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Solvability of complex Ginzburg-Landau equations with
non-dissipative terms

Takanori Kuroda,* Otani Mitsuharu'

Abstract

In this paper, we consider the following complex Ginzburg-Landau equation.

{Ut -~ (A +ia)Au— (k+if)u|Pu—yu=f (t,z)€[0,T]xQ,
(CGL) ult,z) = 0 (t.z) € [0,T] x 69,

u(0, z) = uo(z) T €Q,

where © C R" is a smooth bounded domain. Parameters A, k are positive, while a, 3,7 € R are real
parameters and i = v/—1 is the imaginary unit.
We assume that g is Sobolev sub-critical, i.e., 2 < ¢ < +00o when N =1,2and 2 < ¢ < 7\,2% when N > 3. We
study the local well-posedness of (CGL) and the global continuation of local solutions for small data.

1 Introduction
We are concerned with the Cauchy problem the following complex Ginzburg-Landau equation.

u — (A +ia)Au— (k+ iB)|u|iq_2u -yu=f (t,2)€(0,T] xR,
(CGL) u(t,z) =0 (t,z) € [0,T) x 89,
(0, ) = uo(x) z€Q,

where @ C R¥ is a smooth bounded domain. The unknown function u : [0,7] x Q — C of time variable ¢
and space variable z represents an order parameéter, which indicates the phase of dissipative structures and
takes complex values. In our equation, A,k > 0 and a, 3,7 € R and i = v/—1 is the imaginary unit.

The compléx Ginzburg-Landau equation is originally introduced in 1950 by Ginzburg and Landau (6]
to present a mathematical model for superconductivity. This equation is now known as a general equation
which describes the various phenomena of dissipative structures around a critical point (see [5], [9]).

We deal with the initial value problem under the homogeneous Dirichlet boundary condition with a given
external force f : [0,7) — C, where T > 0 is a given positive number.

From the mathematical point of view, we can regard (CGL) as an intermediate equation between two
typical nonlinear equations. The real part of (CGL) can be regarded as a nonlinear heat equation and
sometimes called as a real Ginzburg-Landau equation, while the imaginary part of (CGL) can be regarded
as a nonlinear Schrodinger equation. Hence, we can expect both parabolic and Schrédinger like features for
(CGL).

There are different approaches to (CGL) in accordance with the sign of «.

When & is negative, the nonlinear term —«|u|9~%u play as the dissipation. So we can deduce a priori
estimates without Sobolev’s imbedding theorem under the appropriate assumption on parameters , &, @, .
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From this point of view, global solutions for (CGL) is constructed without upper restriction for ¢ provided
that A, k,a, § are restricted to the so-called CGL region by Okazawa and Yokota [13] for bounded domains,
and by K., Otani and Shimizu [7] for general domains.

On the other hand, for positive x the nonlinear term in turn facilitates the increment of a solution.
Because of this fact, we have some difficulties in establishing a priori estimates and we also expect some
solutions might blow-up in finite time.

When the initial data ug is taken from H} and g is Sobolev subcritical, the following three results on
local well-posedness are known. Cazenave, Dickstein and Weissler [4] proved the existence of a local solution
in the whole space for the case where § = g, v =0and f = 0. They also proved some blow-up results.
Secondly, Cazenave, Dias and Figueira (3] obtained results similar to those in [4] for the case where v # 0.
On the other hand, for an initial data ug taken from L? and 2 < ¢ < 2+ %’, Shimotsuma, Yokota and Yoshii
[15] showed the existence of a local solution for various kinds of domains for f = 0. They also proved the
global continuation of solution with small initial data. These approaches relies on the theory of semi-groups
in complex Banach spaces.

In this paper, we introduce new approach for (CGL) in non-dissipative case based on the theory of
parabolic equations with perturbations in real Hilbert space, which is successfully admissible for dissipative
case. We follows an abstract theory developed by Otani [10].

2 Preliminaries

We first introduce product function spaces made up of usual Lebesugue and Sobolev spaces over the real field
using the following identification:

CBU1+’iUQ —-U= (Ul,uz) GIRz.

These spaces are also Banach or Hilbert spaces with respect to these norms or inner products.

L™(Q) :=L"(Q) x L"(R2) 2 U = (u3,u2),V = (v1,v2),

norm: |U[g- = lufg, + |uzlf,

inner product(r = 2): (U,V)p2 = (u1,v1)r2 + (u2,v2)L2-

H(2) := Hy(Q) x H§(2) 3 U = (u1,u2), V = (v1,2),

inner product: (U, V)m = (u,v1)m + (ug, ve)m.
In addition H#5 denotes the function space with values in L2(Q) from (0, S] with S > 0, which is a Hilbert
space with the following inner product.

HS = L*(0, 5;L%(Q)) 3 U(t), V(t), inner product: (U, V)ys = J3 (U, V)2 dt,

norm: ||U||3,s = (U,U)ys.

Instead of the imaginary unit ¢ in complex field C, we introduce the matrix I defined by

@2.1) I= (_01 é)

which plays the same role as the imaginary unit with respect to the inner product, e.g.,

§R(’U., U)C = Rup = (U: V)Rzy
S(u,v)c = Suv = (U, IV)ge.

To apply the theory of parabolic equations, we write down each term in (CGL) in terms of subdifferentials
of some functionals.



