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b-Functions of prehomogeneous vector spaces of
classical, parabolic type

Akihito Wachi (Hokkaido University of Education)

Abstract

We consider prehomogeneous vector spaces of parabolic type for the classical
complex Lic algcbras, and compute the b-functions of several variables for their
basic relative invariants. We also give a description of the b-functions in terms of
lace diagrams.

1 Introduction

Let G be a complex reductive Lie group and g its Lie algebra. Let p be a parabolic
subalgebra of g, and take the Cartan subalgebra b, the root system A and the simple
root system ® such that b and every simple root space are contained in p. Let ®; be the
subset of ® consisting of the simple roots a € ® for which g_, C p, where g_, denotes
the root space of —«. Define subspaces g; of g for an integer j as the sum of the root
spaces g, (o € AU {0}. we interpret the root space corresponding to zero as h), where
a € AU{0} satisfies the following condition:

Z cg = J, where a = Z e+ Z cgB.

Bedr Be®y BeD\®;

Then we have

5= p=EPag,-

J€EZ j=0

Let Gy be a subgroup of G corresponding to the Lie algebra gy. Then it is known that
(Go,g1) is a prehomogeneous vector space, namely Gy has an open orbit on g;. This
prehomogeneous vector space is said to be of parabolic type.

For a prehomogeneous vector space (G,V) a nonzero polynomial f € C[V] is called
a relative invariant if f(gv) = x(g)f(v) for any g € G and v € V, where x is a one-
dimensional representation (character) of G. A relative invariant is said to be basic if it
is an irreducible polynomial, and it is known that every relative invariant is a product
of powers of basic ones. In Section 2 we list all the prehomogeneous vector spaces of
parabolic type for the classical Lie algebras, and determine the relative invariants.

When f € C[V] is a relative invariant of a reductive prehomogeneous vector spacc
(G, V), it is known that there exists a polynomial b(s) € Q[s] such that

f*(a).fs_'—l — b(S)fs,
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where f*(9) is the constant coefficient differential operator obtained by substituting the
partial differential operators to the variables in f (precisely this is correct only if the
representation of G on V satisfies some condition. We omit the details in this note.),
and a dot means the differentiation. The polynomial b(s) is called the b-function of
f. Furthermore suppose that fi, fa,...,f, € C[V] are relative invariants of a reduc-
tive prehomogencous vector space (G, V). It is known that there exists a polynomial
b,(s1,82,--.+5p) € Q[s1, 82,. .., Sp] such that

@S 2 = bilsny s e e S

The polynomial b;(s1,...,sp) is called the b-function of several variables. Note that in
papers [1, 2, 3] b-functions of several variables are defined in more general setup, and they
can be recovered from our b;(s1,...,s,). In Sections 3 and 4 we determine the b-function
of several variables for the prehomogeneous vector spaces of classical, parabolic type in
two cases. The remaining cases are explained in a forthcoming paper [6].

Among the results in this note Proposition 1 is already given by Sugiyama [3], and part
of Theorem 3 is already given by Fumihiro Sato [1]. Remark that we have another proof
for them using the Capelli identities of odd type [4, 5, 6]. In Sugiyama [3] b-functions of
several variables are described in terms of lace diagrams. We give a similar description
for other b-functions.

2 The classification of PVs of classical, parabolic type

In this section we determine the prehomogeneous vector spaces of parabolic type corre-
sponding to classical complex Lie groups and their parabolic subgroups.

2.1 Type A
Define the Lie group G, its Lie algebra g, and its Cartan subalgebra b as
n+1
G = GLnpy1 = GL(n +1,0C), g=gl,.,(C), h=> CEi
=1

where E,; is the matrix unit. Take the root system A, the simple root system ® and its
subset ®; as

A={e—¢|1<ij<n+1,i+#j},
b={a;:=¢—641]1=1,2,...,n},
O = {ap,, 0pyy- - O, } (1<p <py<---<pp<n).

