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Remark on global regularity for the rotating
Navier-Stokes equations in a periodic domain

Nobu Kishimoto (Kyoto University)*

1. Introduction
In the study of the initial value problems for nonlinear dispersive equations under the
periodic boundary condition, since the pioneering work of Bourgain [3] about nonlinear
Schrodinger equations and the KdV equation, tools from combinatorics or number
theory such as the divisor bound (Lemma 3.2 below) have been exploited to estimate the
strength of specific nonlinear interactions by counting the number of sets of frequency
modes satisfying a specific condition. The aim of this article is to develop this idea in
the case of more involved dispersion relation arising in equations of fluids.

We consider the dispersive effect of the rotating incompressible Navier-Stokes equa-
tions in a periodic domain T? := (R/27Z)3:

ou+ (u- Viu+ QJu — vAu = —Vp, t>0, zeT,
V-u=0 and u|t=0=uo,

(1.1)

where! u = (ul(t,z),u*(t,z),u%(t,z)) and p = p(t,z) are respectively the unknown
velocity vector field and scalar pressure at the time ¢ > 0 and the point z = (z1, Z2, z3)
in space, while uy = (ud(z),u3(x), ud(x)) is the given initial velocity field satisfying
V - up = 0. Here, the Coriolis term QJu with the skew-symmetric matrix

0 -1 0
J=11 0 0
0 0 O

represents the effect of rotation around the vertical z3 axis. Q € R is the Coriolis pa-
rameter, which is twice the angular velocity of the rotation, and v > 0 is the kinematic
viscosity coefficient.

The Coriolis force appears in almost all of the models of meteorology and geophysics
dealing with large-scale phenomena. In 1868 Kelvin observed that a sphere moving
along the axis of uniformly rotating water takes with it a column of liquid as if this
were a rigid mass (see [7] for references). After that, Taylor [17] and Proudman [16]
did important contributions. Mathematically, linear wave dynamics for rotating fluids
was investigated by Poincaré [15].

It is known that the dispersive effect of the rotation ensures the existence of global
smooth solutions to (1.1). A typical statement is the following:

In this note, we reorganize and summarize the paper [11] by the author and Tsuyoshi Yoneda (Uni-
versity of Tokyo). More information and detailed proofs can be found in [11].
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“For any v > 0 and ug in a suitable space, there exists £y > 0 depending
on v and (the size of) uy such that the initial value problem (1.1) with
|2] > € has a unique global-in-time smooth solution.”

In the case of R3, this was proved by Chemin, Desjardins, Gallagher and Grenier
[5] and Koh, Lee and Takada [13] by means of the Strichartz-type estimates. In the T3
case, where the global-in-time Strichartz estimates are no longer true, Babin, Mahalov
and Nicolaenko [1, 2] proved the above statement through the analysis of the resonant
equation, which can be regarded as the formal limit of (1.1) as |Q| — oo.

We notice that Babin et al. proved the result for three-dimensional tori with any
aspect ratios. They also pointed out that the estimates on the obtained global solutions
depend discontinuously on the aspect ratio of the torus. For instance, the global-in-
time bound of Sobolev norm obtained in their works is independent of the viscosity
coefficient v for generic periods ([1]), whereas exponential-in-v~! dependence may occur
in the “worst case” ([2]).

In this article, we shall make a refined analysis on the resonant equation. We
will focus on the specific torus T2 with the common period in each direction; this is
the situation where the combinatorial techniques work most effectively. Our refined
estimate on nonlinear interactions in the resonant equation (Theorem 3.1 below) will
enable us to answer the question of existence of global smooth solutions in the case
of the rotating Navier-Stokes equations (1.1) but with a slightly less viscosity (—A)*
(1 > a > 2) instead of the usual Laplacian?, as well as to give a polynomial-in-v~*
estimate on the global solutions.

Fractional Laplacian operators have been employed in many theoretical and nu-
merical works instead of the usual viscosity; see, for example, [4] and [18]. Here, we
regard the study of fractional Navier-Stokes equations as the first step towards the
inviscid case. In the spatially decaying setting, Koh et al. [14] showed long time exis-
tence of solutions to the Euler equations under fast rotation assumption by combining
the Strichartz estimates with Beale-Kato-Majda’s blow-up criterion. In [1], Babin et
al. considered long time solvability of the rotating Euler equations in the periodic
setting, but only for specific periodic domains (specific aspect ratios) for which the
“non-trivial resonant part”3 is excluded in the nonlinear interactions. On the other
hand, in a cylinder case, Golse, Mahalov and Nicolaenko [8] considered bursting dy-
namics of the inviscid resonant equation. Thus, we may not expect existence of inviscid
smooth global flow in general periodic cases where “non-trivial resonances” do exist.
Nevertheless, we can progress a less viscosity effect case (fractional Laplacian case) in
the periodic domain T? = [0, 27)3.