Let H be a Hilbert space and denote by ®(H) the set of all lower semi-continuous convex function ¢ from
H into (—o0, +00] such that the effective domain of ¢ given by D(¢) := {u € H | ¢(u) < +o0} is not empty.
Then for ¢ € ®(H), the subdifferential of ¢ at u € D(¢) is defined by

(2.2) Op(u) :={f €H| (f,v—uw)u < ¢(v) — ¢(u) for all v € H}.

Then 0¢ becomes a possibly multivalued maximal monotone operator with domain D(9¢) = {u € H |

O¢(u) # 0}. However for the arguments in what follows, we have only to consider the case where 9¢ is single

valued.
So we define functionals on Hilbert space L2(().

l 2dr = 1 2 1
(2.3) o(U) := { Z/QWU(:C)I do=S|VU[E: U eHy(®),
+0o0 else.
(2.4) Gn(U) 1= { %/QIU(I)I’dz = %IUIL UeL(Q),
t+oo else.

Since these functionals are proper (# +00), convex and lower semi-continuous, the subdifferentials of these
are given as follows.

(2.5) dp(U) = =AU, D(0yp) = {U e L*(Q) | U e H3(Q) NHJ(Q)} .
(2:6) Bun(U) = U0, D(@y») = {U € LA(Q) | U]~V € LA(2)}.

By the maximal monotonicity of subdifferential operators, we can consider their Yosida approximations, or
Yosida regularizations of functionals. Here we fix notations for resolvent operators and Yosida approximations,
and collect their properties for later use.

Let ¢ be a proper convex lower semi-continuous functional on a Hilbert Space H. Since the subdifferential
d¢ of ¢ is maximal monotone in H, we can define its resolvent J“f = (14 ud¢)~! : H — D(d¢) for u > 0
and the Yosida approximation of 0¢ is given by 9¢, := 3¢J“f . It is known that the Yosida approximation

of 0¢ corresponds to the subdifferential of the Moreau-Yosida regularization ¢, of ¢, which is a Fréchet
differentiable function given by

(2) o) = i { ot = ol + 60 } = S1081 0l + ST,

and the following inequality holds (see {10], 1], [2]):
(2.8) |8 (u)u < |0¢(u)lu  for every u € D(8¢).

Using these notations and I defined by (2.1), we can rewrite our partial differential equation (CGL) in
an evolution equation in L2(1).

(ACGL-) %(i) + (A +al)0p(U) — (5 + BI)Ote(U) — 70¢2(U) = F(t).
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Here we collect the properties of the matrix I:

(2.9) an imaginary unit (1% = -1,

(2.10) isometricity :|Ulpe = |[IU g2,

(2.11) skew-symmetricity (U IV)2 = —(IU,V)pe,

(2.12) commutativity : 10p(U) = 89p(1U), I89y-(U) = 8¢ (1U),

(2.13) orthogonarity in R? (U -TU)g2 =0

(2.14) orthogonarity in L?(2) 1 (U, 1U)L2 = (U, 18p(U))L2 = (U, 18, (U))p2 = 0,
(2.15) orthogonarity in L?(f2) 2 1 (Bpu(U), IU)12 =0 = (8, (U), I18¢(U))z,
(2.16) orthogonarity in L2(Q2) 3 : (O, (U), TU)2 = 0 = (¢, (U), I89(U))L2,
(2.17) Bessel’s inequality UV + (U IV)E: < U |VIE:,

where 9y, = (8¢), = 0p(1 + pudp)~! and 8¢y, = (0¢r), = ¥r(1 + pdyr)~! denotes the Yosida approx-
imations of & and 8¢,. Though these properties can be proved by direct calculations, we only show the
proofs for (2.15) and (2.16).

Proof of (2.15).
Let V := (14 pdp)~'U. Then by (2.11), (2.14) and self-adjointness of dp, we have the first identity:

(T80, (U),U)L2 = (10p(V), (1 + pdp)V)12 = (18p(V),V)L2 = 0.
By virtue of (2.11) and (2.14), we get

(I8¢, (U), 0p(U)hr = (10p(V), 0p(U)ra = = (I(U — V), 8p(U))y2

® =

=~ (IV,06(0))a = = (106(V), U

A el

= =2 10G(V),V + (Vs = =2 (10p(V), Vs =0,

O
Proof of (2.16).
Let V := (1 + pdy,)~'U. By (2.11) and (2.14), we obtain
(104hqu(U), U)p2 = (1844(V), V + pd3p(V))L2 = 0.
As for the second identity, we obtain by (2.13),
(I8¢, (U), 8% (U))12
1
= (10 (V), 0 (U))12 = ;(I(U = V), 0%r(U)e
1 1
= V.00 )z = 5 [ (V- IV 4 b0V GV + 00V )
1
== vV i VIV + VIV e =0,
where we use temporal notation | - |g2 for the length of vectors in R2. a

Under these preparations, we state local well-posedness for (ACGL-.) in bounded domains.
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Theorem 1 Local well-posedness in bounded domains.
Let © ¢ RY be a bounded domain of C2-regular class, F € HT and 2 < ¢ < 2* (subcritical),

o _ {+oo (N=1,2),

25 (N23).