Then the prehomogeneous vector space (Gg, g1) is given as

GO = GL'mn X GL'm.1 X e X GLmk ("Ll = Pi+1 — DPi, Po = 07 DPk+1 =N + 1)
01 = Matym, ©Matp,, m, O © Maty, | m,,

where Mat,; denotes the set of matrices of size a X b, and the action is given as

(907gla e ’gk)’(Xl’X23 e an) = (goXlgl_l7g1X29;17 s ’gk—leglzl) (1)



119

for (go, g1,---,9x) € Go and (X1, X, ..., Xy) € g1. Note that g; is illustrated as

3\

0 Xy 0 -~ 0
0 X, :
g1 = 0 X; € Maty, ,m,
. 0 Xk
0 --- e 0

Thus the basic relative invariants are

det(X . Xop1-- X4), where 1 < e <d <k, me_) =mgq, my >my (c<t<d).

2.2 Type C

We use transposition with respect to the anti-diagonal so that we can place the positive
root spaces above the diagonal. For m x n matrix X, define 7X € Mat,, , as

( TX)i,] = Am+l-gn+l—i-
Define J, € Mat,, , as
0 0 1
J, = 1 0
0o .-
1 0 0

Define the Lie group G, its Lie algebra g, and its Cartan subalgebra b as

0 J 0
G:Spgn:{geGL2n|tg<_J 0),q=<_Jn 0)}
— T 1n 0 = 1" 0
_{gEGL2n| 9(0 _1n>g—<0 —1n>}’

A B
g={<c _TA)|A,B,CeMatn,n, B = B, TO:C},

n
h @ C(EZJ - E2nfi+l,2n——r'i H)~
i=1

Note that the group Sp?, is isomorphic to

B . 0 1n _ 0 ]-n
Spay 1= {gE GLon | g (__ln O)QA ('_]-n 0)}

Let ¢; (1 <4 < n) be the dual basis to E;; — Eop—it12n—i+1 (1 <7 < n). Then we can

take the root system A and the simple root system ® as
A={x(e—¢€)|1<i<j<npU{x(e+e¢)|1<i<j<n},
S={a;:=€6—€41|1=1,2,....n— 1} U{a, = 2¢,}.
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The positive root space g, is as follows:
gez—ej = (C(El,j - E2n+1—j,2n+1—7,> (1 S 1< 7 S ’I’l),
gel+c] = (C(Ei,2n+1—] + Ej,2n+l—i) (1 << ] < n)

The positive root spaces are on the upper diagonal part. For example go., = CEj 9p.

2.2.1 Type C (1)

Let ®; be a non-empty subset of the set of the simple roots ®. We have to divide Type
C into two cases according to whether a,, = 2¢, is contained in ®; or not to describe the
prchomogeneous vector space and its basic relative invariants.

First we consider the case where o, & ;. Set

Dy = {ap,, Opgy -+, p, } (1<p<py<---<pp<n).
Then the prehomogeneous vector space (Go, g1) is given as
Go = GLy x GLg, X --- X GLy, X Spng_gpk (@ =p1, 2=P2—P1,---,qk = Pk — Pk—1),
[ Ma‘tth a2 P Matqmqs &0 i\dat(lkﬂn—%k’

and the action is given as

(ghg?: .. 7gk+1)'(X13 X2, .. 7Xk) = (nglg;17 g2X293_17 R gka'g];-il) (2)
for (g1,92,---,9k+1) € Go and (X1, X, ..., Xi) € g1. Note that g, is illustrated as
(/0 X
0 Xp|X; 0
Ok Ok T)(I Xl € M?’tqz“h+1
5 = e (1<i<k-1), f. ()
Ok Xy, X} € Maty, ,—p,
0 -TXx,
0

The matrix X}, in (2) corresponds to the matrix (X, X}) in (3).
It is easy to show that this representation is equivalent to the following representation.
(Gp, 81) = (GLg, x -+ x GLy, X Span_op,, Matg, g, & Matg, 4, & - - - ® Matg, an—2p, ),
(hty oo hi)-(Yas o Vi) = (aYihy ' haYahy by eYihihy)

for (hy, hy, ..., hgr1) € Gy and (Y1,Ys, ..., Yy) € g). We describe the basic relative invari-