In the following analysis, we essentially use the spatial Fourier transform denoted

2This can be easily proved using estimates given in [1, 2] unless we consider a torus with an aspect
ratio that is of the “worst case” of [2]. It can be shown that the regular torus T3 = [0,27)3 is in
fact among the “worst case”; see the discussion in [11, Section 4.4].

3This part is essentially related to the three-wave resonances of the Rossby waves in physics (see
(12, 19] for example).
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a(n)e™®  wi =u(n) = 1 u(z)e ™ dz
ue)= 3 AW with (Fu)(n) = ) = /1r (z)e=" dz.

nez3

We will assume that all the vector fields are mean-zero. This assumption is valid
from the following observation: Let

f(t) := (ug(0) cos Qt + u3(0) sin Q, —uy(0) sin Qt + u3(0) cos U, U3(0)).
Note that f(¢), which is the solution to the following ODE:
A +QIfE) =0,  f(0)=(0),

is the average over T? of the velocity component of the solution to (1.1) at . Then the
following invertible transforms

u(t,z) — u(t,a:+/0t f(s)ds) — f(t) and p(t,z) »—»p(t,x+ /Ot f(s)ds)

preserve the equation (1.1), and the new velocity field has zero mean for all time.
We therefore define Sobolev spaces H*(T?) without distinguishing homogeneous
and inhomogeneous ones, as follows:

H(T°) := {u= Y d(n)eine

n€eZ3\{0}

fulle = (3 @) " < oo).

neZ3\{0}

Note that s; < s implies ||ulg=: < ||u||g=2 and H® C H*.

2. Review of previous results
Before discussing our results, we briefly recall the strategy of [1, 2] (see also [6]).

2.1. Poincaré propagator

Let P be the Helmholtz-Leray projection onto divergence-free fields, which acts as
multiplication by the matrix P(n) in the Fourier space:

N nin 1 n% + n§ —NniNe —NiNn3g .
i
]P(’n,) =1Id - ( |n|2])15i,j£3 = W —TNaNg n% + n% ;n2n32 , MmE Z \ {O}
—ngny —Nzngy Nni+n;

As usual, we apply P to (1.1) and consider the equation for the velocity field only:
Ou+ P(u - Vu+ QPJPu + vAu = 0, Ule=o = up With V -y =0, (2.1)

where A := —PAP is the Stokes operator.
The Poincaré propagator L(Qt) = e~ PP is defined as the unitary group associated
with the linear problem

D+ QPJPO =0, B|_, =D with V-Po=0.



We observe that the operator PJP can be written in Fourier space as multiplication by
a matrix

0 —ng N2

]P(n)J]P’(n) I |2 (n3 0 -,

—Ng N 0

which has eigenvalues :I:iﬁ, 0.
Moreover, for each n € Z3 \ {0}, the vectors e*(n) € C* defined by

. \/_| “ Y (ning % ina|n|, nang F ina|n|, —|n*?) if n*:= (n,ng) #0,
e*(n) =
\/_(1 Fisgn(nz), 0) if nP=0

are eigenvectors corresponding to :I:z'lﬂnal and form an orthonormal basis of
{aeC|n-a=0}= RanP(n).

We define the orthogonal projections I3 := (@, e*(n))cse(n), so that the Poincaré
propagator L£(£2t) acts on a dlvergence—free and mean-free vector field as

o~ in-z QTS g in-e
a(z) = Z Z IZa(n)e = [L(N)a](z Z Z T O P
n#0 oe{+} n#0 oe{+}

2.2. Van der Pol transformation, Resonant equation

Next, we introduce van der Pol transformation v(t) = L(—Qt)u(t). Since L£(Q) com-
mutes with A, the equation (2.1) becomes

O + vAv + B(%t;v(t),v(t)) = 0, V|tmo = up  with V- up =0, (2.2)
where
B(Qt;a,b) := L(—Qt)P(L(Qt)a - V) L(Q)b
for divergence-free mean-zero vector fields a, b, so that

[FB(Qt;a,0)](n)= > > e MWk (I7a(K) - im) T2 [TI25(m)],
0=(01,02,03)€{+}3 n—k+m

— ms ng
e = |k|+"2ll BSTal

Now we decompose B(t; a,b) into the resonant and the non-resonant parts as
B(Qt;a,b) = Br(a,b) + Bnr(S; a,b),
where