Then for all Uy € H(2) = D(y), there exists 0 < Tp < T and the unique function U(t) € C([0, To}; LZ(£2))
satisfying:
(i) U € WH2(0,Tp; L*(Q)),
(ii) U(t) € D(8p) C D(8yy) for a.e. t € [0,Ty] and satisfies (ACGL_) for a.e. ¢ € [0, Ty,
(ii)) Bp(-), Bi(-) € HP.
Furthermore the following alternative on the maximal existence time of the solution holds:
Theorem 2 Alternative.

Let Ty be the maximal existence time of the solution to (ACGL_) obtained in Theorem 1. Then the following
alternative on Ty holds:

e Ty=T, or
o Ty < T and limyp, L,D(U(t)) = +00.

In order to formulate the existence of small global solutions, we need to use the first eigenvalue A; of —A
with homogeneous Dirichlet boundary condition defined by

(2.18) b2(U) S A 'e(U), VU € Hy(9).
For F € L?(0,T;L%(2)), let F be the extention by zero of F over (T, +00). We set the notation for scaling
the external force F' in terms of F'

s+1 _
IFY? := sup {/ [F(t)|fdt |0< s < +oo} .
s

Theorem 3 Existence of small global solutions.

Let all the assumptions in Theorem 1 be satisfied and let v < A\;. Then there exists a sufficiently small
number 7 independent of T such that for all Uy € D(p) and F € L?*(0,T;L2(2)) with (Up) < 72 and
Il < r, every local solution given in Theorem 1 can be continued globally up to [0, T].

3 Solvability of Auxiliary Equation

In this section, we consider the following auxiliary equation:

(AEY) { T (1) + (A + al)dp(Un) ~ (s + SR - 10n = F(&) t€(0,8),

Ui (0) = U,

which is (ACGL_) with 94y (U) replaced by h(-) € H5, for arbitrary 0 < S < T.
For this auxiliary equation (AE"), we can show the global well-posedness:

Proposition 4.
Let © ¢ RN be bounded or unbounded domain of C2-regular class, F € HT and h € H5,0 < S < T. For all
Us € H}(2) = D(p), there exists the unique global solution U(t) € C([0, S]; L2(1)) satisfying:
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(i) U € Wh2(0,5;L2()),
(i) U(t) € D(dyp) for ae. t € [0,S] and satisfies (AE*) for a.e. ¢t € [0, 5],
(iii) dp() € HS.
First we consider the following approximate equation:

(AER) dt

U/-l (0) = U,

which is (AE") with 19¢ replaced by I8¢,. By the standard theory of subdifferential operators, we can
easily obtain the unique global solution for (AE":) satisfying whole properties stated in Proposition 4, since
the Yosida approximation 0y, is Lipschitz continuous.

Here we establish some a priori estimates for the solution U, of (AER).

{ e (1) 4+ Adp(U,) + I8, (U,) — (5 + BIR(L) — U, = F(2), t€0,8],

Lemma 5 First Energy Estimate.
Let U, be the solution of (AE?). Then there exists C; depending only on A, &, 8,7, [Uolez, |hllz= and || Flys
such that

s
(31) sup U0 + [ w(U(0)dt < C.
t€(0,S] 0
Proof.
Multiplying (AEs, ) by U, and by (2.15), we obtain
1d

§dt|Uu|12.2 + ZA‘P(U#)
(3.2) =7|Uultz + ((k = BDh+ F,UL) 2
1 1 ‘1
< (’7+ + K2+ B2+ 5) |Uulfa + §|h|iz + §|Flf2,

where we use the notation 74 := max{0,~7} and the Cauchy-Schwarz inequality. Integrating (3.2) on (0, S)
and by Gronwall’s inequality, we obtain

1 t
S+ 27 [ pUar

0
1

< 5 (UolEs +[1Ali3s +[1FI5,r)
t 1 T
+ 20y + 82+ 8% +1) / (5|Uu|]2Lz + 2,\/ <p(U,‘)do) dr
0 0

2 2
< = (Uof22 + [1Rll%s + [ FII%r) eBOwtrt+8M+1)e

B = BN

2, g2
< (|U0|]E2 + ||h||3{s + “F”%T) e(2(7++n +B )+1)S,

which implies the desired estimate (3.1). a

Lemma 6 Second Energy Estimates.
Let U, be the solution of (AE":). Then there exists C; depending only on \, &, 8,7, |Us|Lz, ¢(Ub), ||h|lxs and
[|F|l3¢r such that

2
dt < Cs.
L2

s S1av,
2 ol
(3.3) o ]tp(UM(t))+ /0 [0p(Up(t))ILadt + /0 ‘Tz ()
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Proof.
Multiplying (AE}) by 8p(U,) and using (2.15), we obtain
d
E‘P(Un) + ’\la‘P(Uu(t))hzﬂ
= 27‘P(Uu) +((x — BI)h + F, B‘PUM)U
1 3\
< 2eplU) + 5 (62 + IR +1F1E) + S0 ()lEs,

whence follows

d

(34) 20U + 310U ) B < 2rap(U) + 3 (2 + F)IhlEs + |FIEs)

Integrating (3.4) on (0,t) for ¢t € (0,5] and by Lemma 5, we get
At 2
oW +7 [ 0o Eadr
t
1
(3:5) < o(Uo) + 27+/0 e(Upu)dr + 5 (&% + B2 |~ll3es + I1Fl3r)
1
< @(Uo) +27+:C1 + 5 ((® + BO)|RlI%s + | FI2,z)  for allt € (0,5].

