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ABSTRACT. We discuss the mathematical theory of deduction of the capillary action by Laplace,
Gauss, Poisson. These share the common concept of attraction and repulsive force on continuum,
which is realized with two constants. The former two are deduce the equations of the capillary
surface, and the latter, Poisson confirms the formulae, in another analytical problems. We
assert the two constants are used to formulate the equation of the Navier‐Stokes equations, due
to Laplace’ theory of capillarity.
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1. The “two‐constant” theory in capillarity

Gauss didn’t mention the following fact, and Bowditch 1 also didn’t comment on Gauss’ work
in Laplace’s total works [6] except for only one comment of the name “Gauss” [6, p.686].

2

N.Bowditch comments as follows:

This theory of capillary attraction was first published by La Place in 1806; and
in 1807 he gave a supplement. In neither of these works is the repulsive force of
the heat taken into consideration, because he supposed it to be unnecessary. But
in 18193 he observed, that this action could be taken into account, by supposing
the force  $\varphi$(f) to represent the difference between the attractive force of the
particles of the fluid A(f) , and the repulsive force of the heat R(f) so that the
combined action would be expressed by,  $\varphi$(f)=A(f)-R(f) ; . . . [6, p.685].

In his historical descriptions about the study of capillary action, we would hke to recognize that
there is no counterattack to Gauss, but the correct valuation. Gauss [2] stated his conclusions
about the papers by Laplace as follows : we can not accept the papers by Mr. Laplace; in p.5,
since not only he developed clearly incorrect argument but also showed even the false proofs :
we consider that his calculations in the pages and the following after p.44 are the vain effects.4
[2, pp.33‐34] (italic and trans. mine.)

2. Laplace papers of the capillary action

2.1. Laplace’s conclusions of theory of the capillary action.
Laplace stated his “complete  theor $\psi$ ’ of attraction which have an effect on the capilary action

Date: 2017/12/12.
 1(\Downarrow) The present work is a reprint, in four volumes, of Nathaniel Bowditch’s English translation of volumes I,

II, III and IV of the French‐language treatise?kaité de Mécanique Céleste by P.S.Laplace. The translation was
originally published in Boston in 1829, 1832, 1834, and 1839, under the French title, “Mécanique Céleste which
has now been changed to its English‐language form, “‘ Celestial Mechanics.”

2(\Downarrow) Bowditch’s comment number [9173\mathrm{g}].
3(\Downarrow) Poisson comments this fact in [7, p.19].
4(\Downarrow) There are 35 pages of calculation between p.44 and p.78 in his Suppkment.
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in the introduction [3], as follows : From the translation by Bowditch [6], for brevity, we show
the corresponding part with above as follows :

From these results, relative to bodies terminated by sensible segments of a
spherical surface, I have deduced this general theorem. “In all the laws which
render the attraction insensible at sensible distance, the action of body terminated
by a curve surface, upon an infinitely narrow interior canal, which is perpendic‐
ular to that surface, at any point whatever, is equal to the half sum of the actions
upon the same canal, of two spheres which have the same radii as the greatest
and the least radii of curvature of the surface at that point. ’ [6, p.689]

2.2. Laplace’s theory of the capillary action.

Laplace’s theories of the capillary action are described in the 14 articles. We cite only the
contents of no 1 ([4, pp.10‐14]) of theory of [4] pointed out by Gauss:
1| no 1 of the theory of capillary action : To have the action of the entire sphere of which the
radius is b , let suppose b-u=z ; this action will be equal to the integral

2 $\pi$\displaystyle \int\frac{(b-z)}{b}.dz. $\Psi$(z) ,

taken from z=0 up to z=b . Let hence K the integral 2 $\pi$.\displaystyle \int dz. $\Psi$(z) taken in this limits, and
H the integral 2 $\pi$.\displaystyle \int zdz. $\Psi$(z) take in the same hmits ; the preceding action will turn into

K-\displaystyle \frac{H}{b}.
We need to observe here that K and H can be considered as being independent of b ; because  $\Psi$(z)
isn’t being sensible than of insensible distance, it is indifferent to take the preceding integrals,
from z=0 up to z= b , or from z=0 up to z= \infty ; so that we can suppose that  K and H

respond to these last limits. [4, p.13] (trans. mine.) ( \Downarrow ) This means that

 K=2 $\pi$\displaystyle \int $\Psi$(z) , H=2 $\pi$\int z $\Psi$(z)dz ;

where the hmits are from z =0 to z =b or from z = 0 to z = \infty . These two constants are

the original of what we called the two constants, in the  1805 ’s paper [4] by Laplace, so that we
think, it is noteworthy. ( \Uparrow )
1 no 4 ([4, \mathrm{p} .lS‐23]) of the theory of capillary action : Let O (fig. 3) 5 be the lowest point of
the surface AOB of the water contained in the tube. Let name z the vertical coordinate OM, x

and y the two horizontal coordinates of a certain point N of the surface. Let call R the longest
and R' the shortest of contacting radii of the surface at this point. R and R' are the two roots
of the equation 6

