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Abstract

In this note, we summarize briefly our series of studies on Markov decision
processes with unknown transition matrices and give an idea to show the rate of
convergence of Bayesian updating of posterior distribution in a sampling problem.

1 Interval estimated Markov decision processes

MDPs consist of four tuples {S, 4, Q,r} as follows. Let S = {1,2,...,n} be a finite
state space, A = {ai1,ay,...,ax} finite action space. The set of probabilities on .S and
transition kernels are defined as follows. P(S) := {p = (p1,p2,---,Pn) € R +| Dieshi =
1}, P(SIS) := {g = (g : i,j € §) € RY"| Z;esqu =1(eS)}LPBSISxA)={Q=
(g:5(a) : 4,5 € S,a € A) € RE™™|g;.(a) € P(S) (i € S,a € A)}, where R, is the set
of nonnegative real numbers and R7 the set of m-dimensional nonnegative real vectors.
Let B4 (D) denote the set of all non-negative real functions on finite set D. For a finite
D of n elements , By (D) is identified with R”. Let Q = (g;;(a)) € P(S|S x A) denote a
parameter space of k unknown transition matrices and r = (r(i,a)) € B+ (S x A) reward
function .

For any stationary policy f € F, discounted total expected reward ¢(f|Q) € R% with
discount factor 5 (0 < 8 < 1) is defined as a function of stochastic matrix Q € P(S|SxA)
as:

#(f1Q) = (BT (1

where, r(f) = (r(1, f(1)),7(2, f(2)), .., r(n, f(n)) € R}, Q(f) = (2;;(f(2))) € P(S]S).-
(@ is estimated by interval matrix Q (Q,Q) , where

:(q (a) : i,jES,aEA)eRian,

Q 9;;

(a ( ) i,j € S,a € A) € RF™™, (2)
={QeP(S|SxA)|Q=Q=Q}.

It should be noted that the partial orders <, < on R™*" are defined by the components

orders for each element gij(a) and g;;(a) (4,5 € S,a € A). We call {S,A,Q,r} the
interval estimated MDPs.



For f € F, we define discounted total expected-set valued value function ¢(f|Q) as
follows:

8(f1Q) = {¢(f1Q)|Q € Q} C R} 3)

where the value ¢(f|Q) of standard MDPs is defined in (1).
Let C(R;) denote the set of all bounded and closed intervals in Ry and C(R4)™ the
set of all n-dimensional column vectors whose elements are in C(R,), i.e.,

CRy)*={D=(Dy,Ds,...,D,)|D; € C(Ry) (1Si<n)}. (4)
We will denote by M,, the set of all interval matrices with n x n elements.
Lemma 1. (Hartfiel/3], Kurano, Song, Hosaka and Huang[5])
(i) Any Q € M,, is a convex polytope in R™*".
(ii) For any compact subset G C RY*™ and D € C(Ry)", it holds GD € C(R,).

It can be shown that ¢(f|Q) € C(R4)™ in the following. The map £ : C(R.)" —
C(R;)" is defined by

L(flv=r(f) +B2(fv, v € C(RL)", (5)
where Q(f) = (Q(/), Q(/)), Q) = (g,,(f(1))) € RY™,Q(f) = (@;;(/ (1)) € RY*™.

From Lemma 1, we have £(f)v € C(Ry)" (v € C(R4)"). Moreover, we define
L(f) :R? — R%, L(f) : R? — R% as follows: For @ = (z1,22,...,2,) € R},

L(f)x =r(f) + ﬁanQig) Qx, (6)
L(f)x=r(f) + BQ@%) Qz. (7)

Then, we have the followings:
Lemma 2. For any f € F,
(i) L(f) is monotone increasing and contractive mapping.

(ii) L(f) and L(f) are both monotone increasing and contractive mapping with respect
to sup-norm.

