we can see

. Hy(s) - Hi\(1) _ . Hi(s) 1
(4.10) =G Cm— =3

In view of the combination of (4.10) and [|u — 1| eo(y — O from Lemma 4.4 we obtain
that there exists g > 0 such that

(4.11) i/(u S12< A(t) = /(H(u) ~HQ)) < /(u S0 (> 1),
0 Q Q
A similar argument yields that there exists t; > tg such that
(4.12) 1/(1; 1P <Bi(t) < /(v S (t> ).
4 /o Q
We infer from (4.11) and the definitions of E;(t), Fi(t) that
E(t) < ceFi(t)

for all t > t; with some cg > 0. Plugging this into (4.3), we have

GBS -eRO<-SE@®)  (¢>h)

which implies that there exist ¢; > 0 and £ > 0 such that
E(t) < cre™® (t>t).

Thus we obtain from (4.11) and (4.12) that

/Q(u -1+ /Q(v -1)2+ /n(w — @)% < gEy(t) < crege™

for all t > t; with some cg > 0. From the Gagliardo—Nirenberg inequality (4.9) with the
regularity of u, v, w, we achieve that there exist C' > 0 and A > 0 such that

lu(t) = Llzeo@y + [[0(t) = Llzm(@) + lw(t) — @iy < Ce™ (¢ > 0).
This completes the proof of Lemma 4.5. O
Proof of Theorem 1.2. Theorem 1.2 follows directly from Lemma 4.5. O
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