R^{2}(rt-s^{2})-R\sqrt{(1+p^{2}+q^{2})}\{(1+q^{2})r-2pqs+(1+p^{2})t\}+(1+p^{2}+q^{2})^{2}=0 , (1)

where,

p=\displaystyle \frac{dz}{dx} ; q=\displaystyle \frac{dz}{dy} ; r=\displaystyle \frac{d^{2_{Z}}}{dx^{2}} ; s=\displaystyle \frac{d^{2_{Z}}}{dxdy}=*\frac{dp}{dy}=*\frac{dq}{dx} ; t=\displaystyle \frac{d^{2_{Z}}}{dy^{2}} . (2)

We win have hence

\displaystyle \frac{1}{R}+\frac{1}{R}=\frac{(1+q^{2})_{dx}^{d}B-pq(^{d}z+ $\Phi$)+(1+p^{2})_{dy}^{d} $\Delta$}{(1+p^{2}+q^{2})^{\frac{3}{2}}}=\frac{(1+q^{2})r-2pqs+(1+p^{2})t}{(1+p^{2}+q^{2})^{\frac{3}{2}}} (3)

5(\Downarrow) cf. fig. 1.
6(\Downarrow) (1) is a quadratic equation with respect to R.
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Posed thus, if we represent a certain, infinitely long canal NSO, it must hold, with the law of
the equilibrium of fluid contained in this canal, b and b' being the longest and shortest of the
contacting radii of the surface at the point O and g being the weight.

K-\displaystyle \frac{H}{2}(\frac{1}{R}+\frac{1}{R})+gz=K-\frac{H}{2}(\frac{1}{b}+\frac{1}{b}) ; \Rightarrow (\displaystyle \frac{1}{R}+\frac{1}{R})-\frac{2gz}{H}=\frac{1}{b}+\frac{1}{b} ; (4)

In effect, the action of the fluid on the canal at the point N is, with this one precedes, K-

\displaystyle \frac{1}{2}H(\frac{1}{R}+\frac{1}{R}) , and moreover, the height of the point over the point O is z . The preceding equation
gives, in substituting its value for \mathrm{I}/R+1/R' , its value, 7

(a) \displaystyle \frac{(1+q^{2}).r-2pqs+(1+p^{2}).t}{(1+p^{2}+q^{2})^{\frac{3}{2}}}-\frac{2gz}{H}=\frac{1}{b}+\frac{1}{b} ;

[4, p. 19] (trans. mme.) 8

塑. *\mathrm{Y}.

fig.1 a meniscus in a canal.

3. Gauss’ papers of the capillary action

Gauss states common motivations with Laplace about MD equations. For example, in
§10, §11, §12, which we mention below, he states the difficulties of integral \displaystyle \int r^{2} $\varphi$ r.dr , in which
he confesses that he also is included in the person who feels difficulties to calculate the MD

integral.

4. Principia generalia theoriae figurae fluidrum in statu aequilibnii.
(General principles of theory on fluid figure in equilibrium state)

Gauss introduces his expression of curved surface.

 $\xi$=- $\zeta$.\displaystyle \frac{dz}{dx},  $\eta$=- $\zeta$.\frac{dz}{dy}, d $\zeta$= $\xi \zeta$^{2}d\frac{dz}{dx}+ $\eta \zeta$^{2}d\frac{dz}{dy} (5)

\displaystyle \frac{d $\xi$}{dx} = - $\zeta$\frac{d^{2_{Z}}}{dx^{2}}-\frac{dz}{dx}.\frac{d $\zeta$}{dx}=- $\zeta$\frac{d^{2}z}{dx^{2}}- $\zeta$\frac{dz}{dx} $\xi \zeta$\frac{d^{2_{Z}}}{dx^{2}}\tilde{= $\xi$}+ $\xi \eta \zeta$\frac{d^{2_{Z}}}{dx.dy}
= - $\zeta$(1-$\xi$^{2})\displaystyle \frac{d^{2_{Z}}}{dx^{2}}+ $\xi \eta \zeta$\frac{d^{2_{Z}}}{dx.dy}=- $\zeta$($\eta$^{2}+$\zeta$^{2})\frac{d^{2_{Z}}}{dx^{2}}+ $\xi \eta \zeta$\frac{d^{2_{Z}}}{dx.dy}

