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Well-posedness for Keller-Segel system coupled with the
Navier-Stokes fluid !

Masanari MIURA 12
Graduate school of Mathematics, Kyushu University

1 Introductiqn.

Keller-Segel systems describe chemotaxis phenomena which are the collective motions of cells.
We deal with the following Keller-Segel system coupled with the Navier-Stokes equations in R

(N >2):
%+u-Vn:An—V-(nVc)—V-(an) in RV x (0,00),
dc N
5;+u-Vc=Ac—nc in RY x (0, 00),
v . oN
(NCS) E+u-Vv:Av—'yv+n in RY x (0,00),
Z—:ﬂ-(u-V)u:Au—Vw»—nf in RN x (0,00),
V-u=0 in RN x (0,00),
| nli=0 = 10, clt=0 = co, V|t=0 = v0, ult=0 =uo in RV,

where n = n(z,t), ¢ = ¢(z,t), v = v(z,t), u = w(x,t) = (w(z,t),u2(z,t), -, un(z,t)) and 7 =
7(x,t) denote the unknown density of amoebae, the unknown oxygen concentration, the unknown
concentration of chemical attractant, the unknown fluid velocity field and the unknown pressure, re-
spectively, while ng = ng(z), cp = co(z),vo = vo(z) and ug = ue(z) = (ug1(x), uo2(), - -, uo,N(z))
denote the given initial data.

In 2005, the following chemotaxis-fluid model had been introduced by Tuval et. al. [7] so that:

(
%+u'Vn=An—V'(nVc) in RY x (0, 00),
%c-i-u'Vc:Ac—nf(c) in RY x (0, 00),
E-1)
( %+(u-V)u=Au—V1r—nf in RN x (0,00),
divu=0 in RY x (0, 00),
nle=0 = no, ult=0 = uo in RV.

*This is based on a joint work with Professors H.Kozono (Waseda University) and Y.Sugiyama (Kyushu University).
tE-mail : m-miura@math.kyushu-u.ac.jp



Winkler [8] considered the system (E-1) with four unknowns {n,c,u, 7} under the Navier-Stokes
fluid, and proved the global existence of classical solutions in 2D bounded domains. It should be
noted that minus sign —nc plays a decisive role for showing the global existence. He also constructed
a global weak solution in 3D bounded domains. Some generalizations with the same sign have been
introduced by Chae-Kang-Lee [1] and Tao-Winkler [6].

On the other hand, Lorz [5] treated the case with four unknowns (n,v,u, ) which is so-called
a Keller-Segel model under the linear Stokes fluid as follows:

( %+u-Vn=An—V-(nV'U) in RV x (0, 00),
u-Vo=Av+n in RV x (0, 00),
(E-2) % =Au—-Vr—nf in RV x (0, 00),
divu=0 in RN x (0, 00),
nlt=0 = no, ult=0 = Uo in RV,

Lorz [5] showed the existence of global weak solutions for (E-2) with the small initial data in both
2D and 3D whole spaces. Recently, Kozono, Sugiyama and the author treated the following system
(E-3) to construct a blow-up solution. See the forthcoming paper [4] in detail.

Zt—n+u'Vn:An—V-(an) in RN x (0,7),
—Av=—-yv+n in RV x (0,T),
(E-3) _(:;t_u +(u-V)u=Au—~Vr—|n|*f in RN x (0,T),
divu=0 in RN x (0,7),
L nlt=0 = no, ult=0 = uo in RV,

The purpose of this paper is to show the existence of global mild solutions with the small initial
data in the scaling invariant space. Our method is based on the implicit function theorem which
yields necessarily continuous dependence of solutions for the initial data. As a byproduct, we show
the asymptotic stability of solutions as the time goes to infinity. Since we may deal with the initial
data in the weak LP-spaces, the existence of selfsimilar solutions provided the initial data are small
homogeneous functions.

Let us first introduce the following hypotheses on the initial data:
Assumption. We assume that N > 2 and v > 0.