1 .
ants for this representation. Since the matrix Y. Y, ;- Y% ( (i 61) Y Yeir - Yy) is
—in

alternating, we have the following basic rclative invariants:

i (L0 ) )

n—pg 0
(1<c<k, g:even, ¢ >¢q (c<t<k+1)),
det(YeYeqy -+ - Ya) (1<c<d<k, g=qan, ¢ > g (c<t<d+1)),

where g1 = 2n — 2pg. Note that the column size of Y}, is always even in this case.
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2.2.2 Type C (2)

Next we consider the case where a,, € ®;. Set
D = {op, 0y, -, O, Ay ) (1<p <pa<-<pp<pry1=n).
Then the prehomogeneous vector space (Go, g1) is given as

Go = GLy X GLg, X -+ X GLg X GLy_p, (n=p1, ©2=D2—DP1,--, Gk = Pk — Pk—-1),
g1 2 Matg, g, ® Maty, g, & - - & Maty, n_p, OSym?_, |

where Sym? _ denotes the set of the symmetric matrices of size n — py with respect to
n—pi

the anti-diagonal. The action is given as
(1. 92,y Gre1)- (X1, Xoy o0, X, S) = (1 X195, 92X095 " . ,gka.ﬁ]k_ipngS T9141)

for (g1, 92:-- > gk+1) € Go and (X1, Xo, ..., X, S) € g1. Note that g, is illustrated as

0 X
0 Xi|0 X; € Matq.,,
B 0]S 0 (1<i<k-1),
8= 0 —7TX, X4 € Maty nop,. (4
) S e Symg_pk
0 -TXx,
0

It is easy to show that this representation is equivalent to the following representation.

(Go. 1)
= (GLg, X +++ X GLg X GLy_p,,Matg, 4, ® Matg, g, © - - & Maty, n_p, ©Sym,,_,, ),
(hiyo oy harn)- (Y, Yi, S) = (MYihy ' haYohs ', o e Yihyly, hien S iy
for (hi, hgy ... hg+1) € Gy and (Y1,Ys,...,Y%,S) € g). We describe the basic relative

invariants for this representation. Since the matrix Y.Voy1 -+ YuS (YoYoy1 -+ - V) is sym-
metric, we have the following basic relative invariants:

det(S) and det(Y, - YpS (Y. Yi)) (1<c<k, gg>qc<t<k), n—pe>q)
det(YoYor--Yy)  (1<c<d<k, ge=das1, &> e (c<t<d)).
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2.3 TypeD
Define the Lie group G, its Lie algebra g, and its Cartan subalgebra f as

_ T t O Jn - 0 Jn

G_Ozn_{QEGL%lg(J" 0)9= 7.0
= {g € GLyy, | ‘gJong = JQn}
={9€GLo | T99=1an},

8= {(é —B;A) | A’B)C € Matn,na TB = _B, JC = “C}
= {X € I\/Iatgn J TX = —X}’

b= @C(Ez,i — Egnit12n—it1)-
i=1

Note that the group O, is isomorphic to
O?n = {g € GLQn | tgg = 1271,} .

Let ¢; (1 <4 < n) be the dual basis to E;; — Fapn—y112n—+1 (1 < i < n). Then we can
take the root system A and the simple root system & as

A={t(e—¢)|1<i<j<n}U{Ef(e+¢)|1<i<j<n}
P={wi=¢ -6 |i=12...,n—1}U{a, :=€,-1 + €.
The positive root space g, is as follows:
O, = C(Ei) — Eoni1-jons1-i) (1<i<j<n),
Bete, = C(Eiany1-5 — Ejont1-1) (1<i<j<n).
The positive root spaces are on the upper diagonal part. The anti-diagonal entries of g
are zero.
2.3.1 TypeD (1)

Let ®; be a non-empty subset of the set of the simple roots . We have to divide Type D
into two cases according to whether o, = €,_1 + €, is contained in ®; or not to describe
the prehomogeneous vector space and its basic relative invariants.