7(\Downarrow) From (3) and (4) we get it.
8(\Downarrow) the equation symbol =^{*} in the expression (2) \mathrm{m}\mathrm{d}\Rightarrow\dot{\mathrm{m}}(4) are by mine.
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TABLE 1. Comparison of Q and V in  $\delta$ U= \displaystyle \int QdP+\int VdU between analytic
and geometric method

|milytic method |geometric method|\ovalbox{\tt\small REJECT}

\displaystyle \frac{d $\eta$}{dy} = - $\zeta$\frac{d^{2_{Z}}}{dy^{2}}+$\eta$^{2} $\zeta$\frac{d^{2_{Z}}}{dy^{2}}+ $\xi \eta \zeta$\frac{d^{2_{Z}}}{dx.dy}=- $\zeta$(1-$\eta$^{2})\frac{d^{2_{Z}}}{dy^{2}}+ $\xi \eta \zeta$\frac{d^{2_{Z}}}{dx.dy}
= - $\zeta$($\xi$^{2}+$\zeta$^{2})\displaystyle \frac{d^{2_{Z}}}{dy^{2}}+ $\xi \eta \zeta$\frac{d^{2_{Z}}}{dx.dy}

\displaystyle \frac{d $\xi$}{dx}+\frac{d $\eta$}{dy} = -$\zeta$^{3}[\frac{d^{2_{Z}}}{dx^{2}}\{1+(\frac{dz}{dy})^{2}\}-\frac{2d^{2_{Z}}}{dx.dy}.\frac{dz}{dx}.\frac{dz}{dy}+\frac{d^{2_{Z}}}{dy^{2}}\{1+(\frac{dz}{dx})^{2}\}],
where, $\zeta$^{3} = [1+(\displaystyle \frac{dz}{dx})^{2}+(\frac{dz}{dy})^{2}]^{-\frac{3}{2}} (6)

5. Poisson’s paper of capillarity

5.1. Poisson’s comments on Gauss [1].
Poisson [7] commented in the preface about Gauss [1]:

\bullet Gauss’ success is due to the merit of \mathrm{h}\mathrm{i}\mathrm{s}\prec characteristic \succ

\bullet even Gauss uses the same method as the given physics by Laplace.
\bullet Gauss calculates by the condition only the same density and incompressibility

5.2. Poisson’s two constants :  K and H in capillary action.
We cite Poisson’s K and H from [7, 12‐14].

K=2 $\pi \rho$^{2}q\displaystyle \int_{0}^{\infty}r^{3} $\varphi$ rdr
where,

q\displaystyle \equiv\int_{0}^{\infty}\int_{0}^{\infty}\frac{(y+z)dydz}{[1+(y+z)^{2}]^{\frac{3}{2}}}=\frac{1}{3}\int_{0}^{\infty}\frac{dy}{(1+y^{2})^{\frac{3}{2}}}=\frac{1}{3}
(1) K=\displaystyle \frac{2}{3} $\pi \rho$^{2}\int_{0}^{\infty}r^{3} $\varphi$ rdr (7)

 $\eta$=u\sin v, $\eta$'=u\cos v,  $\zeta$=Q$\eta$^{2}+Q'($\eta$')^{2}+Q'' $\eta \eta$'
We denote  $\lambda$ and  $\lambda$' radü of two principle curvatures.

\displaystyle \frac{1}{ $\lambda$}=\frac{d^{2} $\zeta$}{d$\eta$^{2}}=2Q, \frac{\mathrm{I}}{ $\lambda$}=\frac{d^{2} $\zeta$}{d( $\eta$)^{2}}=2Q',
The average value

 $\mu$=-H(Q+Q')=-\displaystyle \frac{1}{2}H(\frac{1}{ $\lambda$}+\frac{1}{ $\lambda$}) ,

where, we denote H for convemience sake

H\displaystyle \equiv $\pi \rho$^{2}\int_{0}^{\infty}\int_{0}^{\infty} $\varphi$ r\frac{su^{3}}{r}duds
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where,

s=ux, ds=udx, u=\displaystyle \frac{r}{\sqrt{1+x^{2}}} , du=\frac{dr}{\sqrt{1+x^{2}}}
(2) H= $\pi \rho$^{2}\displaystyle \int_{0}^{\infty}r^{4} $\varphi$ rdr\int_{0}^{\infty}\frac{xdx}{\sqrt{1+x^{2}}}=\frac{1}{4} $\pi \rho$^{2}\int_{0}^{\infty}r^{4} $\varphi$ rdr (8)

The normal action on this point :

(3) N=K-\displaystyle \frac{1}{2}H(\frac{1}{ $\lambda$}+\frac{1}{ $\lambda$}) (9)

5.3. Coincidence of Poisson’s K and H with Laplace’s K and H.

Poisson proved Laplace’s formulae as follows :