Thus from (3.5), (2.8) and (AE}), we derive (3.3). D

Proof of Proposition 4.
Let U, be a solution of (AE") and fix T > 0. First we show {U,},,>0 forms a Cauchy net in C([0, S]; L*(22)).
To this end, we multiply (AEZ)—(AE,’}) by U, — U, to get

1d
§E|Uu —UylE: +22p(U, - U,)

=1|U, — Ut + @ (189U, — I8p,U,,U, — U, )z .
Applying Kémura’s trick, we obtain

1d
5&'”}4 - U,,|n2_2

< vlUs = Uults + lal {1100, (Un)I12100u(Up) Iz + 180, (Up) L2189 (U)|L2 }

12l 4+ 1) {100V s + 100U 2}

< '7+IUu - Uu[]%,? + ?

Thus Gronwall’s inequality yields
t
UL(8) = U ()2 < |l (i + l')62”"/0 {180(Un(s)) I3z + 100(Un(s))IE2 } ds,

for all ¢ € [0, S]. Then by Lemma 6, we have

sup |Uu(t) = Un(t)lz < e*TV/2Colaf (s +v),

te[0,T]



which assures that {U,},>o forms a Cauchy net in C([0, S]; L?(2)). Now let U, — U in C([0, S}; L*(2)) as
©— 0. By Lemma 6, {%Uu} and {9p(U,)} are bounded in L2(0, S;L2(Q2)). Hence by the demiclosedness of

d% and Jp we have

du,, _ dU P
7 i weakly in L*(0, T; L*(%2)),

dp(U,,,) — 8p(U) weakly in L2(0, T; L%(R)),

for some sequence {vn }nen such that v, — 0 as n — co. By the definition of Yosida approximation,

T
10, = I,V lr = [ 102 (5) = T2,V (3)Esds
0
(3.6) ,
= ,21/ [0, (U, (8))|72ds < Cov2 — 0 asn — oo,
0

whence follows that J¢ U,, — U strongly in #T = L2(0,T;L%(R)). Then since dp, (Uy) = d¢(JZU,), by
the demiclosedness of 9y we find that U satisfies

% + (A +al)dp(U) — (k+ BI)A(t) —yU = Fin L¥(0, T;L2(Q)),

i.e., U is the desired solution of (AE®). O

4 Proof of Theorem 1 (Existence)

Before proving Theorem 1, we deduce some a priori estimates for the unique solutions U}, of auxiliary equations
(AE"), which are given in Proposition 4. First fix a constant R as

1 1
(4.1) R:= ma‘x{E'UO']E’+¢(U0)+X”F”‘2HT71}'
We assume
s
(4.2) 1A)2,s = / Ih(6)[22dt < R.
0

Lemma 7 First Energy Estimate.
Let Uy, be the unique solution of (AE"). Then there exists C; depending only on ), s, 3 and < such that

s

43) sup (Un(fFs + [ oUn(0)dt < CuR:
t€(0,5) 0

Proof.

We multiply (AE?) by U, to obtain
1d
§E|Uh|nz_2 + 2X¢(Uh)

(4.4) = Y|UnlE2 + ((k = BDh + F,Un)pa

< Ay +K24+ B2+

1
1 [UnlEs + |hIg2 + X|F|n2.2:
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where we use the notation v4+ := max{0,~v} and the Cauchy-Schwarz inequality. Integrating (4.4) on (0, S)
and by (4.1), (4.2) we obtain

1 ¢
§|Uhlfa +2/\/ @(Un)dr
0

1 1
< 51Uoltz + SIFI + [1kll5s

(4.5) 2, 52 t /1 r
+ j47++—52+ﬂ——+—/\/ (§|Uh|£z + 2/\/ (p(Uh)dO') dr
0 0

2 2 t T
<2R+ 4&1"2“3—“ / (%|Uh|,i2 +2) / p(Uh)dU) dr.
0 0

We apply Gronwall’s inequality to (4.5) to get

dvy+a248242
e et 4

t
%|Uh|§;z + 2,\/ o(Ur)dr < 2Re
0

4vy +x245242
2e z

SR foralltel0,S],

which implies the desired estimate (4.3). a

Lemma 8 Second Energy Estimates.
Let Uy be the solution of (AE"). Then there exists C; depending only on A, x, 3 and 7 such that

(46) sup_ (U () /|asowh<z>>ludt+ ]f‘-‘i’ﬁu

te(0,5]

dt < C2R.

Proof.
Multiplying (AE") by dp(Us) and using (2.15), we obtain

%dm + NBP(Un(8)2
= 2vp(Un) + (5 — BI)h + F,0p(Un))p

K2 + B2 1 3\
< 2e () + s + S1F R + S l0p ),

whence follows

A 2 K24+, 1
(4.7) ©(Un) + < 10p(Ur(t)lz2 < 27+0(Un) + [hliz + SIFIL2-
4 A A

4
dt
Integrating (4.7) on (0,¢) for t € (0, 5] and by Lemma 7, we get

o(Un) + / 10 (UA(0) adr
K2 +ﬂ

(49 < U0 + 1P Ir + Wl + 201 [ otwn)ar

2 2 .
< (1+'° :5 +2'y+C1)R for all t € (0, S).

Thus from (4.8) and (AE?), we derive (4.6). ]
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Now we are ready to prove the existence part of Theorem 1.