[FBr(a,0)](n) == > Y (Hga(k) - im) I [I%25(m)],

oe{£}3 n= k+776

Wnk



[FBxp(Q;a,b)](n) = D> > e MRen (I7G(K) - im) 112 [T1226(m)].
oe{+}3 n:k+926
"-’ka

It is expected that the contribution from the non-resonant part becomes smaller as
|2] gets larger due to the fast oscillation e~**“7km. Therefore, we are led to consider
the following limit equation, which we call the resonant equation:

U +vAU + Bp(U(t),U(t)) =0,  U|_,=uo with V-up=0. (2.3)

In fact, this intuition can be verified by an integration-by-parts argument in ¢, and
existence of the global smooth solution of (2.3) will imply that of (2.2) for || large
enough; see [11, Section 6] for a proof of this fact and Appendix below for an outline
of it.

Let us take initial data from H* and focus on how to obtain a global-in-time a priori
estimate on the H! norm of the smooth solutions to the resonant equation (2.3).*

2.3. Reduction to estimating non-trivial resonances

The set of resonant frequency triplets {(n, k,m)} is divided into two classes according
to ngksms = 0 and ngksms # 0. We call the former trivial resonances (this corre-
sponds to two-wave resonances considered in [1]) and the latter non-trivial resonances
(this corresponds to strict three-wave resonances [2]). The matter is then reduced to
estimating the contribution from the non-trivial resonances, as follows.

For a 3D-3C (three-dimensional three-component) vector field a = (a1, as,a3) :
T3 — R3, we define

2m
e 2D-3C vector field @ by a(z") := % / a(z)drs, or a(z") = Z a(n)e™?,
0

n3=0

o 3D-3C vector field aose by Gose(Z) 1= a(z) — Tx"), OF Gose(z) = Z a(n)ene,
n3#0

e 3D-2C vector field a" by a*(z) := (a1(), as(x)).

It is easily verified that for any divergence-free and mean-zero vector fields a, b,

BR(E; bosc) = BR(aosc, E) = BR(E, -5)osc = 0,
Br(a,b) = Bg(a,b) = (Pa(@" - V?)b', (@ - V*)bs),

where Py is the 2D Helmholtz-Leray projection and V* = (8;,,,8,,). Note that V" .
Up" = 0 if V- up = 0. Moreover, it is known ([1, Theorem 3.1], [6, Proposition 6.2(1)];
see also [11, Lemma 3.1]) that

BR(aosca aosc) = 0.

4The existence of local-in-time smooth solutions can be shown by a standard fixed-point argument.
See [11, Section 2] for details. Also, the same argument applies to the case of H® data for s > %



Therefore, we have Br(U,U) = Br(U,U), and the equation (2.3) is decoupled into the
following three equations:

AU + VAT +Py(T" - VT =0, ¢t>0, z€T? 24)

T"|_,=%" with V*. %" =0, '
3;U} + I/AhU;; + (Uh . Vh)U3 =0, t>0, zxe€ T2, (2 5)
U3lt=0 = u_0,3a

OiUosc + VAUose + BR(ﬁa Ussc) + Br(Uosc, ﬁ) + BR(Uosc, Uosc) =0, t>0, z¢€ TBv
Uoscl e = Uoosc  With V - ug o =0,
(2.6)
where Ah = —PhAh]P’h. _
Using (2.4) and (2.5), a global-in-time a priori estimate for the 2D part U(t) can
be obtained straightforwardly (see Section 4.2 below):

t
[T @)l + V/o [T () 5dr < C(v, [Toll) < oo, 2.7)

1

where the constant C' depends polynomially in ¥~ and ||ug||g:. For the remaining

part Uy, we use the fact that
<BR(ﬁv Uosc) y Uosc>H1 = <BR(Uosm U) ) Uosc)Hl =0.

([1, Theorem 5.3], [6, Proposition 6.2(2)]; see also [11, Lemma 3.2].) Then, we only need
to control the term (Br(Ussc, Uosc) , Uose) g corresponding to the non-trivial resonances
in the H! energy estimate.