First we consider the case where o, & ®;. Set

q)I:{apua;Dzv'“aapk} (1§p1<P2<”‘<pk<n)~
Then the prehomogeneous vector space (Gy, g1) is given as

GO = Gqu X Gqu X X GLQk X Ogn—Zpk. (ql =P1, Q2 =P2 —P1,---, 4k = Pk — Pk—l):
g1 = Matg, 4, ®Mat, ., ©--- © Maty, on—2p,,

and the action is given as

(g1792: cee aQ/H-l)'(XIaX?a R Xk) = (91X1951592X2951> s 1gkagk_Jl1) (5)
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for (91,92, -,9k+1) € Go and (X1, X, ..., Xi) € g1. Note that g; is illustrated as

(/0 X,
0 Xi| X, 0
Ok Ok _ TX]:; Xl € M‘(:I'Estqt-(»l
o= 5 (1<i<k-1), $. (6)
Xy, X/, € Maty, n_p,
0 —Tx,
\ 0 /

The matrix X} in (5) corresponds to the matrix (X;X},) in (6). Note that this g, differs
from (3) only at the sign of — 7X}.
It is easy to show that this representation is equivalent to the following representation.

(G 81) = (GLgy X -+ X GLg X Oansp,, Matty, g, © Maty, g © - - & Matg, on—2p, ),
(hh ce 7hk+])~(Yl, cee 7Yk) = (hlylhz_l,h2Y2h§17 Yy thk+1)

for (h1,he,...,her1) € Gy and (Y1,Ys,....Yx) € g). We describe the basic relative
invariants for this representation.

det(Y,--- Y (Yo Y3))
1

<k g >q(c<t<k+1)),
det(Y.Yoi1---Yy) (1<c<d<k

y e = qd+1, Gt > Qe (C<tSd))7

where g1 = 2n — 2p;. Note that the matrix Y.V, 1 --- Yy (YeYer1-- - Yy) is symmetric,
and that the column size of Y is always even in this case.

2.3.2 Type D (2)
Next we consider the case where o, € ®;. Set

Q7 = {ap,, apy,- -, Qp,, Oy } (1<p; <py<-»<pp<pPry1=n).
Then the prehomogeneous vector space (G, g1) is given as

Go= GLgy X GLgy X -+ X GLgy X GLn—p, (@1 =P1, @2 =P2 = P1;-- -,k = Pk — Pr—1),
g1 = Maty, g, © Matg, g, ©--- © Maty, np, O AltZ—pH
where AltZ;_p'C denotes the set of alternating matrices of size n — p, with respect to the
anti-diagonal. The action is given as

(91192, -+ Ger1)- (X0, Xoy oo Xy A) = (1 X105 7, 02X205 - kX015 Gke1 A Tgran)
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for (g1, 2, - -, grr1) € Go and (X1, Xo,..., Xy, A) € g1. Note that g; is illustrated as

N

0 Xi
0 X,|0 X; € Matgy, g,
B 0]A 0 (1<i<k-—1),
&= 0 -7x, X € Maty, n—p,.
, A€ Alt]
0 -Tx;
L 0
T

Note that this g, differs from (4) only at A € Alt,,_,, .
It is easy to show that this representation is equivalent to the following representation.

(Go, 91)
= (GLyy % -+ % Ly, X GLp_p,, Matgy gy & Maty, g, &+ - @& Matg, n_p, @ Alty_p,),
(hh BREE) hk+1)'(Yla s 7)/]0"4) = (h1y'1h2_17 h’2Y'—2h3Tla s thkh;ila hk:-HA th’k-(-l)

for (hy,ha, ..., hx1) € Gy and (Y1,Ya, ..., Y, A) € g). We describe the basic relative
invariants for this representation. Since the matrix Y, Y, ;- Y, A (Y. Yoy1---Yy) is alter-
nating, we have the following basic relative invariants:

pf(A) (n — px: even),
pf(Ye - VA (Y. Ye) (1<e<k, g even, g > g (c<t<k), n—pp>q),
det(YoYoyr---Yy)  (1<e<d<k, ge=qur1, &> q (c <t <d)).

