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Multi-component generalization of the Fokas-Lenells equation
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The Fokas-Lenells (FL) equation is an integrable model for the nonlinear propagation of short pulses in an
optical fiber. We introduce an integrable multi-component FL system and provide its bright multisoliton
solutions as well as an infinite number of conservation laws under the vanishing boundary conditions. We

also give the dark multisoliton solutions of the system under the nonvanishing boundary conditions.

1. Introduction
1.1. Basic equation

The Fokas-Lenells (FL) equation is an integrable generalization of the nonlinear Schrédinger (NLS)
equation. In the context of fiber optics, it describes the nonlinear propagation of short pulses in a

monomode fiber. Starting from Maxwell’s equation for an electric field, Lenells derived the following

equation [1]
. 1 1 iG3
At — A —— A +7yArr— —— A
1 Bo Bovy T +7YATT ¢ ~TTT
= —pA|A? - is(A|AP)r —iTA(A[})rT, (1.1)

where A = A(2,T) is an envelope of an electric field, z and T' = ¢ — z/v, denote the space and time

variables, respectively, 5 is a wave number, v, is a group velocity, and v, 83, p, 5, T are real constants.
The several completely integrable equations are obtained by the reductions of Eq. (1.1). Among

them, the following four equations are well-known:

1) A modified NLS equation

iA; +v Arr = —pA|A]* —is(A|A]P)r. (1.2)

2) Hirota equation (Hirota [2])

A, + Arrr = —6]A|2AT. (1.3)

3) Sasa-Satsuma equation (Sasa & Satsuma [3])

A, + Arrr = —6|APAr — BA(|AP%)r. (1.4)



4) FL equation (Fokas [4], Lenells [1]

1
iA, ~ —— A.r +v Arr = —p|AJ? (A +i i AT> , s+7=0, 1/fovg=s/p. (1.5)
Bovg P

If we put A =u,s/p=v in Eq. (1.5) and identify z and T with t and z, respectively, the FL equation
can be rewritten as

g — Vgt + Yiizz + pluf? (u + ivug) = 0.

Replacing u by 1/a/|p|bei®*+2eb)y, (g = /v > 0,b = 1/v), this equation becomes
Ut — QUgy = ab (—u +iolul?u;), (0 =sgnp).

Last, by means of the transformations z 4 at — z, —ab?t — t, we arrive at the simplified form of the F L
equation

Uzt = u —ioful?uy, o=+l (1.6)
1.2. Purpose

Here, we address the following issues:

o Generalization of the FL equation to an integrable multi-component system.

o Construction of the bright soliton solutions of the multi-component FL system by means of a direct
method.

o Derivation of an infinite number of conservation laws of the multi-component FL system.
o Bilinearization under the nonvanishing boundary conditions and construction of the dark soliton
solutions.

In this report, we outline the main results and the detail will be published in a separate paper.

2. Multi-component Fokas-Lenells system
2.1. Lax pair
The FL equation has an integrable multi-component generalization. Actually, it exhibits a Lax rep-
resentation
U, =U%, ¥ =VV¥, (U,V:(n+1)x(n+1)matrices), (2.10)

isr2 s i s T 1
= (3¢ “Kus) _ o Y A O = (vir) 1<
U (icvg‘ _%421) (ng)ls_g,kSn+ly |4 ( %VT iff‘l‘iVTu (v]k)ISJ,kSn'H’
(2.1b)

U= (P1,%2, ey Pns1), W= (Up,UzyeeryUp)y, V= (V1,02..,0,), ¥EC uveC", (21
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where ( is a spectral parameter. It follows from the compatibility condition of the Lax pair that U; -~

Ve + UV — VU = O. This yields the system of equations for the vector variables u and v:
Ut — u+i(uyviu+uvliu,) =0, (2.2a)
Vgt —V — i(vIuTv + vuTvI) =0. (2.2b)
Recall that the system of equations (2.2) can be reduced from the first negative flow of the matrix
derivative NLS hierarchy. See, for example Fordy [5], Tsuchida & Wadati [6], Tsuchida (7}, Guo & Ling
(8}-
2.2. Reduction

If we put v; = g;u}, 0j = £1 (j = 1,2,...,n), then the system of equations (2.2) reduces to

n n
Ujot = Uj — 1 { (Z asus,,—,uf;) uj + (Z osusu;) uj,m} , (1=1,2,..,n). (2.3)
s=1 s=1

The following two special cases have been considered for the system (2.3):
1) n = 1: FL equation (Fokas [4], Lenells [1])

Ugy = u — 2ic|u?ug, (u=1uy,0; =1).