K = \displaystyle \frac{2 $\pi \rho$^{2}}{3}h^{3} $\Pi$ h-\frac{2 $\pi \rho$^{2}}{3}\int_{0}^{h}r^{3}\frac{d $\Pi$ r}{dr}dr=\frac{2 $\pi \rho$^{2}}{3}\int_{0}^{h}r^{3} $\varphi$ rdr,
H = \displaystyle \frac{ $\pi \rho$^{2}}{4}h^{4} $\Pi$ h-\frac{ $\pi \rho$^{2}}{4}\int_{0}^{h}r^{4}\frac{d $\Pi$ r}{dr}dr=\frac{ $\pi \rho$^{2}}{4}\int_{0}^{h}r^{4} $\varphi$ rdr

5.4. Proof by Poisson that the rise in the neighborhood of water sUrface and wall is
due to the abrupt variation of density.
§ 14. Posed thus, call A the hquid contained in a vertical cylinder which has its base on the
plane GH and which the generatrix is the straight DL tangent to the wall of the tube, and B

the hquid situated around this cylinder and under GH . It goes along one which precedes that
the vertical action of the tube and of B on A will independent of the inferior surface of the tube,
which the vertical section is represented with EC’F, so that we will be capable to replace this
surface with a horizontal plane. If we designate then with R the action of B on the part of A

situated on this plane, and R' the action of the tube on the part of A situated under this same
plane, and if we suppose that the primary force is exercises in the direction of the gravity, and
the second in the contrary direction,

(7)  2R/-R=\triangle , (10)
for the equihbrium of  A.

C, C', D, D’ : domains ofa liquiddomainsofa liquidin atube P, \mathrm{Q}Q' ;aaions

fig.1 the rise in the neighborhood of water surface and wall.
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\ovalbox{\tt\small REJECT}:\neq \overline{density}is variable

fig.2 Outline of proof by Poisson on the abrupt variation causing the rise in the neighborhood of
water surface and wall.

It will rest now to formula the expressions of R and R' . Consequently, were ds an element
infimitely small of contour of a ; with the two extremities of ds , trace the planes perpendicular
to its direction which is cut along with a vertical passing with the center of the curvature of
this contour ; let separate the segment of A composed between these two planes, and fillets
infinitely thin with the plane vertical parallel to ds ; and were u the distance from one of these
fillets at the plane vertical passing through ds . We will be capable to explain its basis with
(1-ku)duds , in supposing this fillet composed in the sphere of activity of B , neglectming the
power of u superior to the primary, and designating with k , a constant coefficient which will
depend on the curvature of the contour of a , at the point which responds to ds' . The basis of
an exterior fillet, belongming to B , which responds to another element ds' of the contour, win be
at the same time (1+k'u')ds'du' ; u' being the insensible distance from this second fillet to the
surface of A , and k' this one which turns k at the point corresponding to ds' . From here, we
will conclude without difficulty

R=$\rho$^{2}\displaystyle \int\int\int\int\int\int $\varphi$(r)\frac{z+z'}{r}(1-ku)(1+k'u')dzdz'dudu’dsds’,

in putting

r^{2}=x^{2}+(u+u')^{2}+(z+z')^{2}.

§ 15. (The determination of R and R

designating with  $\varphi$(r) the same function with preceding (no. 2), with x the projection of the
arc composed between ds and ds' on the prolongation of ds and with z and z' the perpendicular
fallen from a point of A and of a point B on the plane GH , so that r were the distance of a
point to the other. At the degree of approximation where we are stayed in all this one which
proceeds, we will turn to reduce to the unit the factors 1-ku and 1+k'u' . We will be capable
next of extending from zero to the infinite, the integrs4s in respect to u, u', z, z' , and integral
in respect to x from  x=-\infty to  x=+\infty , namely only from  x=0 to  x=\infty , in doubhng the
result. In putting

 2$\rho$^{2}\displaystyle \int\int\int\int\int $\varphi$(r)\frac{z+z'}{r} dzdz’dudu’dx \equiv q,
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and taking the five integraJs from zero to the infinity, we will have then R=\displaystyle \int qds.
This last integral will turn to all the points of the contour of a ; and as q won’t turn to extend

from a point to another, it is followed that if we call c the entire length of this contour, we
will have simply R=cq . If we designate with $\varphi$'(r) the mutual attraction of the material of
the tube and of that of hquid, relative to the distance r and related at the unit of the volume,
$\rho$' , and  $\rho$ being the densities of the two materials, and if we represent with  q' this one which q

turns, when we put  $\rho \rho$'$\varphi$'(r) instead of $\rho$^{2} $\varphi$(r) , we will find similarly R'=cq' ; by means of this
equation (10) will be turn minto

(8) \triangle=(2q'-q)c . (11)

§ 16. The quintuplicate integral which q represents is reduced easily to a simple integral.
In putting at first zx, z'x , ux, u'x , xdz, xdz’, instead of z, z', u and u' , and of their primary
differentials, the hmits zero and the infinity won’t changes ; it will result q=2X$\rho$^{2}\displaystyle \int_{0}^{\infty}r^{4} $\varphi$(r)dr,
in putting, to abridge

X\displaystyle \equiv\int\int\int\int\frac{(z+z')dzdz'dudu'}{[\mathrm{I}+(u+u)^{2}+(z+z')^{2}]^{2}},
finally, we get X=\displaystyle \frac{ $\pi$}{16} and q=\sim$\pi$_{8}1_{-\int_{0}^{\infty}r^{4} $\varphi$(r)dr}^{2}.
§ 17. (The necessity to regard to the variation of the density of the liquid near the wall of the
tube.)