2.4 Type B
Define the Lie group G, its Lie algebra g, and its Cartan subalgebra b as

G= Ogn+1 = {9 € GLopt1 | L9J2n+19 = J2n+1}
={9€GLomi1 | T99=1on11},
g={X € Matan1 | "X =—-X},

[] = @ C(Eu - E2n—i+2,2n—i+2)~

i=1
Note that the group O}, is isomorphic to
Osni1 = {9 € GLant1 | '99 = lons1 }-

Let ¢; (1 <4 < n) be the dual basis to E;, — Eap—yi22n—+2 (1 <4 < n). Then we can

take the root system A and the simple root system ® as
A={t(e—¢) |1 <i<j<niU{t(e+e¢)|1<i<j<n}U{xe|1<i<n},
d = {al =€ — €41 |'I/'—‘ 1,2,...,n—l}U{an szn}.
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The positive root space g, is as follows:

8e—c, = C(Eij; — Eonyojonio—:) (1<i<yj<n),
Fete, = C(Eionyaj — Ejonia-i) (1<i<j<n),
ge, = C(Ein+1 — Entiont2-1) (1<i<m).

The positive root spaces are on the upper diagonal part, and the anti-diagonal entries of
g are zero.

2.4.1 Type B (1)

Let ®; be a non-empty subset of the set of the simple roots ®. We have to divide Type
B into two cases according to whether a,, = ¢, is contained in ®; or not to describe the
prchomogeneous vector space and its basic relative invariants.

First we consider the case where «,, & ®;. Set

O = {ap,,ap,, ..., ap, } 1<p<pa<-- <pg<m).
Then the prehomogeneous vector space (Go, g1) is given as

~ T
Go = GLy X GLgy X ++- X GLg X Og 41 9,
(fh =PI, @2=P2—P1,-- gk = Pk — Dk—1)s
g1 = Maty, 4, ® Maty, ¢, B - - - & Matg, an+1-2p,,

and the action is given as
(91,92, ger1)- (X1, X, o X)) = (01.X195 1, 92 Xa05 - 9e Xiegi ) (7)

for (g1,92,-..,9rk+1) € Go and (X1, Xa, ..., Xy) € g;. Note that g, is illustrated as

( 0 X,

0 Xi|X,|XV

000 —7xy Xi € Matg,q.,)
6 = 00 -Tx Age<k-1)
0 = TXIc X, Xi| € Maty, np,,
X, € Matg, 1
0 -Tx;
0

(8)

The matrix Xy in (7) corresponds to the matrix (X; X, X}) in (8).
It is easy to show that this representation is equivalent to the following representation.

( 6> 9/1) = (GLth X e X Gqu X 02n+1—2m’ Mat%qz EBNI&tqz,qz ®©---® Nlat%ﬂn-#l—?ﬁk)v
(hla AR h’k+l)-()/l> ty Yk’) = (h]}/lh2—17 hQYv2h3717 s )thk thk+1)
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for (hi,hy, ..., hgy1) € Gy and (Y1,Ys,...,Y:) € gi. We describe the basic relative
0 1

invariants for this representation.

det(Ye--- Y (Yo - Y2)) (1<c<k gg>q (c<t<k+1)),
det(YoYor--Ys) (1<e<d<k, ¢=qar1, > q (c<t<d+1)),

where g1 = 2n+1—2p;. Note that the matrix Y.V, - - Yy (Y.Y41 - - - Yy) is symmetric,
and that the column size of Y}, is always odd and greater than or equal to three in this
case.

2.4.2 Type B (2)
Next we consider the case where o, € ;. Set

O; = {ap, 0pys -, 0y, Oy ) (1<p1 <ps<- - <pp<Prs1=n).
Then the prehomogeneous vector space (Go, g1) 1s given as

Go = GLyy X GLgy X -+ X GLgy X GLp—p, (@1 =p1, G2 =P2 = P1,-- -,k = Pk — Pk—1),;
g1 = Mat,, 4, ®Mat,, o, ©- - - © Matg, n_p, GC" P,

The action is given as
(glyg2) DRI gk+l)'(X17X27 DR 7Xk", U) = (glxng_Ia 92X293—1) B 7gka‘g];i17gk+lv)
for (g1,92,---,9rs1) € Go and (X1, Xs, ..., Xk, v) € g1. Note that g; is illustrated as