Proof of Theorem 1 (Ezistence).
We prepare a closed ball in #5 with radius R:

HE DO KE = {h(t) € L3(0, S;L(Q)) | [|RlIZs = /OS [h(t)|2.dt < R},

and a mapping
(4.9) F : HS 3 h(t) = F(h(t)) = 0ty (Un) € H5,

where U, is the unique solution of (AE").
First we show that F maps K fl into itself. By the Gagliardo-Nirenberg-Sobolev inequality, we obtain

(4.10) 1094 (UA)IEx = |UAIESGY, < ConlUnlze ™ Un[35

ey F)0-0+(G3)s

We apply the elliptic estimate to (4.10) to obtain

where parameter § satisfies

- - - 1— -1 -
(4.11) |UR 289Dy, 267D < ¢ {|00(Un) 2 + |Unl2a } OO Dp(U)0Y),

where C denotes a general constant. Our assumption on g being Sobolev subcritical assures (1—¢)(g—1) < 1.
Thus by Young’s inequality, for arbitrary £ > 0 and appropriate x > 1 it holds that

(4.12) {100(UR) 22 + [UAf2: 370 (0)69D < £ (180(Un) 22 + [UnlZa) + Cep(Un)X,
where the constant C. depends on . Combining (4.10), (4.11) and (4.12), we get

(4.13) |0%q(Un) [z < € (100(Un)[E2 + UnlEz) + Cep(Un)X.

Integrating (4.13) on [0, S] with (4.3) and (4.6) gives

S S S
/0 O (UNIErde < & [ (09Un)i +UnES) e+ . /0 (Un)dt
(4]
< eC3R+ M.(R)S,

where M, (-) denotes a non-decreasing function depending on e.
First fix € := % and then define S by

. R
(4.14) S := min {T, m—s—(—R-)} .
Then [ 0% (Un):dt = Ji° |F(h)|Zdt < R, that is F maps K3 into itself.
Next we prove the weak continuity of F. Since the continuity is a local property, we could focus on
compact neighbourhoods, which are metrizable because L2(0,S;L2?(f2)) is a separable Hilbert space. Let
{hn}nen be a sequence in HS such that

hn — h weakly in L2(0, S;L2()),



and Uy, , Uy be unique solutions of (AE"") and (AE") respectively. Lemma 8 assures the equi-continuity of

{Uh,,(t)}nen indeed:
¢ dUp,
< —_n
< [%2=0)

t
< (/ dU,

du,

d:“ (r)dr dr

0.0~ U, () = | ‘

L2
2 H t 3
Ir (1) . dr> (/8 ld’r)
<VGRVi=s.
Lemma[.s ';]wd 8 and Rellich-Kondrachov theorem read that {Un, (t)}, ¢y is relatively compact in L%(2) for
all ¢ € [0,9).

By Ascoli’s Theorem and Lemmas 7, 8, there exists a subsequence {hn'}n'en C {hn}nen and U €
C([0, S]; L%(£2)) such that

strongly in C(0,T;L%(Q))

4.15 Un, U

(415) s and weakly in L2(0, T; L2(52)),
dUy,,

(4.16) h % weakly in L2(0, T;L2(2)),

(4.17) 8¢(Un,,) = 0p(U) weakly in LZ(0, T;L%(2)),

(4.18) Ng(Un,,) = (V) weakly in L?(0, T;L*(®)),

here we used the weak closedness of & and 8¢ in L?(0,T;L?(Q)) in (4.16) and (4.17).
Since U satisfies the following equation:

% +(A+al)dp(U) — (k+ BI)h — YU = F,

U coincides with its unique solution Uj.

We can show that these convergences do not depend on choices of subsequences by contradiction, by
the uniquencss of the solution of (AE"). More precisely, if 9vq(Un,) 7 84q(U) then there exists another
subsequence {hn»}nreN C {Rn}nen \ {hn}nren such that {81g(Un:)}nwen does not accumulate to 8y, (U).
However repeating the above argument, we can choose subsequence {Up#}nmen C {Un»}nen such that
0Yq(Un, ) = O9q(U), which leads to a contradiction.

Then the following convergence holds:

F(hn) = 0tgUn,, — 0tgU = 84Uy = F(h),

whence follows the weak continuity of F.
Thus, we can apply Schauder-Tychonoff’s fixed point theorem on F and K ﬁ to obtain a fixed point h,
i.e., h satisfies

(4.19) h = F(h) = Oyg(Un).-
By (4.19) the corresponding solution U, satisfies:
Vs + (A + al)dp(Un) — (k + BI)h — U
dt
(4.20) U,
=5 T (A +aD)0p(Un) ~ (s + BI)0%,(Un) — YUn = F.

This means Uj, is a desired solution of (ACGL_). m]
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5 Proof of Theorem 2

Before showing the uniqueness of the solution for (ACGL_), we prove Theorem 2.
Let Tp be the maximal existence time of a solution of (ACGL_),

Ty :=sup {S > 0| 3 a solution of (ACGL) on [0, S]} .

Proof of Theorem 2.