(9) Q+Q'+P=0 , (12)

where,  Q= $\Delta$ , for the equilibrium of this part of the liquid.
The force  Q' won’t be differ sensibly from the force R of the (no. 14) ; because it would be

between them in the ratio of the contour c of the base a to that of the base b , which we can take
the one for the other. Therefore, we will have Q'=R=cq.

On the force P , its expression win differ from that of R in quintuplicate integral, with the
sign of u' and with the hmits relative to u and u' , namely, that we will have

P=2$\rho$^{2}c\displaystyle \int\int\int\int\int $\varphi$(r)\frac{z+z'}{r}dzdz'dudu’dx, r^{2}=x^{2}+(u-u')^{2}+(z+z')^{2} ;

the integrals relative to x, z, z' , being always zero and infinity ; however, those which responds
to u and u' isn’t extending only from zero to l , in designating with l the length of KL.

P=2$\rho$^{2}c\displaystyle \int\int\int\int\int $\varphi$(r')\frac{(u-u')u}{r} dzdxdudu’, (r')^{2}=x^{2}+z^{2}+(u-u')^{2}.

Let again x=y\cos $\nu$,  z=y\sin $\nu$. If we substitute these variables  y and  $\nu$ to  x and z , it \mathrm{w}\mathrm{m}

need to take  dxdz=ydyd $\nu$ ; the limits which respond to ( x=0 and z=0) and (x=\infty and
 z=\infty) will be (y=0 and  $\nu$=0), ( y=\infty and  $\nu$=\displaystyle \frac{1}{2} $\pi$) ; in effectuating the integration relative
to  $\nu$ , it will result then

 P=- $\pi \rho$^{2}c\displaystyle \int_{0}^{\infty}\int_{0}^{l}\int_{0}^{l} $\varphi$(r')\frac{(u-u')u}{r}ydydudu', (r')^{2}=y^{2}+(u-u')^{2}.
Consequently, this triple integral is the same with that which exists in the expression of V of
the (no. 8) ; in the analysis of the (no. 9), we will conclude then

P=-\displaystyle \frac{1}{4} $\pi \rho$^{2}c\int_{0}^{\infty}r^{4} $\varphi$(r')dr=-2cq,
in neglecting always the term which would have the factor l , and regarding to the value of q of
the (no. 16). These values of Q, Q', P , reduce the equation (12) to \triangle=cq.

Consequently, for that this value of \triangle is accord with that which is given with the equation
(11), it might need that it has been  q'=q ; this would cause that the material of the tube would
has been the same with that of the liquid. QED.
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5.5. Pressure of liquids, modified with the capillary action.
§80. We will have

KMN=K'M'N'= $\omega$, KMH=K'M'H=i ;

 $\omega$ being the angle relative to the material of liquid and with the surface of corps, given with the
experience, and obtuse or acute, according as the liquid is elevated or is fallen ; and  i designin \mathrm{g}

the same angle with in the precedent number.
I will call  $\Gamma$ the hquid layer adjacent to the surface of corps, and which the section is termi‐

nated, otherwise, at the curve MGM’, at the normals  MN and M'N' , and at the portions of
curves AN and A'N' . I will name L the rest of hqmid, and I go to calculate the vertical action
of L on the layer  $\Gamma$ , at which I have given the form necessary for that this force can explain by
means of quantity which will be given in each case.

fig.3 Pressure of liquids, modified with the capillary action on a spheroid.