(/0 X )
0 X X, € Mat, ,
0 |v v G0 Gut1
g = 0= 1<i<k-1),
0 —TY X € Ma,tqk,n_p,c,
k v e ChPe
0o -Tx,
0

Since there is no transposition with respect to anti-diagonal in this representation, we
describe the basic relative invariants for this representation. Similarly to the preceding
cases the matrix X X, - Xzv (X Xep1 - Xgv) is symmetric, and it seems that the
determinant of this symmetric matrix is a relative invariant. But the situation is slightly
different. The size of the above symmetric matrix should be one if determinant is nonzero.
Then the determinant factors into the square of det(X,X i1 -+ X,v). This means that
the determinant of the above symmetric matrix is not basic. Actually this representation
is just a special case of (1) in Type A. Thus we have the following basic relative invariants:

det(XcXepr---Xa)  (1<e<d<k+1, g =4qar1, ¢ > q (c<t<d)),

where Xp11 = v and qgy1 = n — Pk

Note that this case fills the remaining case of Type B (1), that is, in Type B (2) the
column size of the last matrix of g; is one, which is odd and greater than or equal to three
in Type B (1).
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2.5 Summary

The prehomogeneous vector spaces of classical, parabolic type and their basic relative
invariants are as follows. The b-functions of several variables for the first two cases are
described in the following sections.

From Type A and Type B (2)
Go=GLpy X GLyp,, X -+ X GLy,,
g1 = Mat, m, @ Maty, m, © - ®© Maty, | m,,
(90,91, 5 9)- (X1, Xy Xi) = (90Xag7 ", 01X205 -, 9 1 Xugie ).
The basic relative invariants are

det(X, X1 -+ Xy), where 1 <c<d <k, mey=mg, m>my(c<t<d).

From Type C (1)
Gy = Gqu X GLq2 X - X Gqu X Sp?%u’
g1 = Matg, 4, ® Maty, ¢, © - & Maty, o, .,
(91,92 - Grer)- (X1, Xa, o, Xi) = (01X105 5 92Xog5 ' - - 0 Xl )-

The basic relative invariants are

0 1
PE(Xe - X (_1 0) (Xe o X))
Qk+1
(1 S c S k’ ge: even, g > qe (C <t S k)7 2q]€+1 > qC)y

det (XoXorr - - Xa)
(1<c<d<k, ¢ =qa1 (0r ¢ =2qx41 ifd=k), ¢ > ¢ (c <t < d)).

From Type C (2)
Go=GLy x GLg, X --- x GLg,
g1 = Matg, o, ©Matg, 0, ©- - - & Maty g, @SquHl,
(91,92, - - Grs1)- (X1, Xoy oo, X5, S) = (01X195 ", 92X205 " -+ Ge XuGres 1> 1S ‘G-
The basic relative invariants are
det(S) and det(X, - X3S {(Xe--- X)) (1 <e<k, q>q(c<t<k+1)),
det(Xc X1+ Xa)  (1<c<d<k, g=qarn, &> ¢ (c<t<d)).

From Type D (1) and Type B (1)
Go=GLy x GLy, X - -+ x GLg, x Oy, ,,,
g1 = Mat,, 4, ®Matg, 5, @ - - ® Maty, 4, .,
(91,92, - G )- (X1, Xoy o Xk) = (021 X195 5 92 X295, - e Xkgitr)-
The basic relative invariants are
det( X, Xy {(Xe- - Xi)) 1<c<k q¢g>gc<t<k+1)),
det(XcXepr -+ Xa) (I1<c<d<k, g =qu1, @ > g (c<t<d)).
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From Type D (2)

Go=GLy x GLy, X -+ X GLg x GLy, , |,

g1 = Maty, 4, ® Maty, g &+ © Maty, g, ® Altg,

(g17 g2, :gk+l)'(X1a XQa cee 7X1€7 A) = (ng1g2_17.92X2.(]3_17 cee a.qukg]:ipgkﬁ-lA tgk-f l)'

The basic relative invariants arc
PI(A)  (gens: even),
pf(Xe- - XpA (X Xp)) (1<c<k, g even, ¢ > qc (c <t <k+1)),
det(X e Xep1--Xa)  (1<c<d<k, g=qur1, @ > g (c<t<d)).