To ensure the alternative, we rely on proof by contradiction. Assume Ty < T and the assertion limyz, (U(t)) =
+00 does not hold. Then there exists monotonically increasing sequence t, 1 Tp such that ¢(U(t,)) < C
holds for all n € N We repeat the same argument as before with U(0) replaced by U(t,) to assure the
existence of ¢ > 0 independent of n such that a solution of (ACGL_) exists on [t,,t, + 0]. Recalling the
definition of R (4.1), we define

p = max {C(/\l_1 +1)+ %HF”%,I} > 1.
Then by Poincaré’s inequality, it holds for all n € N
1
pz XllFlli + 3|U(ta)[Es + @(U(tn))-

Additionally we define o by

1
o:=min{T - Ty, —— ¢,
{ o 2Ms(p)}

which is independent of n. We can deduce F maps K into itself in the same way as before. Thus we can
construct solution on [t,, t, + o] applying Schauder-Tychonoff’s fixed point theorem again.

Since {t, }nen converges upto Ty, there exists Ny € N such that for all n > Np, it holds that Ty < t, + §.
This means the local solution can be extended up to [0, To + %} , whence follows the contradiction with the
definition of Tp. (]

6 Proof of Theorem 1 (Uniqueness)

The uniqueness of the solution of (ACGL_) relies on the corollary of the following lemma. Set d, be

(6.1) d,=max{1,T;—1}.

Lemma 9.
For all U = (u1,uz),V = (v1,v2) € R?, 4,5 = 1,2 and r > 2, the following inequality holds:

(6.2) |01 2w = VI 20,) (4 — )| S dr (U2 + VT2 [U =V

Proof.
When we assume |U| > |V|,

(U 2w, — [V 20,) (u, — vy)
(6.3) ={IU"*(us = vi) + (U2 = [VI"2) v} (u, — v))
<SUIAU - VE+ (UIT2 = VTR VI - VL



Similarly when |V| > |U], it holds:
(U1 2w = VI %03) (uj — ;)
=(|V["%v; — U™ 2w) (v; — u )

@0 VIR~ )+ (V12— U2 ) (05 - )
VIRV = UR+ (VI = Ui IV - Ul

Let d, be

(6.5) dr——-max{%,%}.

Here we claim for all U,V € R? and r > 2, the following inequality holds:

(6.6) ||U|"2 - |V|’_2| <d, (ur—3+ |V|"3) U -V].

Since the above inequality (6.6) holds clearly when |U||V| = 0, we assume [U]|V| # 0. When 3 > 7 > 2, we
-3
assume without loss of generality |U| > |V|, then (lgl)r > 1. Factoring out [U["~2 from the left hand side
of (6.6), we obtain ’
“U|r—2 _ |V|r—2l — |U|r—2 _ |V|r—-2

V| r—3
=|U|"34|U —<|—> 1%
vl {| (@) ™
r— r— 1 r— r—
=3 (U - V) < |U| 3IU—VIS§(IUI S+ I U -V

When r > 3, we must use concavity of the function | - |"~3. First we deform the left hand side of (6.6) to

obtain
t=1

U2 = VT2 = [{Iv] + ol = VDY

~ [ L v+ vl = vy

= [ G VI U=y e
1

= =2) [ VI 1= VDY U1 - Vet
1

<e-2) [ (VI+ui- vy w - Via

1
—(r— 2)/ U]+ (1= V)2 U - V]dt.
i
By the concavity of the function | - |"~% with 7 > 3, it holds that
{tUl+ @ = DIVIY™* < U™ + @ = v,

whence follows

r—2
T2
which leads to the desired inequality (6.6), because of the symmetricity of the right hand side of (6.7) with
respect to |U| and |V|. When |U| > |V, we combine (6.6) with (6.3) to deduce )

(68) (U120 = VI 203) (a5 = v3)] < {02+ d, (U =2VI+ VIT=2) U - VIR,

(6.7) =2 v < (wr=2+vir=2)w-vi
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First we assume 2 < r < 3, then |U|"~3 < |V|"~3 holds so that
(6.9) [(1U1 2w = [VI7203) (u; —v5)| < (U2 4+ |VIT72) U - V2.
When r > 3, applying Yong’s inequality to |U|"~%|V|, we obtain

=3 <T—'3 T—2 1 r—2
(6.10) v < T3 o,

whence we have the desired inequality (6.2). For |V| > |U|, we combine (6.6) with (6.4) and repeat the same
argument as above to obtain (6.2). (]

As for the corollary of Lemma 9, we obtain the following by Holder’s inequality.

Corollary 10.
For all U,V € L7() the following estimates holds with some constant C.

(6.11) (89 (U) — 89 (V),U = V2| < C (% (U) 2+ 4(V)72) U - Vi,
(6.12) (2%r(U) = 89 (V), I(U = V)ia| < C ($(U) 2 + 9n(V) ") |U = VIE..
‘We proceed to the proof of the uniqueness.
Proof of Theorem 1 (Uniqueness).
Let U,V be two solutions of (ACGL-) with U(0) = Up and V(0) = V; on [0,5] for any S € (0,7p).

Multiplying the difference of two equations by U — V/, using the linearity of d¢, (2.14) and Corollary 10, we
get

;%w — V4 220U - V)
(6.13) S vlU = V2 + (5 + I8) (8% (U) — 89e(V)),U = V)
Sl = VIE2 +C (vo(U)2 + %6(V)2) U = Vs,

where the constant C depends only on ¢, %, 5.
By our assumption on g being Sobolev subcritical, using the parameter 7 defined by

1_(1 1 n
(6.14) rie (2 N) A=-m+3
we obtain
(6.15) Wie < 20(W)) T WL
Thus by(6.13), (6.15) with W = U — V and Young’s inequality,
1 1
(6.16) LU = VI 420U ~ V) < C (602 + 4oV )} U - VI,

2dt
where the constant C depends only on A, &, 8,7, 7.