Theorem 1. For any f € F, it holds that

(i) &(f|Q) € C(Ry)™and ¢(f|Q) is the unique fized point of L(f). Moreover, for any
v € C(Ry)", we have L(f)v — ¢(f|Q) (£ — o).

(ii) Let ¢(f]Q) = [Q(f),g(f)] Then, ¢(f) and &(f) are the unique fized point of L(f)
and L(f), respectively.

95



Applying the result of De Robertis and Hartigan’s (cf. [9]) on Bayesian inference
method using intervals of prior measures, uncertain MDPs are formulated as interval
estimated MDPs .

Let P, := P(S) = {p = (p1,p2,---»pa)lps 2 0,5 1 pi = 1} and B the set of all
measurable set in R”, where R" denotes the set of n-dimensional real vectors. For given
measures L and U on B, we denote by L < U if L(A) < U(A) for all set A € B. Let us
denote by [L, U] the convex set of measures Q) satisfying L(A) < Q(A) < U(A).

For simplicity, let the prior measures [L, kL] (k = 1), where L(-) denotes a Lebesgue
mcasure on P,. We denote by ¢ = (01,09,...,0,) a data of indecpendent experiments,
where the i-th state is observed with probability p; and o; the number of outcomes of
state ¢. Then, for a parameter p = (p1,p2,...,Pn) € P, a data set o has probability
density function of multinomial distribution as follows:

(014 +ou)!

f(o1,09,...,04lp) = LA U4 (8)

ol-op

By using Bayesian inference for a prior measures [L, U], intervals [A;, \;] (i € S) of
posterior measures of p; is given by the range of integral ratios:

piQ(dp)/ | Qdp)|Le = Q=Us ¢, (9)
{ [ patany |, }

where L, and U, are respectively lower and upper bounds of posterior measure for o,
and characterized as the unique solutions of (10) and (11):

Theorem 2. Lower bound ); and upper bound X; of posterior intervals [M;, \i] (i € S)
are unique solutions as following equations:

Ua(pi - A'z)_ + Lo(pi - Az)+ = 0$ (10)
Us(pi — M)t + Lo(ps — X))~ =0, (11)

where Q(f) denotes the integral of function f w.r.t. measure @, + = max{0,z}, 2z~ =
z —zt =min{0, z}.

2 Bayesian control chart in uncertain MDPs

In this section, we describe a quality control model and formulate equivalent Bayesian
model to the original problem.

Let X (t) denote states of system at time ¢(¢ 2 0) where X (¢) = 0 (in-control),
1 (out-of-control).
The transition of state is occurred exponentially with distribution function Ezp(8), where
© > # is unknown. We denote by 6 a random variable of 6. The partially observations
of state X (t) of system are made by sampling Y; (¢ = 1,2,...) of ¢g-dimensional data of
sample size n. The alternatives A are selected at each inspection step ih (i = 1,2,...),
where

A {0 continue,

1 stop and search.
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It is noted that by the information of sampling date the decision maker choices between
action “0” or “1” at each decision epoch h(i = 1,2,...).
We assume the following.

Assumption 1. If X;;, = 0 (or 1), ¥, 43, . ..,y arei.i.d. random variables from N, (o, X)
(or Ny(u1, X)), where Ny(uo, X), Ng(p1, E) are g-dimensional normal distribution and ¥
is variance covariance matrix(positive definite) and pg, 3 are mean vector, respectively.
For M-distance d; between pg and p; we assume the following:

Nl

dy = [(m = po) 7" (1 — po)']? > 0. (12)

The cost structures of this inspection model are given in the followings: Investigation
cost A > 0 will be occurred to stop and research the system whether there is failure of
system or not. When the state of system is failure, renewal cost R = 0 will be charged to
change the state from “1” (out-of-control) to “0” (in-control). If the system is operating
without knowing the state of system being failure, operating cost M > 0 per unit time
is incurred while remaining the system in out-of-control. If the decision maker selects
an action “1”(stop and search), an observation cost b+ nc (b, ¢ 2 0) of sample size n is
incurred.