2) n = 2: Two-component FL system (Guo & Ling [8], Ling et al [9])

Upgt =UuUp —1 {(2Iu1|2 + a]uz|2)u1,, + iaulugugyx} s (2.4a)

Upze = uz — i {(Jua]? + 20 uzPYuz e +iouzuius s}, (01 =1,02=0). (2.4b)

3. Soliton solutions
3.1. Bilinearization

There exist several exact methods of solution for solving integrable soliton equations. Among them,
we employ a direct method [10] (or, bilinear transformation method [11]). Specifically, we construct the
bright soliton solutions of the multi-component FL system (2.3) under the vanishing boundary conditions

uj —0as |z| —» o0 (j=1,2,..,n).

e Proposition 1

Under the dependent variable transformations
u] = %7 (j = 1727 ""n)7 (3'1)

the multi-component FL system (2.3) can be decoupled into the system of equations

n
Dof - f*=1)_ oxgkgh (3:2)
k=1
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D.Dif - f* =iy _okDzgx - 9}, (33)
k=1
(st f — 9isfe — 95 ) = £ (95,2 — g5 fz)s (1 =1,2,...,n), (3.4)

where f = f(x,t) and g; = g;(x,t) are the complez-valued functions of x and t and the bilinear operators

D, and D are defined by

7] a\"/o o\"

ML g = — — — z _ < ]
DFDyf-g (ax 3z,) (at m,) HCRTICRY
with m and n being nonnegative integers.
¢ Remarks
1) We can decouple the trilinear equations (3.4) into a system of bilinear equations

gj’ztf - gj,tfz - g]f = h‘]ft" (.7 = 1127 '"an)7 (3'50')

gj,-’tf - gjfx = hjf*a (.7 = 17 2,...,TL), (35b)

where hj = hj(z,t) are the complex-valued functions of = and ¢. This system can be rewritten by using

the bilinear operators
Dthgj y f - 2gjf = _Dthj N f*, (.7 =1,2, --~’n), (360’)

Dyg; - f=hif*, (1 =1,2,..,n). (3.6b)

2) If we introduce the variables ¢; = u;,z, then

) h f* )
6=(2) =ML -1z, (3.7
solve the n-component derivative NLS system
n
igj,¢ + gjzec + 21 KZ aquk|2> q,] =0, (j =1,2,...,n). (3.8)
k=1 z

This comes from the fact that the n-component FL system (2.3) is the first negative flow of the n-

component derivative NLS hierarchy.
3.2. The bright N-soliton solution

e Proposition 2
The bright N -soliton solution of the system of equations (3.2)-(8.4) are given in terms of the following

determinants
D | .
f=IDl, D=(dixh<ihsn, 95 =|pe | G=1L2.n) (3.9)
j
it Cs ol i
= 2 TPk PR O = > osaaly, (3.10)

p; + Dk

s=1
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21 22 ZN .
z= (21,2:2,...,21\]), z; = (—, Ty ey —-—) ) a,- = (ajl,ajg, ...,ajN), (] = 1,2, ...,n). (311)
P P2 PN

Here, p; (j =1,2,...,N) and ajx (j =1,2,...,n;k =1,2,...,N) are arbitrary complex parameters.
The proof of the Proposition 2 can be done by means of an elementary calculation using the basic
formulas of determinants, i.e.,
8 Y. bd;
51Dl = 3 a—:‘D,-k, (D : cofactor of djx),

Jk=1

N
=|Dlz— > Djxasbx,

k=1

D aT
b

|D(a, b; ¢,d)||D| = | D(a;c)||D(b;d)| — |D(a;d)||D(b;c)) : Jacobi's identity.

If one replaces 2z; by z; = PsTHiE] ¢ then Proposition 2 provides the bright N-soliton solution of the

n-component derivative NLS system [12]

D 2T
a*

ol G=12..n).

hif* N p"f
5= b= [[2
.1 Pj

J
4. Conservation laws

The several methods are available to derive an infinite number of conservation laws for integrable
soliton equations. One of them is based on the inverse scattering method, which we apply to the system
(2.3). First, we write the linear system (2.1a) in terms of its components

n+1 n+1l

Yie =Y ke, Yie= Vik¥k, (j=1,2,..,n+1). (4.1)
k=1 k=1

The compatibility condition of this system gives

n+1 n+1
(Z %) = (Z ”_fl’ﬁ_“> , (=12, +1). (42)
t z

k=1 k=1

For j = 1, the relation (4.2) yields
n+1 n+1
u1EYk 1KYk
S S e
( = Y, =/,
If we substitute the matrix elements of U and V from (2.1b) and introduce the new variables I'; =

Yi+1/¥1 (j = 1,2, ...,n), this expression can be put into the form

(qul"j) = (% Zakukui + %2 Zuﬂ",-) , (g =ujg). (4.3)
j=1 . k=1 -

3=1

showing that the quantity [°°_ 3i=1 ¢;Tjdz is conserved.