Since S < Tp, we can derive the uniform boundedness of p(U) and ¢(V') on [0,S], consequently the
boundedness of |U|p2 and |V|p2 by Poincaré’s inequality. By virtue of (6.15) with W = Uor V, we get the
uniform boundedness on [0, S] for 1,(U) and 1,(V) as well.

Thus we see that 1,(U) and 14(V') are uniformly bounded above by a positive constant M on [0, S]. Then
the coefficient of |U — V|2, in the right hand side of (6.16) independent of t. Applying Gronwall’s inequality
to (6.16), we obtain

(6.17) [U(t) = V(£)[Le < [Up — VoleeZCMS;_z,

whence follows the uniqueness. [m}



7 Proof of Theorem 3

First we prepare some lemmas.

Lemma 11.
Let all the assumptions in Theorem 3 be satisfied. There exists £o > 0 and § > 0 such that for all U €
D(yp) = H3(Q) satisfying ¢(U) < o, it holds that

(7.1) (MU — kdYU — U, Uz > 8p(U) = 20M|U|Z..

Proof.
We recall Gagliardo-Nirenberg’s inequality with parameter 7 given in (6.14)

(7.2) ¥y (W) < Cop(W) Ty (W)3,
where Cj denotes the best constant. Combining (7.2) with Poincaré’s inequality (2.18), we get
(7.3) Ug(W) < Cooap(W)E,

where o is given by

2g-Ng+2N
4 .

(74) gy = AT
We multiply A3p(U) — k8¢ (U) — yU by U and use (7.2) and (2.18) to get

(AOp(U) — 60y (U) — YU, ULz = 2Xp(U) — gripg(U) — 7|U 2

(7.5) _ . _
> (20— 2707 — exGooae(U)E 1) (U),

where we use the notations v; := max{0,v}.

_am1) 72
By the assumption v < A1, we can take ¢(U) < (M) =: g9 to obtain some § = 2\ —

qrCho2

2'y+/\1_l — gkCyoap(U)#~1 > 0 in (7.5), which means the first inequality of (7.1). The second inequality of
(7.1) follows directly form (2.18). [m]

Next Lemma is essential for proving Theorem 3.

Lemma 12.

Let all the assumptions in Theorem 3 be satisfied. There exists k € (0,1) independent of T' such that for
all Uy € D(p) and T > 0, F € L?(0,T;L3(Q)), if ¢(Us) < (keo)? and ||| F||| < keo, then the corresponding
solution U(t) on [0, 5], 0 < S < T satisfies

(7.6) e(U(t)) <e VEED,S].
Before proving Lemma 12, we prepare two more Lemmas.

Lemma 13.
Let T > 0, ||F|| < r and § > 0. Then the following estimate holds:

1-e+¢

e for all t € (0, 7).

t
(.7) / |F(r) e ¢dr < 7
0
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Proof.
Fix the floor function |¢] be the lowest integer less than or equal to ¢. Then we split the left hand side
of (7.7) as

t 1t) ¢
(78) / |P(r)e=5¢Ddr = / F(r)le=5¢Ddr + / |F(r)|se .
0 0 Lt

By the definition of |||-| and Young’s inequality, the second term in the right hand side of (7.8) is bounded
above by 7. If 0 < t < 1, then the first term in the right hand side of (7.8) is zero. When ¢ > 1 applying
Young’s inequality to the first term in the right hand side of (7.8), we derive

1 o
| 1E@ae e = e | 1F@lae e
0 0

[t]-1 8+1
(1.9) <est 3 / |F(r)zetdr
s=0 VS

ltI-1 , 541 . 3 s+1 3
<e % Z (/ |F(T)|fzd7‘) (/ e”’d’r) .
§=0 s s

By the definition of |||-]||, we obtain

t lf'.l_l s+1 %
/ [F(r)|2e™ % "dr < re~® Z (/ ez‘s"dr)
0 5=0 s

lt]-1
< re~dt Z 6<5(s+1)
s=0
[t)-1
(7.10) - Z S(s+1-1)
s=0

1t]-1
=re&([t]-t) Z e-ﬁs
5=0

s(lej-pL—e 70t et _ gdt

1-ed | 1-e3

=re s

whence follows (7.7). [m}

Lemma 14.
Fix 6 € R. Let f(t) € L*(0,T) and u(t) be an absolutely continuous function on [0, T] such that

(711) 5 O + S0l < 170 )

Then it holds that

(7.12) [u(®)] < Ju(0)le™® + / t] f(M)e ¢ dr vteo,T).
0

Proof.

Multiplying €%* > 0 by (7.11), we obtain

1 d 1d , 2
(7.13) 56”‘&-tlu(t)|2 + 8”0 u(t)|? = 23 {eu(e)}” < e f ()l ut)]-
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Integrating (7.13) on [0,t] with ¢t < T, we derive
Ly st 2 1 2 b oo 57
(7.14) 3 {e" @I} < SluO)F + L€ [£(r)]e’ [u(r)ldr.
We apply the following Gronwall type inequality to (7.14) to get
¢
(0] < @)l + [ erIf(ldr,
0

whence follows (7.12).