To abridge, I win indicate each party of  L or of  $\Gamma$ , consequently, generaly each part of liquid with
the part of the figure to which it responds. Being thus, the action of DOGO’D’ on KMGM’K’
isn’t other thing with the force  N of (no. 76), decomposed vertically and applied to all the
elements of the part of surface of  $\Gamma$ which responds to the curve  MGM' ; I win represent
with P , in supposing oriented in direction contrary of the gravity. I will designate, following
this direction, with Q the action of same liquid on the part of  $\Gamma$ which responds to FMK or
 F'M'K' , on its part FMGM’F’. It is evident that to have action of L on this last part of  $\Gamma$,
it will need to abolish R from P+Q . The action of  $\Gamma$ on the surplus of  $\Gamma$ , namely, on the part
corresponding to NMFA or  N'M'F'A' , will be composed from the action of EMGM’E’, which
we will represent with S , and the action of the superficial layer or corresponding to DNME or
D'N'M'E' , which I win designate with T ; the both of one and other oriented in contrary sense
of the gravity. The total action of L on  $\Gamma$ will then win be

 P+Q-R+S+T ; (13)

which it needs to calculate essentially the five parts which it is composed.
§81. (Calculation of pressure)

If we caJJ t the distance of a point arbitrary of the curve MGM' to the axis GC , the horizontal
projection of a zone infinitely small of the surface generated with this curve, win be 2 $\pi$ tdt , and
the component vertical of the force normal N , applied to all this zone will have for value 2 $\pi$ Ntdt

; in consequence, we will have

P=2 $\pi$\displaystyle \int_{0}^{r} Ntdt,

in taking r for the value of HM , this one which we can make without sensible error. The part of
P which responds to second term of M is the integral \displaystyle \int Zds , which the value will be 2 $\pi$ rq\cos i,
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owing to the (no. 79). In putting for the primary term p of N , its value c- $\rho$ gz , we will have
then

 P= $\pi$ư  2-2 $\pi$ g $\rho$\displaystyle \int_{0}^{r}ztdt+2 $\pi$ rq\cos i.
I will call V the part of volume of corps which is situated downward of plane of the x and y,

and which responds, consequently, to the values negative of z ; I will designate with v the part
of its volume composed between this plane of the section horizontal of corps, at which the liquid
is blocked and which we can, without sensible error, makes pass through the points M and M',
instead of A and A' . Let be also k the distance of this section at the plane of the x and y ; in
regarding k and v as the quantities positive or negative, according aô the point A and A' will
be upward or downward of this plane, we will have

2 $\pi$\displaystyle \int_{0}^{r} ztdt= $\pi$ kr^{2}-v-V.
If the liquid is extended infinitely around of corps, its surface will be sensibly plane to a certain
distance ; in takming this plane for this of the x and y, Y will be the volume of the corps situated
underward of level natural of liquid, and V+v the volume of this corps in contact with the
liquid. In this same case will have  c= $\Pi$ ; however, for more generality, I will put

 c= $\Pi$+g $\rho$ b ;

b being a constant which \mathrm{w}\mathrm{m} be null in the case of a hquid indefinite, and which the value will
depend on the volume of hquid, when it will have a measure given. From this manner, we will
have

P= $\pi$ r^{2} $\Pi$+ $\pi$ 9 $\rho$(b-k)r^{2}+g $\rho$(v+V)+2 $\pi$ rq\cos i.

If we decompose into elements infimitely small, the part of  $\Gamma$ which responds to NMFA, the
action of the layer superficial DNME on an element which the thickness is  $\varepsilon$ , will be the force
 U $\varepsilon$ of the (no. 41), perpendicular to  MN and traced from outward into inward of the element ;
we will have then the part of T which responds to this element, in multiplying  U $\epsilon$ with the sine
of the angle which makes the straight  MN with the vertical traced from bottom to height the
point M , of which the angle is equal to HMN, less than the right angle, or to  i+ $\omega$-\displaystyle \frac{1}{2} $\pi$ ; and
as we have foUmd  U=-q_{l} , this part of T will be ql cos (i+ $\omega$) ; consequently, this force beming the
same for all the elements, we will conclude from this, the total value of T , in replacing  $\epsilon$ with
the circumference  2 $\pi$ r ; this which puts

T=2 $\pi$ rq_{l}\cos(i+ $\omega$) .

Each of the forces Q, RS , is deduced similarly from the force  Z $\epsilon$ of the (no. 42), in determining
suitably the angles  a, b, a', b' , and replacing  $\epsilon$ with  2 $\pi$ r . Let be, for this, (fig. 18), IMI’ \mathrm{a}

vertical, HM a horizontal, MK and MN of the straights which make the angles i and  i+ $\omega$

with  MH , OMG and FME, the straights perpendicular to MK and MN . We will take the
straight IMI' for the axis DCG of the (fig. 12), from which the angles a, b, a', b' , are regarded
; and the force  Z $\epsilon$ will be traced along with  MI . To deduce Q , it will need to make coincide
the hnes CA, CB, CA', CB' , of the (fig. 12), with the straĩghts MG, MO, MK, MF , of the
(fig. 18) ; being thus, we will have

Q=4 $\pi$ qr\sin i\cos $\omega$.