2.4. Previous estimate on the size of non-trivial resonances

For n € Z3 := Z3 N {n3 # 0}, let A(n) be the set of all k € Z* such that (n,k,n — k)
is non-trivially resonant, and for K > 0 let Ax(n) := A(n) N {|k| < K}. The key
observation in [2] is the following:

Lemma 2.1 (cf. [2], Proof of Theorem 3.1). There exists C > 0 such that

sup #Ak(n) < CK?, VK > 1.

neZd

Proof. Fix an arbitrary n € Z3. For k = (k" k3) € Ax(n), there are at most O(K?)
choices for k*. Now, we observe that k € A(n) implies

0= H (01,02, 4) _ (k_§ " (ng——ka)z B n_§)2 3 4k§(TL3 — k3)2 _ P(Tl, k)
et T NRE T =k [0/ TRl = kP [alfkEn — k[
01,02

where P(n, k) is a non-degenerate polynomial of degree 8 in k3. Hence, if we also fix
k", then there are at most 8 choices for k3. This implies the desired estimate. O



Roughly speaking, Lemma 2.1 says that the number of non-trivial resonant fre-
quencies is at most “2D like”, though the interactions are genuinely 3D. This upper
bound, together with an argument using the Littlewood-Paley decomposition, allows
us to derive a 2D-like estimate:

C
|<BR(Uosc, UOSC) ’ UOSC>H1| < C”UOSCHEIl”Uoscqu < V”Uosc”ir2 + ;”Uoscnirl-

Combining this estimate with the H! energy argument on (2.6), Gronwall’s inequality
and the straightforward L? energy equality

t
[ Uose ()72 + 21//0 | Uose(7) I3 d7 = [0 0ec 1725 (2.8)
we have

t C t
Vel + ¥ [ Ve B < el ex (5 [ 0hme(r) B )
0 v Jo (2.9)

C
< Nuoeellzn exp (s luoasclZ2), > 0.

This and (2.7) will imply the H* a priori estimate on U(t), as desired.

We remark that the above argument yields only an exponential-in-v~! bound on
the solution. Moreover, it seems difficult to obtain any global-in-time bound from the
above estimates in the case of fractional viscosity (—A)® with o < 1.5

The above argument can be clearly applied to the torus with arbitrary aspect
ratios;®

T, 6, = (R/27Z) x (R/276,Z) x (R/270,Z), V0,6, > 0.

The only difference is to consider frequencies n € Zj ,, := Z x (67'Z) x (65 1Z) instead
of n € Z3. In fact, it is easily shown ([1]) that for almost all (61,0;) it holds U,A(n) =

0, hence (Br(Ussc) Uosc) » Uosc)gn = 0, which implies much better results. However,
concerning the regular torus T3, no estimate better than Lemma, 2.1 has been obtained.

3. Main result and its proof

Proof of the “2D-like” estimate in Lemma 2.1 is quite simple and applies to the torus
with arbitrary aspect ratios. It is actually almost “trivial” in the sense that the con-
straint w?,,.. = 0 should reduce possibility for k£ by at least one dimension.

Now, it is natural to expect that the non-trivial resonance is in fact much rarer
event, since the resonance relation determines a surface of nonzero curvature in the
frequency space. For instance, the number of 3D integer points on a sphere of radius
N, which are determined by one constraint |n| = N and therefore initially expected to
be at most O(N?), is in fact known to be O(N**¢) for any ¢ > 0.

5 Although the non-trivial resonant interactions are quantitatively “2D-like”, they are actually 3D
interactions, and thus we cannot exploit the vorticity framework for these interactions as in 2D.
5We may always assume the period in the x; direction to be equal to 27 by rescaling the torus.



For nonlinear dispersive equations such as nonlinear Schrédinger equations and the
KdV equation, tools from elementary number theory are used to derive better bounds.
However, such analysis seems less developed for equations of rotating fluids due to
complicated dispersion relations.

Our main result is a justification of this intuition for the regular torus T3:

Theorem 3.1 ([11], Lemma 5.1). For any € > 0, there ezists C, > 0 such that

sup #Ak(n) < C.K'*¢, VK > 1.

neZ3

Namely, the number of non-trivial resonant frequencies is actually at most “(1+€)D-
like”. Note that Theorem 3.1 also holds in the case of rational torus, i.e., torus with
rational aspect ratios.

Our proof is based on a combinatorial argument with the following divisor bound:

Lemma 3.2 (cf. Theorems 278 and 315 in [9]). For any € > 0, there exists C. > 0
such that the following estimates hold for any positive integer N.

(i) #{divisors of N} < C.N*.
(i) #{(z,y) € Z*|2° +y* = N} < C.N*.

Proof of Theorem 3.1. For given n,k,m € Z3, positive integers v, k, , dy, di, d,, are
uniquely determined so that

In| =vV/dn, |k|=58Vdk, |m|=pu\/dn, dn,dk, dn: square-free.