Let sample space be @ = © x Q,Q = S x (A x S)®and random variables of
process 0, Po, @o, fr, @1, ... That is, for w € Q = (9, po, ap, p1, @1, D2, - - .), We have
O(w) = 6, po(w) = po, Go(w) = ag, p1(w) = p1, ..., where we set po = 0 without loss of
generality. When the state is p,, = p at epoch mh, an action a,, = O(or 1, respectively)
is selected and at the next epoch (m + 1)k the information Y,,+1 = ™! is obtained and
at epoch (m + 1)h the state moves to

Pmi1 = T(p,y™",0) ( or T(p,y™*, 1), respectively) ) (13)

where, by Bayes’ theorem, priori-posteriori Bayesian operator T is defined as in (Lemma
: an\[fs}]l‘)e;l 6 is true parameter the costs c(+,-) are given below:
{c(p, 0) = ME(th Iix,21yds) +b+nc=M[h—2(1—e)] +b+nc, (14)
c(p, 1) = er(p) +¢(0,0),
where ¢;(p) = A+ Rp.

Average expected cost o(7|6, po) given by 6 = § € P(6) and initial state distribution
po =p € S is defined as follows:

1
|0, = limsup ——F
(7|6, po) msup s

ch(ﬁmvdm)w:po] 3 (15)

m=0
where, m = (19,71, T2, .. .).

In addition, define discounted total expected cost v(n|0, po) as follows:
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U(W|97PO) = Z ﬁme [Ca(ﬁm7 zim)laypo] ) (16)
m=0
where, f = e denotes discount rate and Ey [-|6,p] is expectation with probability
measure P,(-|0, p) on §2 given by parameters 6, p and policy 7.
Each policy 7 € II which minimize ¢(7|6,p),v(7|0,p) respectively call #-average
optimal and #-discounted optimal respectively. We have the following theorems.

Theorem 3 (V. Makis[8]). If A+ R < %, there exists 0-average optimal policy ™ *of

the control-limit type. That is, there exists p; € (0,1) such that control policy following
the decision function fg : S — A as below is 6-average optimal.

_J0 ifp<pp,
fo(p) = {1 i (17)

Theorem 4. (Sasaki, Horiguchi and Kurano ([10]))There exists 0-discounted optimal
policy of control-limit type, that is, there exists Dy € (0,1) such that optimal decision
function gs : S — A is given as below:

_ 0 'pr < ﬁ@v
%(p) = {1 ifp 27, (18)

3 Repair problem with exponentially deteriorating
system

We consider the following repair problem. Let § € © = {6;,...,0r} denote a finite
parameter space. For each 6; € ©, we denote by g(¢|9) a pdf of deteriorating time t with

exponential distribution as
fe=% >0,
9(t10) = { "o

0, t<0.

Let constant T > 0 be a time of inspection intervals. Let X; denote the state of
system and if X; = 0 it means the system is under control and if X; = 1 it means
the system is out of control. If the state X; is 0 at the inspection epoch i7", by the
memorylessness property of exponential distribution, it does not affect the probability
of the system being out of control from then on. On the other hand, if the state X; is 1
at epoch T, the system is repaired immediately and starts as new one after that.

It is easily seen that P(X; = 0) = P(X; > T) = [ fe %dx = ¢ for each
inspection epoch iT,i = 1,2,..., and P(X; = 1) = 1 — e~ %7, Then we have a pdf of
state of system given the parameter 6; by f(0/6;) = e %7, and f(1]6;) = 1 — e7%T.

In this inspection and repair problem, we consider the rate of convergence about
posterior probabilities by the sequences of states of system inspections.
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inspection

Figure 1: The states of system are inspected at each epoch.

Let X1, X», . .. arei.i.d. random variables with X; ~ f(z|6) where 6 € © = {61,602, ...,6x}.