(i) For N > 3, the initial data {no, co, v, uo} satisfies

N
no € L (RY), ¢o € L®(RN) with Vo € LY (RY),
v € S’ with Vg € LY(RN),  and up € PLY(RY),
For N = 2, we replace np € LL(R?) by ny € L*(R?).
(ii) The external force f satisfies f € LYY (RY). Note that L, denotes the weak L? space.
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Here and in what follows, we denote by P = {Pjx};k=1,..n the projection operator onto the
solenoidal vector fields with the expression

Py =0+ RjRy (R; = %(—A)_% : Riesz operator)
3

for j,k=1,2,---,N.

Our definition of mild solutions to (NCS) now reads:

Definition 1. (mild solution) Let N > 2, and let {ng, co, v, up, f} be as in the Assumption. A
pair {n, ¢, v, u} of measurable functions on R¥ x (0, c0) is called a mild solution of (NCS) on (0, )
if n,¢,v,u € L} (0, 00; LT(RN)) for some 1 < ¢,7 < 00, and if the identities

4

n(t)

s

¢ ¢
etAng —/ et~ (. Vn)(7) dr —/ V - A (nVe + nVu)(7) dr,
i 0 0
t
c(t) = el —/ =8 (y - Ve + ne)(r) dr,
(IE) °o
v(t) = e ety —/ e"’“‘r)e(t'T)A(u-Vv —n)(r) dr,
0

¢
u(t) = ey —/ e(t'T)AP(u -Vu+nf)(r) dr
0

\

hold for 0 < t < oo, where e*® denotes the heat semi-group defined by
(29)@) = [ | G =v.090) dy

ith G(z, 1) = — -kl
Wi (z,1) mexp( i)

2 Main Results.

Our result on unique global existence of mild solutions reads as follows:
Theorem 1 ([3]). For N > 3, suppose that the ezponents p,q and r satisfy the following either (i),
(%) or ().
@) Y<q<N, N<p<gli, N<r<gi
() q=N, N < p < oo, N <r<oo;
(5) N<g<2N, N<p< 4, g<r< .

For N = 2, we assume that the exponents p,q and T satisfy the above condition (iii) with N = 2.
There is a constant § = 6(N,p,q,7) with the following property. If the initial data {ng, co,vo,uo}
and the external force f in the Assumption satisfy
||7lol|L;1;(RN) + lleoll peomny + I Veoll Loy vy
(2.1) +IVvoll Ly gy + lluoll oy wyy + 1 fllcymyy <& for N 23
lInoll L1 (r2) + llcollzoo(r2) + I Veoll L2 (m2)
(2.2) +[Voll 2, m2) + lluollz w2y + 1 fll2,@ezy <& for N =2,
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then there ezists a mild solution {n,c,v,u} of (NCS) on (0,00) with the property that

(2.3) t7(8=2)n € BC, ([0, 00); LYRN)),

(2.4) ¢ € BCy([0,00); L2(RY)), tT(8~HVc e BC,((0,); L' (RY)),
(2.5) t2 (8 =1)Vv € BCy([0,0); L™(RN)),

(2.6) 2 W2y € BC,([0, 00); LP(RN)),

where BCy([0,00); X) denotes the set of bonded weakly-star continuous functions on (0,00) with
values in the Banach space X.

Such a mild solution {n,c,v,u} is unigue provided the norms corresponding to the spaces (2.3)-
(2.6) are sufficiently small. Moreover, the mild solution {n,c,v,u} exhibits the following asymptotic
behavior.

2.7 In(t) - eBnoll oy = O(t_7 %-%))’
(28) IVe(t) - Ve Peollrmmy = O(t FFD),
(2.9) IVo(t) - Ve retBu|ogny = O(¢FHD),
(2.10) llu(t) - emuoan(RN) = O(t_%(%_%))
ast — 00.