We first see that d,, = d, = d,, if w3, = 0. In fact, we have

n2 nsks k3 _ m3

T — 4020375 =
In|? In|[kl ~ |k[2 Jm?’

hence |n||k| = vk+/d,di must be a rational number, which means d,, = dj, since both d,,
and dy, are square-free. Similarly we have d,, = d,,,. Therefore, we may write uniquely
as

In| =vVd, |k|=xVd, |m|=upVd, d: squarefree.

Given an arbitrary n € Z2, we need to count the number of £ € Z2 such that

n3 # ks, Wi, = 0 and |k| < K. We focus on the case ¢ = (+,+, +); a similar proof
applies for other cases. Note that v, d are determined once n is fixed.

Since |k| < K and k3 # 0, there are at most 2K choices for k3. We fix k3, so
that nz — kj is also fixed. We shall prove that there are at most O(K*/2) choices for
k. Before proving it, we note that there are at most O(K®/2) choices for (ki, k) after
fixing k3 and &, because k¥ + k2 = |k|*> — k2 = k*d — k2 =: N is now a fixed positive
integer and we can apply Lemma 3.2 (ii), noticing N < |k|> < K2%. These estimates
imply the desired bound on the number of k’s.

Now we estimate the total number of possible k’s for fixed n and ks, considering
the following three cases separately.



(D) |n| < K®: By the argument at the beginning of the proof (with m = n — k), we
see that

ks n3—k3 ng
w;:k(n—k) =0 <= ‘; + —,U— = 7

— (n;;H — k3l/) ('I’L3/J, — (TL3 — kg)l/) = k3(n3 — k3)1/2.

Therefore, n3k — kav € Z divides the fixed integer k3(ns — k3)v? of size O(K1+6+62).
By Lemma 3.2 (i), there are at most O(K</2) choices for nzx — ksv € Z. This implies
that there are at most O(K*®/?) possibilities for k, because ns, ks, are all already
determined.

(1) |n| > K9, |n3| < |n|'/%: We see that this case does not occur. In fact, it would
hold that |n — k| ~ |n| and |k| < K < |n|*? in this case. Then, we would have

_k_3- |Tl|1/2 _ 1
|k ~onl a2

1 1

n3—k3
=< —X<
K~ |k~

o]

ng
In|

which is not consistent with |n| > K¢.

(1I1) |n| > K8, |n3| > |n|*/?: In this case we use the classical geometric argument of
Jarnik [10] to show that there are at most four choices for x’s. Suppose for contradiction
that there are five possibilities for . Since (k, 1) € Z? must be on the fixed hyperbola

{(x,y) € R? | (gy - @) (y _ (ng — k3)l/) _ k3(ns —2k:3)1/2},

ns ns n3

at least three different (non-collinear) points P; := (k;, ;) € Z* (j = 1,2, 3) are on the
same component of this curve in this order. Now, under the assumptions |n| > K¢ and
[ns| 3> |n|/2, we can show that the (non-zero) curvature of this curve is so small that
the area of the region surrounded by the curve and the segment PP is less than %
This is a contradiction, however, because the area of a non-degenerate lattice triangle
is bounded from below by 1. Therefore, we finish the case (III).

This completes the proof of Theorem 3.1. O

At the level of the H! energy estimate, Theorem 3.1 yields the following:

Corollary 3.3 ([11], Lemma 4.1). For any € > 0 there ezists C. > 0 such that for any
real-valued, divergence-free and mean-zero smooth vector field a on T?, we have

|(BR(aosc> aosc) ) aosc>Hll < Ca“a'osc“%{l ”aosc”H%'—f .

Proof is based on the Littlewood-Paley decomposition technique and essentially the
same as the corresponding result in [2] (cf. [2, Lemma 3.1], [6, Lemma 6.2]).

At the moment, it is not clear whether our estimate with O(K**¢) in Theorem 3.1 is
optimal or not. To conclude this section, let us see that #A(n) is at least not uniformly
bounded in n; in other words, Klln;o sup #Ag(n) = 00.”