We write ¢ = (q(61),q(62),...,q(6k)) for apriori distribution of parameter § € ©. Let
hn = (21,2, ..., T,) denote the sample of size n where X; = x1, Xo = 29,..., X, = Tp,
zi=0o0r1l,i=1,2--,n We will denote by g,(q, hn)(6;) the posteriori distribution of
parameter § € © as follows:

q(0:) [T f(21165) .
Z§=1 a(0;) ITi=, f(z1l65)

In order to show the rate of convergence of posteriori distribution, we give some
well-known results.

Gn (9, hn)(0:) =

Theorem 5 (Hélder’s Inequality). Forp > 1,2+1 =1,f € L?, g € L? and u(-) Lebesgue
measure, it holds that

] [ s < ([ If(x)l”du)% (/ Ig(w)lqdu)%~ (19)

Moreover, for f'(z) = %,g’(z) = % and D = {z|f(z) # g(z)}, f p(D) >
0, it holds that | [ f(z)g(z)dul < ||fllp - |9llgs i-e., the inequality (19) holds for strict

inequality (<).

If p = g = 2 it is known as Schwartz’s inequality and for probability density functions
f and g for some distributions on probability space (X, B, P), we have the following.
Lemma 3. Let D := {z|f(z) # g(z)} and D' := {z|f'(z) # ¢'(x)}. For pdfs f(z) and
g(z), if u(D) > 0 implies u(D") > 0.
Proof. If u(D’) = 0, ie., f'(z) = ¢'(z) as., then, there exist ¢;,ca > 0 such that
2 2
PG = M Hence there exists ¢ > 0 such that f(z) = cg(z). The integrals over =

C2
for each side function of equation, we have 1 = ¢ x 1. Thercfore we get ¢ = 1. It means
f(z) = g(z) as, i.e., u(D) = 0, which proves the lemma by showing this contrapositive.
1

Corollary 1. (Schwartz’s inequality for u(D) > 0) For pdfs f and g, if p(D) > 0 implies

[} et <1

99



100

We assume the following.
Assumption 2. p(D;;) > 0for 1 £ i< j <k, where D;; = {z|f(z]6;) # f(|6;)}.
Then, we have the following.

Theorem 6. Under Assumption 2 and for a prior ¢ = (g(61),9(62),...,q(6k)) with
q(0;) > 0 for all i(1 £ i £ k), there exists A(0 < X < 1) such that

P(gn(g, hn)(6:) > €16 = 6;) < K(g,n)A"

1
for any € > 0 and i # iy, where K(q,n) = max;z;, _ll_ (%L))?.
io

Proof. Since X;, Xo, ... are i.i.d., we have

N q(0:) [T, f(z]6:) _ q(0:) T, f(xal6)
(4, ha) (63) S a0 Ty fwildy)  a(0) T S (@ils)”

Hence,

(g, h) (6;) > €]6 = 910)

an(q ) > 1|9 910)

m | =

I

P (a
= (
p(\[m>1w_ )
o (:

6;)
/%w%ﬂmHmmmd

A

ﬁ'

qn(‘]a hn)(el) > 1|é = 91'0)

Z;L)g);/<nf (z116; )) (Hf(zl|01,o)> dzy---dzn,

_q(® )2
= H f( xl|0) f($l|0,0)2dxl by Fubini’s Theorem

1 q(6)}
<L ‘I(" )2 A" = K(gn)A" for IA(0 < A < 1),

which completes the proof. 1
Finally, we apply thig theorenll to our inspection and repair problem.
Let Ny = [ f(z]0)2 f(z]6;)2dp for i # 4. By Corollary 1, A, < 1. Let A =
maxX;£;, Aij,- Lhen from Theorem 1, for § = 6, we have
1 (k=1),
Gn(q, ho) (6k) — .
0 (k#io)

with exponentially fast as n — oo.
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