Remarks. (i) It is easy to see that if {n,c,v,u,m} solves (NCS), so does {ny,cx,va,ux,mr} for
all A > 0, where nx(z,t) = An(Az, \%t),ca(z,t) = c(Az, N2t),up(z,t) = v(Az, \%),ur(z,t) =
Mu(Az, N2t), ma(z,t) = A27(Az, A%t). The spaces (2.3)-(2.6) of solution are related to scaling invari-
ant class which implies that

N2_1
2\N" g

N2_1
sup 2879 |n(t)||pagw) = sup ¢ UENOIT
<t<oo 0<t<oo

0
o Sup le(®) | Lo ®ny = oSup llex(@®)l oo mys
(o] (o e}

N1_1 Ne1_1
sup ¢tz (8P| Ve(t)|rmny = sup 28D Ver(t)lpr@ny,
0<t<oco H(L_l) _ 0<t<oco H(L_l)
sup t2 N TP|[Vo(t)||prgvy = sup 2N T Vor(t)|lLr@ey,
0<t<oo 0<t<oco

NL_1y NL_1y
sup t2 N7 |lu(t)|amyy = sup £V TR flua(t) | e (rry
<t<oo 0<t<oo

0
hold for all A > 0.

(ii) The exponents p, g and r determine such a class of functions as in (2.3)-(2.6) to which the mild
solution {n, c,v,u} belongs. By our theorem, we see that ¢ plays a more decisive role than that of p
and r, which seems to be understood that behaviour of the density of n of the amoebae is dominant
in comparison with the effect of the imcompressible fluid u.

(iii) Concerning the initial data {ng, cp, vo, uo}, our hypothesis coincides with scaling invariant class
in the sense that

||n0,,\HLw§(RN) = ||n0||ng(RN) for N >3, |lnoallziwey = Inolligey for N =2,



llcoallLo@®ny = licoll zoomnys  IVeonlly@yy = IVeoll Ly mny,
Voo lly@yy = IVoolloy wevys  lluoallzy@eyy = lluollLy wm)

for all A > 0, where ng x(x) = M np(Az), cor(z) = co(Az), vor(T) = vo(Ax), uoa(z) = Aup(Az).

Next, we shall show the global stability of our mild solution under the initial disturbance and
the perturbation of external forces in scaling invariant class.

Theorem 2 ([3]). Let the exponents p,q and r be as in Theorem 1. Suppose that 6 = 6(N,p,q,r) is
the same constant as in (2.1) and (2.2). For anyn > 0, there is a constant &, = 61(N,p,q,7,1) >0
with the following property: Assume that two initial data {ng, co,vo, uo} and {ng, ¢y, vy, up} and two
external forces f and f' satisfy that

||n0HL§(RN) + llcoll Lo vy + I Veoll Ly m)
(2.11) +IVoll oy ®ny + lluollLy wey + 1 f Ly @y < 6

||n6||Li}(RN) + lleoll Loy + IVl wem)

(2.12) HIVeollLy ey + luolley vy + 1 iy @ey < 8

N
for N > 3 and that (2.11) and (2.12) with L (RVN) replaced by L*(R?) for N = 2. Suppose
that {n,c,v,u} and {n',c,v',v'} are mild solutions of (NCS) on [0,00) given by Theorem 1 with
{n,c,v,u}|i=0 = {no,co,v0,u0} and {n',c,v',u'}Hi=0 = {ng,cp vy, up} in the class (2.3)-(2.6),
respectively. If it holds that

lIno - nf)llL;l;(RN) + [lco = cgll oo gy + [[Veo = Vol Ly vy
(2.13) +1Vvo — Vgl Ly wey + lluo — wolly@ny + 1 = flloywny < 81 for N >3

N
and that (2.18) with L2 (RN) replaced by L*(R?) for N = 2, then we have

Ne2 1
sup tZ7 V" |In(t) — 0/ (8)l gemry + sup lle(t) — ¢ (t)l| oo (rr)
0<t<oo 0<t<oo

+ sup t¥@W D Ve(t) - V() rgny + sup 17T D Vu() — V()| @my
0<t<oo 0<t<oo
(214) + sup t3N D u(t) -/ Ollppgry < 1 for N2 2
0<t<oo |

As a byproduct of our construction of solutions in the weak LP-spaces, we have the following
existence result on forward self-similar solutions to (NCS).