- n

"The example used in the proof of Proposition 3.4 also ensures that the case of regular torus T3 is
included in the “worst case” in [2], where no estimate better than Lemma 2.1 was obtained. On
the other hand, this example does not exclude the possibility that the estimate with O(Kt¢) may
be improved to O(K*).
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Proposition 3.4 (cf. [11], Lemma 4.2). We have sup #A(n) = co.

nez3
Proof. Let us look for non-trivially resonant frequency triplets (n, k,m) of the form
n=($+y,0,x+y), k=(:v,1,y), m=(y,—1,:1:) (3'1)

for some z,y € Z with zy(z + y) # 0. Since any (non-zero) scalar multiple of a non-
trivially resonant frequency triplet is again non-trivially resonant, it suffices to show
that there are infinitely many distinct triplets of the form (3.1).
For frequencies (3.1) to be non-trivially resonant, we impose the condition
(+tt) _

=0 or wit)=o,

w, nkm

nkm

This implies that

T+y 2 142 2 2
(\/m) (\/5> = z"+4dzy+y =1
Hence, it suffices to find infinitely many (z,y) € Z? satisfying 22 + 42y + y% = 1 and
zy(z +y) # 0.

This can be shown by the theory of Pell’s equations. In fact, we notice that x% +
dzy + 2 = (z + 2y)? — 3y? and X2 — 3Y? = 1 is one of Pell’s equations with the
minimal solution (X3,Y;) = (2,1). Then, all of the (positive) integer solutions of
X2 - 3Y? =1 are given by (X;,Y;) with X; + Y;v/3=(2+v3)/, j =1,2,..., or the
recurrence formulae X;1; = 2X; + 3Y}, Y;11 = X; + 2Y;. Therefore, going back to
the equation 22 + 4zy + y? = 1, we obtain a family of solution {(z;,y;)};>1 defined by
(z1,91) = (0,1), zj41 = —y; and y;11 = z;+4y;. It is not hard to see that {(z;,y;)};>2
gives infinitely many non-trivial resonances through (3.1), as required. O

4. Applications
4.1. Polynomial bound on the global solutions

Concerning the rotating Navier-Stokes equations (1.1), our result can be applied to
improve the exponential-in-v~! estimate (2.9) to a polynomial one.
To this end, we use Corollary 3.3 and an interpolation argument:

34e 1-¢
|<BR(UosmUosc) s Uosc>1{1| < C'enUosc“%{I”Uosc”H%r—e < C€||Uosc”H22 ||Uosc”}121 ”UoscuL2

_3+e =
< || Ussell3rz + Cevr™ ¢ [|Uose | 371 [1Uose | 12°

for 0 < € < 1, and hence by the H! energy estimate on (2.6)

d _3+e s
Ji1Uese®)llzn + ¥ Uose(®) |7z < Cev™ = [Uose() s [Uose (D) 2%, > 0.
Integrating on (0,t) and applying (2.8), we obtain

¢ _4 42
“UOSC(t)”%{l + V/ “UOSC(T)”%{? dr < “UO,OSCH%II +Cev T ”uO,oscull,;E ’ t>0.
0

This and (2.7) yield a global-in-time a priori estimate on |U(t)||z: depending polyno-
mially in =t and |Jug||g.



4.2. Fractional Navier-Stokes equations

As another simple application of Theorem 3.1, we consider the existence of global-in-
time smooth solutions to the rotating Navier-Stokes equations with fractional Lapla-
cian:

{Btu + (u-Vu+ QJu+ v(—A)*u = —Vp, t>0, zeT3 1)

V.-yu=0 and u|t:0=u0.

Let us consider the case of less dissipation: 1 > o > 0. Applying the Helmholtz-
Leray projection P, we investigate the following Cauchy problem instead of (4.1):

0w+ P(u - V)u + QPJPu + vA%u = 0, Ule—o = up Wwith V- uy = 0. (4.2)

As before, we concentrate here on deriving a global-in-time H* a priori estimate on
smooth solutions U(t) to the resonant equation:

&U +vA°U + Bp(U(t),U(t)) =0,  U|,_,=uo with V-uo=0. (4.3)

We decompose (4.3) into equations for Uh, Us; and U, similarly to (2.4)~(2.6).

For the 2D horizontal part Uh, we consider equation for the vorticity w = Vi -

" .= —08,,U1 + 0,,U3. Note that T" can be recovered from w by the Biot-Savart

law U = —(—Ar)'Viw and ||w||gs ~ ||Uh||Hs+1 for s € R, whenever w is mean-zero.
From the L? energy estimate on w, we obtain the following inequality for o

t
—h —h .
OO +v [ 1T dr < Cl I, ¢ 0. (44)
0
For the 2D vertical part Us, we begin with the easy L? energy equality:

t
1Ta(6) 125 + 20 / [Ta(r) e dr = gl > 0. (4.5)
0

For the H' energy estimate, we see that the 2D Sobolev inequality and an interpolation
argument yield that

—h = = —=h = — —h =
K" - Vi)Us, Us)gn| = (VAU , VaUs @ VaUs) 2| < CIIT || 12 | Ul e/
—h = 113—2a 1177 ||2a— = _3=2  —h 2o —
< OU e Ul UslIE < vilTs|znve + Cov™ 2= U 357 Ul 3e-
Note that this estimate is available as long as % >a> % From this we have

3—

d — — _8-%a —h, 2o
U@l +vTs®lnve < Car = T O NTs@) e, ¢>0.