Similarly, it follows from the first equation in (4.1) that

1 .
FANES Ca,qjq] <2 gj ,,I+CqJF quf‘k, (G =12,..,n). (4.4)
k=1

We expand the quantity g;I'; in inverse powers of ¢ as

f(k)
;T _Eczk -, (1=1,2,..,n), (4.5)

subsitute it into (4.4) and compare the same power of (. Then, we obtain the recursion relation that

determines f;k) :

f(l) =0;05¢], (j=1,2,..,n), (4.6a)
f(k 1) k-1
¥ =ig; (,_) + Z i Z O (G=1,2,.,n, k>2). (4.6b)
] T s=1

Consequently, the quantity

=/_ ZQJF d”_zczk 1/ Zf(k)dz‘Z@k g (4.7)

is conserved. Thus, we obtain an infinite number of conservation laws

0o M
I = / S Pdz, (k=1,2,..). (4.8)
St
The first three of them read
L = / Zajq]q]dx7 (g5 = ujz),s (4.90)

2
I =/ ZUJ(QJq],a; QJq]y-’F)+ (Z%%%) dz, (4.9b)

Jj=1

00 n n n 3
Iy = / Y0300+ 51 Z 0i(9i%0 — %) D 0s0:as +2 | D oigiq} | |dz.  (4.90)
—00 1 =1

Jj=1 s=1 j=1

5. Discussion

We discuss solutions of the n-component FL system (2.3) under the nonvanishing boundary conditions
uj ~ pj exp (ika —iw;t + i¢§i>) , «— o0, (j=12,..,n), (5.1)

where p; € C,k;,w; € R represent the amplitude, wavenumber and angular frequency of the plane wave,

respectively, and ¢§i> are phase constants. The linear dispersion relation of the system (2.3) then becomes

n n
wj =1+ Zaskslpalz + Zaslps|2kjv (1=12,...,n). (5.2)
= s=1

229



Introducing the dependent variable transformations
uy=pe B0 L (=1,2,.0m), (5.3)

and performing the bilinearization, we obtain

Dyf - f* =i oxloxl*(gxgi — F£7), (5.4)

k=1

n n n
DoDif - f* =13 oklorlDage - 97 +1 orloeDaf - £* 2 oukelosl(gs9s — £7) =0, (55)

k=1 k=1 s=1
f* 9j,atf — (fz — ikjf)gj,t - i:‘ (1 + ZUsk,|p,|2) D.g; - f]
7 s=1

As in the case of Eqgs. (3.4), the trilinear equations (5.6) can be decoupled to the bilinear equations.

In the special case of n = 1, the corresponding expressions are given by

u = peilkz—wits™) % (5.7)

Dif - f* =ip*(99" — £ "), (5.8)

DyDyf - f* =ip’Dyg - g* +1p°Daf - f* +20°k(9g* — [ ), (5.9)

fr [gnf — (fo —ikf)ge — i (% + p’) Dgg - 9*] = f{(92f — 9fs +ikfg), (5.10)

where g = g1,p = p1,k = k1,w = wq, ¢ = §i’,a, = 1. This system of equations coincides with that
given in Matsuno [13] for the FL equation under the boundary condition (5.1).

The construction of the dark N-soliton solution of the system of equations (5.4)-(5.6) can be done
following the similar procedure as that developed for the vanishing boundary conditions. It is given

compactly by the determinantal form

ipj .
f=ID, D= (5-k - . z~zk) , (5.11)
 opi+pr” 1<G,k<N
9s = |G3|, Gs = (ij - 117;; - pi — i.ks ij]t) 3 (8 =12, -'-1n)1 (5'12)
p; + Py P + ik 1<,k<N
1 " k 2
2j = exp [pja: + i%p—sl-t+ Cjo] , (=1,2,..,N), (5.13)
i

where p; and (jo (j = 1,2,...,N) are arbitrary complex parameters and the N constraints are imposed

on the former parameters

n * 2 n
P;p; osks 'asl 2 3
— =1+ ok , =12,..,N). 5.14
; (pj — !ks)(p]- + iks) ; sks|ps| ( ) (5.14)
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We point out that the expressions (5.11)-(5.14) will provide the dark N-soliton solution of the n-
component derivative NLS system (3.8) if one changes the time dependence of z; from (5.13) and the
constraints (5.14) appropriately.
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