Corollary 1 ([3]). (self-similar solution) Let N > 3 and v = 0. Assume that {no,co,vo,uo} and
f are as in the Assumption. Suppose that ng,co,vo and ug are homogeneous functions with degree
—2,0,0 and —1, respectively, i.e.,

no(Az) = Ao (z), co(Az) = co(), vo(Az) = vo(2), uo(Az) = A uo(x)

for allz € RY and all A > 0. Assume also that f = f(z) is a homageneous function of x € RN
with degree —1, i.e., f(Az) = A"Lf(z) for allz € RN and all A > 0. If {no,co,v0,up} and f satisfy
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the condition (2.1), then the solution {n,c,v,u} given by Theorem 1 is a forward self-similar one,
i.e., it holds that

n(Az, A%t) = A" 2n(z, 1), c(Az, A2t) = c(z, 1), v( Az, A%t) = v(z, t), u( Az, A2t) = A" Lu(z, t)

forallz €eRY, ¢t >0 and all A > 0.

3 Key lemma.

To solve (IE) for the given initial data {ng, ¢, vo, uo, f}, we make use of the implicit function
theorem. Let us introduce two function spaces X and Y defined by

g o N N N N
X = {{no,co,vo,w,f};no€L13,00€L ,VCoeLw,VvoeLw,uoeLw,feLw}

with the norm

I{no, o, vo,uo, fHlx = linoll_x +llcollzee + Veollzy + [Voollzy + ltuolly + 112y

and

Y = {{n, ¢, v,u}; t%(%—%)n(-) € BCy([0,00); L), ¢ € L*(0,00; L™)
with t2 (8 ~P)Ve(-) € BCy([0,00); L7), t2 (X ~H)Vu(-) € BCy([0, 00); L7),

¢33 72u() € BCu((0,00)5 17) )

with the norm

Ex

21 Nel_ 1
[{ncv,ubly = sup t28 ()] + sup [le®)lle= + sup t2F | Ve(t)|zr
0<t<oo 0<t<oo 0<t<oo

Nel 1
+ sup t7WD|Vu@)rr + sup t2 T |u(t)l|e,
0<t<oo 0<t<oo

respectively. For N = 2, we replace ng € L, by np € L! in X.

Here and in what follows, we abbreviate LP(RY) and L%(RY) to LP and L}, respectively. It
should be noted that L%, denotes the weak LP-space with the norm || - || 1z, defined by

1
Ifllz, = sggsu{weR”;lf(x)l > s}r,
S

where p denotes the Lebesgue measure.

It is easy to see that equipped with the norm ||-||x and || -|ly, X and Y are Banach spaces. For
{no, co,v0,u0, f} € X and {n,c,v,u} € Y, we define the map

(3'1) F(n0a601v07u07fanvciv’u) = {N1 C,V,U},
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where
1 t t
N(@t) = n(t) —e®ng +/ et~y . Vn)(r) dr +/ V - et=A(nVe + nVo)(1) dr,
0 0
t
Ct) = ct)—ele +/ ety - Ve + ne)(r) dr,
0
¢
V() = ou(t)—e ety +/ e ety . Vo — n)(7) dr,
0
¢
Ut) = ult)—etbug + / 2P -Vu+nf)(r)dr, 0<t<oo.
{ 0

In addition, for each {n,c,v,u} € Y, we define a linear map Lyn ¢,v.u} (7, &, 9, %) = {N, ¢,v,u}
on Y by