Integrating both sides in ¢ and applying (4.4), (4.5), we obtain that

2

_ o _2
1Us)llzn +v / [Us(7) |314a d7 < |[uo sll71 + Car™ %= || |37 @0 3ll72-  (4-6)
0

11
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For the non-trivial resonance part Uy, we have the following L? energy equality:

t
Uoselt)122 + 20 / Urse e d7 = ltoouellZey ¢ > 0. (4.7)
0

We proceed the H' energy estimate as in Section 4.1. If a,¢ > 0 satisfy 4o > 3 + ¢
(this requires o > 3), then Corollary 3.3 and interpolation imply that
|<BR(Uosc’ Uosc)a Uosc>H1| <C: ”UOSCH%IIHUOSCHH—}'—
<Ce “UOSC||H1+a ”Uosana ”UOSCHL"’

T7—4a+e

< 0o e+ Coot™ 5% ol e Vo

and hence,

”UOSC(t)“Hl +V||Uosc(t)”H1+°‘ < Coel™ e s”UOSC(t)“Ha“UOSC(t)”M = .

Integrating both sides in ¢ and applying (4.7), we obtain that

2
[ Uase (8) 1371 +V/ Usse(7) 2140 A7 < I[tt0,0scliZn + Coerr™ 5= ‘”uOoscnh—s Bt
(4.8)

Combining (4.4), (4.6) and (4.8), we obtain desired H' a priori bound on U(t):
t 4
vl + V/ U () fee d7 < Caelluolizp (1 + v luoll ) =55, ¢ > 0. (4.9)
0

Some additional arguments (see Appendix below) then yield the following conclusion:

Proposition 4.1 ([11], Theorem 1.3). Let 1 > a > 3/4, v > 0. Then, for any E > 0
there exists Qy = Qo(a, v, E) > 0 such that for any real-valued and divergence-free
up € HY(T3) with |jugl|m < E and any Q € R with |Q| > Q, a global-in-time smooth
solution (u,p) to (4.1) exists and obeys a polynomial bound:

t
() |2 + v / |u()|}1sa dr < CE*(1+ 07 E)S,  ¢>0. (4.10)
0

Here, C > 0 is a constant depending only on a. Moreover, o can be taken as

Q = Eexp [C(v™'E)].



5. Future works

The analysis on the resonant interactions for the fluid equations is still in progress, and
many problems are left open. It is likely that the estimate in Theorem 3.1 is not optimal
and holds not only for the regular (or a rational) torus. We are also interested in the
case of other equations (i.e., other dispersion relations); see [12] for an observation on
the B-plane model.

We note that the Navier-Stokes system with the fractional Laplacian (4.1) is not
regarded as a physical model, though the fractional Laplacian operator itself appears
in physically important equations, such as the quasi-geostrophic equation. Therefore,
applications of the estimate in Theorem 3.1 to more physical models should also be
investigated. For instance, application to the equations for non-Newtonian fluids could
be a good problem to try.

For the inviscid case, global or long-time existence of smooth solutions to the rotat-
ing Euler equatinos or the corresponding resonant equation is completely open in the
periodic setting. We hope that a deep study on the resonant interactions will enable
us to attack these problems in future.

A. Appendix: Proof of Proposition 4.1
Here, we present an outline of the proof of Proposition 4.1. Our proof based on the
framework of mild solutions is in a sense different from the previous argument [2, 6]
using the framework of weak solutions.

Let 1> a>3/4,v >0, E> 02 and let up € H(T?) be a real-valued, divergence-
free vector field satisfying ||uo||z: < E. Applying van der Pol transformation, we
consider the following Cauchy problem instead of (4.2):

0w + vA®v + B(Qt;v(t),v(t)) =0, V|t=0 = Uo. (A.1)

In fact, by the unitarity of the Poincaré propagator, Proposition 4.1 is reduced to the
same problem for the equation (A.1).

We divide the proof into three steps.