Releatively to the force R , we will make coincide the hnes CA, CB, CA', CB' , of the (fig. 12),
with the hnes MN, MO, MG, MF , of the (fig. 18) ; and it will result

R=2 $\pi$ qr [ \sin i taJi (\displaystyle \frac{1}{4} $\pi$-\frac{1}{2} $\omega$) -\displaystyle \sin(i+ $\omega$)(1-\tan\frac{1}{2} $\omega$) ].
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Finally, to regard of the force S , we will make coincide the lines CA, CB,CA', CB' , of the (fig.
12), with the hnes MG , ME, MF, MN , of the (fig. 18) ; this one which will require that we
takes and from here we will conclude

S=2 $\pi$ qr[\displaystyle \sin i\tan(\frac{1}{4} $\pi$-\frac{1}{2} $\omega$)-\sin i\cot\frac{1}{2} $\omega$-\sin(i+ $\omega$)].
By means of these values of Q, R, S , we win have

Q-R+S=2 $\pi$ qr [2 sm icos  $\omega$-\displaystyle \sin(i+ $\omega$)\tan\frac{1}{2} $\omega$-\mathrm{s}\dot{\mathrm{m}} icot \displaystyle \frac{1}{2} $\omega$].
equation which we can put also :

 Q-R+S+2 $\pi$ qr\cos i=2 $\pi$ qr\cos(i+ $\omega$) .

Hence, owing to the values of P and T , the total pressure exercised on the floating corps, in
sense contrary of the gravity, will have for expression

 $\pi$ r^{2} $\Pi$+ $\pi$ g $\rho$ br^{2}+g $\rho$ V-q $\rho$[ $\pi$ kr^{2}-v- $\pi$ ra^{2}\cos(i+ $\omega$)],
in making, as in the precedent chapter,9

q+q_{l}=\displaystyle \frac{1}{2}H, H=g $\rho$ a^{2} , (14)

We recall that  $\omega$ at the same signification with in this chapter, and that  i+ $\omega$ is the angle
composed between the radius of corps which the length is  r , and the normal exterior of liquid,
traced with the extremity of this radius, of which responds to the section of corps where the
hquid is blocked.
§84. (To solve one of question the most interesting of the theory of the capillary action.)

To determine the effect of the capillarity on the horizontal pressures, I will suppose that
the floating corps were composed between two planes vertical and parallel, of one very large, so
that can neglect without sensible error, the part of the pressure which hold near their extremity,
relatively to the total pressure, and consider the around of the liquid and the pressure as con‐
stants in all the length of each plane. The corps will be terminated, in height and in base, with
the certain surface ; will will suppose the inferior surface entirely immersed,, and the surface
superior entirely outward of the liquid, The (fig. 19) represents a section of this corps vertical
and perpendicular to these two lateral faces. The figures AD and A'D' were the sections of
the surface of liquid, of part and mother corps, which cuts their two faces at the point A and
A' . These curves are different, and A and A' are not belonged with a same horizontal straight.
According as each of these points is upward or downward of the level of liquid, the curve corre‐
sponds win turn its concavity with in height or with in low. The straight LL' is the intersection
of the plane of the figure and of a horizontal, which I win take for that of the x and y , and that
I will suppose to a distance h under the level of hquid. It cuts the two faces of hquid at the
point C and C' , situated upward of the part curve of corps and downward of A and A' . I will
put

AC\equiv h+k, A'C'\equiv h+k_{l} ;

k and k_{l} beming the quantity positive or negative, according as A and A' are upward or downward
of the level of liquid.

Posed thus, the horizontal pressures are canceled out on the paxt of corps situated under plane
of the x and y ; those which provides from the atmospheric pressure is canceled equally on the
entire corps. Upward of the points C and C' , the radii of curvature  $\lambda$ and  $\lambda$' being iJffifimite, the
normal pressure N will reduced to its part p , which we will be capable to represent the value
with

p=g $\rho$(h-z) ,

9(\Downarrow) The supposition of F=bH and H=g $\rho$ a^{2} are defined in (no. 75).
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without consideration of  $\Pi$ . The horizontal pressures which provide this force  p , and which hold
on the part of corps corresponded to CA and CA' , win be hence

g $\rho$ l\displaystyle \int_{0}
ん十ん

(h-z)dz, g $\rho$ l\displaystyle \int_{0}^{h+k_{l}}(h-z)dz,
in designating with l the measure of corps, and supposing the same for the two surfaces. In
consequence, if we effectuate the integrations and if we call  $\delta$ the excess of the pressure of the
force  p , which would push the corps in everywhere, we will have

 $\delta$=\displaystyle \frac{1}{2}g $\rho$ l(k^{2}-k_{l}^{2}) . (15)