(

t ¢
Ni@) = ﬁ(t)+/ et~ (y - Va)(r) d7'+/ etA (@ Vn)(r) dr
0 0

t t
+ / V- et (7Ve + nVE)(1) dr + / V - A7V + nV)(7) dr,
0 0

~ t t
¢ty = &)+ / et=A(G - Ve +u - VE)(r) dr + / e®MA(fc + né)(7) dr,
0 0
. t : t
Vi) = o)+ / eV =TA(G . Ty 4+ u - V) (7) dT — / e~ et=125(7) dr,
0 0
t t
de) = at) + / AP . Vu + u - Vi)(r) dr + / e8P )(r) dr.
0 0

Then, we have the following key lemma.

Lemma 1 For N > 3, suppose that the exponents p,q and v satisfy the following either (i), (i) or
(iii).

(z) %<q<N, N<p<N£_‘1§, N<r<1—\,11_95;

(i) g=N, N < p< o, N <r < oo;

N N,

(1is) N < g < 2N, N<p<q_—’—jv, q§r<q—_‘1ﬁ.
For N = 2, we assume that the exponents p,q and r satisfy the above condition (iii) with N = 2.
(i) The map F defined by (3.1) is a continuous map from X xY into Y;
(ii) For each {ny,co,vo,u0, f} € X, the map F(no,co,v0,u0, f,*,",",) is of class C! fromY into
itself.

See (3] for the proof.

Remark. It should be noticed that, L{n cy,u} is the Fréchet derivative of
F(nyg, co, vo, Up, f,n,¢,v,u) at {n,c,v,u} € Y, for each fixed {ng,co,vo,up, f} € X, ie., it holds
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that
_ _!11_11 (“F(TZO,CO,’UO,UO,f,’n+ﬁ,C+E,'U +1~)7u+ﬂ) - F("O:CO,Uovuo,f,N,C,v,u)
I1{7.2,9,a}|ly —0

~Lin e (8 3,y ) /{7, 6,3, @Hly = 0

for each {ng, co,vo,u0, f} € X and each {n,c,v,u} €Y.

4 Proof of theorems.
We shall show bijectivity of the Fréchet derivative L5 ¢4} 8t {n,¢,v,u} = {0,0,0,0}. It follows
from the proof of Lemma 1, that we have an expression L{0,0,0,0} (7,¢,0,0) = {/\70,(,70, 1.)0,1]0} as
No(?)

U(t) = )

a@t), Co(t) = &@t), Vo(t) = 9(t) — / te_"(t”r)e(t_T)Aﬁ('r) dr,
0

for {n,¢,7,4} € Y. Hence it is easy to see that No=0Co=Vo=Uy=0implies that n =& =19 =
% = 0, which yields that L 0,0 is injective.

For every {No,Co, Vo,Up} €Y, we may take {#,¢,7,4} €Y as

at)

o), &) = Colt), o(t) = Volt)+ /0 T -DA R (1) ar,
at) = Up(t)

so that it holds

L{0,0,00} (1, &,9,) = {No,Co, Vo, Uo}

This implies that L 0,0} is surjective from Y onto itself.

Now, it follows from the Banach implicit function theorem that there is a C'-map g

9:Xs = {{no,co,v0,u0,f} € X;||{no, co, vo,u0, f}|x < 6}
= Y5:={{n,c,v,u} €Y;||{n,c,v,u}|ly <6}

for some 6 = §(N,p,q,7) > 0 such that

9(010101010) = {070’070}1
F(nchl)y'UO,anf,g(nD,CO;'UOaUOyf)) = {0101010}

for all {no, co, vo, uo, f} € Xs.

It is easy to see that this g(no, co,vo,uo, f) gives the unique solution of (IE) with properties
(2.3)-(2.6) provided {no, co, vo, ug, f} satisfies (2.1) and (2.2).

The uniqueness of solutions {n,c,v,u} of (IE) with the small norms corresponding to the class
(2.3)-(2.6) is a consequence of the existence of the C'-map g from X to Y;. See [3] in detail.
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