Step 1: Local existence of mild solutions.
We first prepare local-in-time results. Using the semigroup {e %4 };>o, (A.1) is trans-
formed into the integral equation

13

v(t) = e 4%y — / e Vt=14% B(Qr; v(7), v(T)) dr.
0

By a fixed point argument with some appropriate norm, for instance,

1
lollxr = sup_ (o)l + ) o) larse ),
0<t<T
we can show existence of a unique local-in-time solution to (A.1) on [0,T;] with T; =

Ti(J|uol| 1) > 0, which belongs to C([0, T3); H*) N C((0,T;]; H*®). Furthermore, by the
H! energy estimate, we can show that the solution is also in L((0, T;); H**®).

81n the following argument, any constants may depend on ¢, v and E. However, we do not track
the precise dependence on these parameters for brevity.
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Step 2: Global existence for the resonant equation.
We next solve the resonant equation (4.3). Clearly, the local result in Step 1 also holds
for (4.3). Then, by the a priori estimate (4.9) established in Section 4.2, we have a
global solution U(t) with U(0) = v(0) = uo satisfying

t
U@ +v /0 V() s dr < B2 <00, 30, (A.2)

where E is a constant depending on «, v and E.

Step 3: Error estimate.
To prove global existence for (A.1), it suffices to ensure that, under the large Coriolis
parameter assumption, the solutions v(t), U(t) stay close to each other until an arbi-
trarily given time t = T. More precisely, we claim the following: There exists 29 > 0
such that if || > Qy, then for any T > 0, v(t) extends to [0,7] and

t ~
W@l +v [ lwl.dr < B, te o) (A3
0
where w(t) := v(t) — U(t) is a solution to
Oyw + vA®w + Br(w,v) + Br(U,w) + Bar(Qt;v,v) =0, w|i=o =0. (A.4)

We show this by induction. (A.3) is obviously true for T' = 0, so we assume that
this is true for some T' > 0. Then, from (A.2), the same estimate but with a bound
(2E)? is true for v on [0,T]. Let T; = T;(2E) be the local existence time for data of
size 2F. By the local theory in Step 1, v extends to t =T + fﬁ and we have

t ~
o)l + v / o) Bpse dr < L2, t€[0,T +7), (A5)
0

where L = L(E) > 0 is independent of 7.
We now proceed the H! energy estimate on w. By the Sobolev inequality and an
interpolation argument, together with (A.2), we can show that

dy :
(85 + 2/l ®) s -
< C(Ilo®) el @) lrise + [T (@) N8 e
— 2Bar(O% 0(0),v(1)) , w (b))
< vlw@®lra + C(lo®)Fsn + BNV s ) @)l
— 2(Bnr(Q;0(8), (1)), w(t)) g,
and hence,
@+ [ ) sadr
<C [ (Io(r) e + BV s () i (A6)

) /0 (Bag(@r;0(r),0(7)), w(r)) g dr, ¢ € [0,T+7T].
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In order to keep w small, we need to make the last term in (A.6) small by taking |Q|
large, exploiting the non-resonant property of it. Roughly speaking, an integration by
parts in 7 yields the factor |[QwZ,,.|~! from the nonlinear interaction between (n, k,m)
(at the cost of appearance of d,v and Gw).

The problem is that |wZ,,,|, though it never vanishes thanks to the non-resonant
property, does not have a positive lower bound. To deal with this problem, we divide v
into the high- and low-frequency parts; v = vsn +v<n, UsN = 25N v(n)e™®. The
terms with at least one vy are estimated with some negative power of N at the cost
of regularity.® For the low-frequency contribution (Byr(%;v<n,v<n), W)y, We can

show a positive lower bound

ae{i}3nkmeZs\{0}st > N-12
n=k+m, wl, #0,|k| <N, |m| < N[~ ’

inf { l wgkm |

nkm

thus we have a factor N2 /|| by an integration by parts.!® Therefore, for given § > 0,
we first choose N = N (6, E, L) large, and then take Qo = Q(N, 8, E, L) large to obtain
at the end

t 1 t
2 [ Bra(@r;v(),o(r)), w ) dr] <6+ 5 (I +v [ Tl dr)
0 0
for ¢t € [0, T + T;], provided that || > €. Inserting this into (A.6), we have
t
Ol -+ [ (r) e dr
t ~
<25+C [ (Io(r)Bae + B2V om0 dr
0
for t € [0,T + T} By the Gronwall inequality and (A.2), (A.5) again, we obtain
t ~ ~
lw®)||% + v / lw(7)||Z1sa dr < 20eCE+EY e [0, T +T)).
0

Choosing § = 6(L, E) sufficiently small, we finally show (A.3) for ¢ € [0, T + T}]. Since
all the constants in the above argument do not depend on T', we conclude the proof by
an induction argument.
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