3 b-Functions for Type A

In Sugiyama [3] b-functions of several variables are computed for Type A, and they are
also described in terms of lace diagrams. We recall his result in this section. Remark that
Sugiyama [3] has obtained b-functions for more general cases.

For a relative invariant f of a reductive prehomogeneous vector space let f*(9) be the
constant coefficient differential operator obtained by substituting the partial differential
operators to the variables. The b-function b(s) of f is defined by

f1(8).£ = b(s)f°

as mentioned in Introduction. Furthermore suppose that fi, fs,..., f, € C[V] are rel-
ative invariants of a reductive prehomogeneous vector space (G,V). The b-function
b.(s1,82,...,8,) in Q[sy,s2,...,s, of several variables is defined as

7). f ...ﬁz“...f;p =b,(51,...,8,)f ...ffz...f;p_
Set
G =GLpy X GLy, X -+ X GLpy,,
V = Matygm, ©Maty,, m, - © Matp, | my,
(9091, g0)- (X1, Xa, o+, Xi) = (90X191 5 1 X295 -5 k1 Xkgy -
Then the basic relative invariants are
det(X Xep1 -+ Xaq), where 1 <c<d <k, m.=my, m >my(c<t<d).

Denote the basic relative invariants by f1, fa, ..., f, (in any order).

Proposition 1 (Sugiyama [3]). The b-function of several variables for (G, V) is

d, ™d,
bilsy,-s0) = [[I1 oo s +me+1-7],

e=c, j=1 1<i<p,
fidXe, mq, 2J

where
fi = det(Xczxc,-H t Xdl)a

and f; O X, means that X, appears in the definition of f;, that is, ¢; < ¢ < d,. O



Remark that this proposition can be obtained also by the Capelli identity of odd type.

This b-function can be described by lace diagrams. Take

G=GLyx GLy x GLy x GLy X GLy,
V = Mato 3 ® Mats 4 @ Maty 4 € Maty o

for example to explain the lace diagram. We have the basic relative invariants

fl = dCt(X1X2X3X4),
fg = det(Xg),

where (X1, X2, X3, X4) € V. First we draw dots according to the sizes of the groups (2,
3,4, 4,2).

Next we draw horizontal arrows with linear factor. Arrows run from cth column to (d+1)st
column if f; = det(X,--- X,). The following are diagrams for f; and fo.

L] [ ] .‘-sli;.

[ ] [ ] [ ] [ ] 052—120
.‘ﬂ.ﬂ.ﬂ.ﬁ—_‘—%. e [ ] .ﬁ. L]
.ﬂ.ﬂ.ﬂ.w. ] [ ] 03—21—-;1. [ ]

We put linear factors s; +t to the arrows in the diagram of f,. As to the constant term, ¢
is determined so that the head of arrow is on tth dot from the top in its column. Finally
in the diagram of f, add s, to the factor if f; and f; has arrows at the same position.
Then we obtain the following diagrams for f; and fs.

) ° e — o
S2+2
° ° ° ° o 2t o
s1+2 +3 +5243 1 s243
° 1+ .81 .51 52 .31+ . ° ° .b1+ 2+. .
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Proposition 2 (Sugiyama [3]). We have
bi(s1,...,sp) = (the product of factors in the lace diagram of f;). O
For the above example we have

bl(sl, 52) = (81 + 1)(51 + 2)2(81 + 3)2(81 + 4)(81 + So + 3)(81 + 89 + 4),
ba(s1,82) = (51 + 82+ 3)(s1 + 52+ 4)(s2 + 1) (52 + 2).

4 b-Functions for Type C (2)

Set

G= GLmo X GLml X X GL‘mka
V' = Matm,m, ® Matmy m, @+ © Matm,_, m, ©Sym,,, .
(g05 g1y )gk)~(X17 X2> ey an S) = (90X191_1~, 91X292_1-, o )gk—legk_1> ng tgk)

Then the basic relative invariants are

(i) det(S) and det(X.--- XpS (X, Xi)) (1<c<k, my>meq(c<t<k)),
i et(XeXey1 - Xy 1<c<d<k, mer=mg, m>meq(c<t< .
det(XoXosr - X, d<k ( d)

Denote by fi, fa, ..., fp the basic relative invariants of (G, V).