But, the quantity p isn’t the pressure of the hquid in all its height; it ceases to exist at a distance
from the surface less than the radius of the molecular activity ; and although this holds only in
an insensible thickness, the pressure exercised with the superficial layer of the hquid isn’t less a
sensible quantity, which it isn’t permitted to neglect.
§85. Let then M a point of hquid situated at right of the figure, at the distances of AC and
AD , less than the radius activity of the tube and of hquid. With this point, trace a vertical
OMG which cuts AD at the point O , a perpendicular to this curve AD which meets at the point
N , a horizontal MH which meets AC at the point K , and a curve FME parallel to AND. We
will have to determine the components horizontal of the same fores which we have previously
considered (no. 80) the vertical components Q, R, S, T . I will designate with Q', R', S', T' ;
the value of each of these quantities will have l for factor ; and, without consideration of this
factor, T will be the component along with MK of the force U of the (no. 41), which operates
along with MF , and which the value is -q_{l} ; from here, we conclude

 T=-q_{l}l\sin $\omega$ ;

 $\omega$ being always the angle given \angle KMN . On the values of Q', R', S' , they are obtained, as those
of Q, R, S , owing to the formulae (16) or (17) of the (no. 44) ;^{10} where, instead of regarding
the angles a, b, a', b' , from the vertical IMI’ (fig. 18), it will need to give them for origin
the horizontal MH or its prolongation MH' , and make coincide the straights MK and MH,
consequently suppose i=0.

we will deduce

S'=ql [tm (\displaystyle \frac{1}{4} $\pi$-\frac{1}{2} $\omega$)-\cos $\omega$-\cot\frac{1}{2} $\omega$].
It results from here that the horizontal pressure exercised on the face of corps which responds
to  AC , to be accurate, on the hquid layer adjacent to this face, win turn to be augmented from
a force Q'-R'+S'+T' , which the value will be

ql (2\displaystyle \cot $\omega$-\cos\frac{1}{2} $\omega$-\cot\frac{1}{2} $\omega$)-q_{l}l\sin $\omega$\sim ;

\overline{Q'-R'+S'} T'
quantity which we can reduce to 11

-(q+q_{l})l\sin $\omega$.

10_{(\Downarrow)}

(4) Z=q[\displaystyle \sin b'\{\tan\frac{1}{2}(a+b')-\tan\frac{1}{2}(b+b')\}-\mathrm{s}\dot{\mathrm{m}}a' {tm \displaystyle \frac{1}{2}(a+a')-\tan\frac{1}{2}(a'+b . (16)
(5) Z=q[\displaystyle \mathrm{s}\dot{\mathrm{m}}b\{\tan\frac{1}{2}(a'+b)-\tan\frac{1}{2}(b+b -\displaystyle \sin a\{\tan\frac{1}{2}(a+a')-\tan\frac{1}{2}(a+b (17)

11(\Downarrow) Using,

\displaystyle \sin $\alpha$=\mathrm{t}\mathrm{a}n_{\overline{2}}(1+\cos $\alpha$) , \tan\frac{ $\alpha$}{2}=\frac{1-\cos $\alpha$}{\sin $\alpha$}.
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The force which it will turn to augment the pressure relative to the face corTesponding to A'C,
will be similarly

-(q+q_{l})l\sin$\omega$_{l}.

$\omega$_{l} designating this one which the angle  $\omega$ turns in respect to this second face of corps, which
may not be the same nature with the former. These two forces activate in contrary sense with
each other ; and if we call  $\varepsilon$ the complete value of the excess of the horizontal pressure which
pushes the corps in everywhere, we will have

 $\varepsilon$= $\delta$+(q+q_{l})l (sin $\omega$_{l}-\sin$\omega$_{l}

consequently, this one which is the same thing,

(9)  $\varepsilon$=\displaystyle \frac{1}{2}gl [k^{2}-k_{l}^{2}+a^{2}(\sin$\omega$_{ $\iota$}-\sin$\omega$_{ $\iota$} , (18)

in regarding to the value of the part  $\delta$ , 12 and observing that  q+q_{l}=\displaystyle \frac{1}{2}g $\rho$ a^{2} . 13
This result differs from that of the Mécanique Odleste, in this one which the author doesn’t

regard the particular pressure which holds near the surface of the liquid, and which doesn’t
disappear from the exact value of  $\epsilon$ which in the particular case where the two angles  $\omega$ and  $\omega$_{l}

are equal or makes supplementary angle in each other. 14

6. Conclusions

The formulae deduced by Laplace and Gauss are identical, Poisson uses as a commonly known
formula. Poisson emphasizes the variation of density in the neighbor of wall and surface, by
which the fall or elevation occurred. Today’s common knowledge teaches it to us by means of the
surface tension, of which Poisson doesn’t tell at all, however, the difference between capilarity
and surface tension is vague. For example, capillary wave means the wave of surface tension.
We can replace a part of action which Poisson uses with surface tension. By the way, the ward
‘surface tension’ is used already by a Prandtl’s textbook in 1933 [8].
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