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1 Introduction.

Assessing the efficacy of diagnostic tests when their receiver operating char‐

acteristic curves cross has been an open problem for quite some time. In this

note, we outline a proposed solution to this problem based on an information

theoretic measure which I. J. Good has labeled dinegentropy. We illustrate

the effectiveness of this measure, empirically, via an example. The detailed

development of our arguments which lead to the proposed measure have been

delegated to a more comprehensive document.

2 Preliminaries

Diagnostic testing plays a key role in medicine, threat detection, supervised

classification, signal processing, the verification and validation of test ban

treaties, alerts for tornadoes, tsunamis and earthquakes and the evaluation

zero‐net investment Strategies in finance. However, diagnostic tests are not

perfect; they are prone to misdiagnosis and the generation of false alarms.

Assume a disease (or threat) we are interested in diagnosing (or detecting).
The disease spawns a single measurement variable Z , that is compared to a

threshold T . An individual is classified D‐ for diseased‐ if Z>T ; otherwise

the individual is classified N ‐ for normal. The classification is done by a
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diagnostician (who is a decision maker), say \mathscr{D}.

Were T be set to say t , then the sensitivity of the test, denoted S_{e}(t) is

the probability of correctly classifying a diseased individual. Similarly, the

probability of correctly classifying a normal individual is denoted by S_{p}(t) ,

the specificity of the test. Ideally, one wants both S_{e}(t) and S_{p}(t) to be

close to one, but for this to happen, the distribution of Z for D and N

should have little or no overlap. Otherwise an increase in S_{e}(t) will cause a

decrease in S_{p}(t) and vice‐versa. The parameters S_{e}(t) and S_{p}(t) are therefore
adversarial.

3 The Receiver Operating Characteristic Curve.

The adversarial character of sensitivity and specificity is encapsulated via

the receiver operating characteristic curve (ROC) which is a plot of (1 -

S_{p}(t)) versus S_{e}(t) . The ROC is monotonically increasing, continuous, and

differentiable everywhere. It is concave in (1-S_{p}(t)) , if for all z, F_{0}(z) \geq

 F_{1}(z) ; it will have a convex segment whenever F_{1}(z) > F_{0}(z) . Here, F_{0}(F_{1})
are the distributions of Z under N(D) . When F_{0} and F_{1} are specified, then

two tests, each having their own classification thresholds can be compared to

assess as to which of the two superior. An omnibus way to do so is via the

area under the ROC, abbreviated AUC. The AUC is a satisfactory metric of

comparison when the ROC’s of the two tests do not cross. This will happen
when F_{0} and F_{1} do not cross.

Note that the  AUC\in (0,1) , with 1 corresponding to a test providing a

perfect diagnosis, and an AUC=.5 being given by a test whose diagnosis is

random; i.e. diagnosis by the flip of a coin. All ROC’s below the diagonal

line correspond to tests that are worse than a random test.

The extent to which a diagnostic test is superior to a random diagnosis is
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also reflected by what we introduce here as the Gini Coefficient, G_{F_{0},F_{1}} , not

to be confused with the Gini Index of economic inequality. Specifically,

G_{F_{0},F_{1}} =2(AUC)-1 . (3.1)

G_{F_{0},F_{1}} =1 , when the diagnostic is perfect; it is 0 when the test is random.

When the ROC’s of two tests cross, alternatives to the AUC have been

proposed. These are ad hoc, and their credibility remains to be assessed.

In what follows we offer an approach to comparing two diagnostic tests over

a range of applications, when their ROC’s cross. Our approach is based on

information theoretic considerations and is therefore grounded in this theory.

The efficacy of our approach is illustrated by an example.

4 The Dinegentropy of an ROC Curve.

We propose the Jeffreys‐Good distance or per Good (1987), the dinegen‐
tropy of an ROC as an omnibus measure for comparing two ROC curves,

irrespective of their crossing properties. We motivate a use of this measure

by considering the Kullback‐Leibler distance between a reflected ROC curve,

viewed as a distribution function, and the diagonal ROC curve as a reference

distribution function, and then reversing the roles of these distributions to

obtain a complementary Kullback‐Leibler distance. The dinegentropy is the

sum of the above two distance. This process leads to the following theorem;

the detailed proof is in Singpurwalla (2018).

Theorem:

The dinegentropy of an ROC curve with f_{0}(f_{1}) as the probability densities
of F_{0}(F_{1}) is:

\displaystyle \int_{0}^{\infty}[f_{0}(t)-f_{1}(t)]\log_{2} [\frac{f_{0}(t)}{f_{1}(t)}] dt.
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5 Demonstration of Efficacy.

The figure below demonstrates the efficacy of the dinegentropy measure for

distinguishing between two diagnostic tests whose ROC’s cross but which
have the same value of the AUC. The S_{e}(t) ’s of the two tests are based on the

distribution functions of beta‐distributed random variables with parameters 2

and 6, and 1 and 3, respectively. These distribution functions cross, but their

resulting AUC’s are the same, namely, .75. By contrast their dinegentropies

differ, namely, 4.125 for the former, and 1.923 for the latter.

It has been argued in the reference mentioned above, that the diagnostic

test with the larger dinegentropy is the better test.
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Figure 1: Demonstrating the Efficacy of Dinegentropy.
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