Theorem 3. Define \;;; as

1 ( fJ: type (l)a fz n.f] 7é V), m,:]_l > l )
M= G5 (fr type (i), fin fy # 0, me,, 21)
0 (otherwise)

where f; N f; # 0 means that they have an arrow at the same position. Then we have the
following.
(1) If f; is of type (i), then the b-function of several variables is

bi(S1,- -+, Sp)
E The,-1 p . Me,—1 p oy
ST ((S0m) 25 LT ((S00) -5
c=¢, =1 Jj= c=c,— g=

up to scaling.
(2) If f; is of type (ii), then the b-function of several variables is

d, Mc,—1
b 51,..., H H <(i)\13131) +%1_l)
j=1

c=c, l=1

up to scaling. 0



This theorem is proved by using the Capelli identities of odd type [6]. If mg, my, .. .,
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mg

is strictly increasing, then Fumihiro Sato [1] has obtained the b-functions, where all the

basic relative invariants are of type (i).

We can describe this d-function by the lace diagrams. Take

G = GL1 X GLz X GL2 X GLg,

V = Mat o ® Maty o & Mato 3 ® Symy

for example to explain the lace diagram. We have the basic relative invariants

det(
det(Xs),
f3 = det(X
= det(9),

1X2 X358 X3 X, X),

where (X7, Xs, X3,5) € V. First we draw dots according to the sizes of the groups

(1,2,2,3) followed by its reverse (3,2,2,1).

Next we draw arrows with linear factor. Arrows run as the matrices in the determinants
represent linear maps. The following are diagrams for fi, fa, fs, fa-

L ® L ) [ ]
s2.41
2 2
L] [ [ ] [ [ ] [ ] e—e [ ) [ )
52
si+l s1+l SIS s42 siHd sid 3 +1 5 +1
.i) ! —ﬁ ! —3 —; ! [ ] .2—). [ ] [ )
s4+1
o [ ] .4—).
s+l S3+3 syl sat3d
. o2 e Se2 5 . ° . e—Se
s3+3 s +2 s3+3 s442
o [ ) —§ 3 [ ] [ [ ] [ ] [ ] [ ) .4—).

We put linear factors s, + t to the arrows in the diagram of f; of type (i) and put s;/2 +¢
for type (ii). As to the constant terms ¢ of the factors s, +t or s,/2 + ¢, if the head of the
arrow is uth dot from the top, then ¢t = 1/2 + (u — 1)/2 on the left half of the diagram,
and t = 1+ (u— 1)/2 on the exact center and on the right half of the diagram. Finally
in the diagram of f; add s; to the factor if f; and f; has arrows at the same position, and
fj is of type (i). Add s;/2 to the factor if f, and f; has arrows at the same position, and

fj is of type (ii). In the second case add s;/2 to the symmetric position on the right half.

Then we obtain the following lace diagrams.
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° °
° ° ° o . [
s1+] s1+F+1 sitsstd  sitsgrsat2  Sitsaty st F43 s+
o — @ — e — @ — e —> e — e — @
° o
s241
2 2
° — e o ° [ °
3]+372+1
[} ° — e ° ° [ o °
° °
3
s3+l s3t+sats s3+1
. e 2T o T S7e L .
51+53+% s1+83+s4+2 51+S3+%
[} ° ° — " e —_— e — " e [} o
Sq4+1
—
83+s4+%
[ ° [ — " e ° °
81+83+84+2
° [} [} o TR, [} o °

Theorem 4. We have
bi(s1,.-.,8,) = (the product of factors in the lace diagram of f,). O

b-Functions for the remaining prehomogeneous vector spaces of classical, parabolic
type can be computed by using the Capelli identities of odd type, and they can be
described by the lace diagrams. The details are explained in a forthcoming paper [6].
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