Lemma (Brézis [1], p. 157.).
Let m € LY(0,T;R) such that m > 0 for a.e. on (0,T) and let a an non-negative constant. Let ¢ be a
continuous funtion on {0, T} into R satisfying

1 t
%¢2(t) < ga+ / m(s)é(s)ds for all ¢ € [0,T].
0
Then the following estimate holds:

t
lo(t)] < a+/0 m(s)ds for all t € [0, 7.

Proof of Lemma 12.
By the following Lemma and Theorem 1, it is ensured that o(U(t)) is absolutely continuous.

Lemma (Brézis [1], p. 73.).
Let u € W12(0, T; H) such that u(t) € D(d¢) for a.e. (0,T). Suppose that there exists g € L*(0,T; H) such
that g(t) € d¢(u(t)) for a.e. (0,T).

Then the function ¢ — @(u(t)) is absolutely continuous on [0, T).

We shall prove Lemma 12 by contradiction. If there exists o € (0,.5] such that ¢(U(tg)) > €o, by the
continuity of p(U(t)) and ¢(U(0)) = p(Us) = keo < €, there exists ¢; € (0,tp) such that ¢(U(t)) attains €o
for the first time, i.e. p(U(t)) < &o for all t € [0,¢1) and (U(t1)) = €o.

Multiplying (ACGL_) by its solution U and by (7.1) we obtain for a.e. t € [0,¢,],

1d
(7.15) §a|U(t)|n2.z + 200 |[U@)E2 < |F(8)IL2|U (t) Iz,
Then we can apply to (7.15) Lemmas 7.12 and 7.7 to get
t
VO < ahoe ¢ + [ 1F(Ohae 0 ar
-

t
(7.16) < |Uolee + / |F(t)|2e~ 2N ¢-")gr
0

1 — e~ 26M + 62”“

< (2)\1_1 + ) keg = Cskeop.

1 —e26M
Multiplying (ACGL_) by 8p(U), and repeating the same arguements as for (4.7), we get

K2+

(7.17) :

d A 2 B2 2 L2
3 o) + 210U < 2r00(U) + “EL 00y V) + 5P s

dt
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From (4.10), (4.12) and (7.17), we derive
d A 1
(7.18) 70+ glaw(Uﬂfz < 2749(U) + Du|U[E2 + Dag(U)* + XiFlfn
where the constants D; and D, depends only on ), «, 8 and g. Hence by (7.16), we have
d 1
(7.19) EZ(p(U(t)) < 27460 + D1(05k80)2 + Doek + XlF(t)lEz

Fix a constant k € (0,1) given by
1 -1
(7.20) k := min { (Eo + 27, + D1C2e + Dzsf)‘_l + 30 + 1) s

(‘52:(;,;50 +0671Cse0 + 7+ + %cgso + 92—255'1 + Elief’ + 1) _1} ,
Integrating (7.19) on [s,t;] with 0 < s < ¢;, we obtain
(121)  @(U(t1)) < p(U(s)) + 2v+€0(ts — 5) + D1(Cskeo)*(t1 — s) + Daeg(t1 — 8) + i(’cEO)z(tl -s).
If t, < k then we take s = 0 to deduce
o(U(81)) < (Uo) + 2ys keots + Dy (Cskeo)ts + Dakelty + %(keo)z’tl
(7.22) < (keo + 271k + D1C2k%eo + Dael ™ + %k%o) keo

_ 1
< (Eo + 274+ + chgEo + D266( 1 + XEO) keo.

By the definition (7.20) of k, we find p(U(t1)) < €q, which contradicts the definition of ¢;.
We consider next the case t; — k > 0. Again (7.1) and multiplying (ACGL_) by U we obtain for a.e.
telo, t1],

(7.23) 3 VO +6CreU) < [FOLIU o

We integrate (7.23) on [t; — k,t,], then we obtain by (7.16)

1 ty 1 ty
W@ +6 [ e < gUe - R+ [ POk
(7.24) t1-k ti—k
< 5 (Cskeo)? + (Cokeo)ke,

t1 t1 % 1% 3
/ |F()|edt < ( / |F(t)|§zdt) ( / dt)
ti—k ti—k ty—k

< {k(keo)?}? k* = k2.
On the other hand, integration of (7.21) with respect to s on [t; — k, t1] yields

where we used

t1 1
(7.25) o(Ut))k < / o(U(s))ds + vy k%0 + %(Cgkeo)zkz + 92353%2 + §X(lce(,)2lc2.

t
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Combining (7.25) with (7.24), we deduce

ot D Dy 1
ga(U(tl))k < (—-5—0560 + (5_1051650 + 4 + Tl(Cgk)gso + T2€0Y ! + ﬁk260> k2€0
(7.26) 5-1 D D 3
< (—2—0560 + 5_10580 + v+ + —2-1-0260 + TZE?)(_I + 550) kzeo‘

By the definition (7.20) of k, we obtain again that p(U(t1)) < €0, which leads to the contradiction with the
definition of t;. Therefore p(U(t)) < go for all ¢ € [0, S]. ]

Proof of Theorem 3.
Theorem 3 is a direct consequence of the uniform boundedness of ¢(U) based on Lemma 12 and Theo-
rem 2 with r = kegp. ]
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