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1 Introduction

This paper discusses a Bayesian approach for conducting interval estimation of software reliability based

on a discretized software reliability growth model [3]. Considering a practical situation, we encourage
the software development managers to use the interval estimation method when we do not obtain a suffi‐

cient number of softwaie reliability data. However, the interval estimation needs to derive a probability

distribution function for thc parameter of interest. Further. it is very difficult to derive the probabil‐

ity distribution functions analytically evcn if wc usc the approximation approach using thc asymptotic
property.

Under such background, Kimura and Fujiwara [6] discussed a bootstrap software reliability assessment
method of an incomplete gamma function‐based software reliability growth model for estimating stan‐

dard errors of the model parameters. Kaneishi and Dohi [5] discussed a parametric bootstrap method for
software reliability assessment based on continuous‐time nonhomogcneous Poisson process (NHPP) mod‐
els. Inoue and Yamada [4] discussed a nonparametric bootstrapping approach for interval estimations of
software reliability and optimal software shipping time based on a discretized software reliability growth

model. The Bayesian approach is one of the useful approaches for obtaining the probability distribu‐

tions of model parameters and software reliability assessment measures. For example, Okamura et al. [8]
discussed Bayesian estimation for interval estimation of optimal software release time by using Markov

chain Monte Carlo (MCMC) method.
This paper discusses a Bayesian estimation method for software reliability assessment based on a dis‐

creti 7\mathrm{e}\mathrm{d} NHPP model [3]. The discretized NHPP model conserves the basic properties of the continuous‐
timc NHPP model and have good prediction and fitting performance for the actual data [3] because the
discrctizcd model has consistency with discrete fault count data collection activities. We conduct interval

estimation of the model parameters and software reliability assessment measures by Bayesian estimation

approach. Finally, we show numerical examples of our approach in this paper by using actual fault‐count

data, and show the results of interval estimations for the model parameters and the software reliability
assessment mcasures based on the notion of credible interval.

2 Discretized NHPP Model

Now we define a discrete counting process \{N_{i}, i=0, 1, 2, \} representing the cumulative number of

faults detected up to i‐th testing‐period. And we can say that the discrete counting process \{N_{i}, i =

0 , 1, 2, } follows a discrete‐time NHPP, which is the discrete analog of the continuous‐time NHPP
[7, 9, 10], if the discrete counting process has the following property:

\displaystyle \mathrm{P}\mathrm{r}\{N_{i}=x|N_{0}=0\}=\frac{\{$\Lambda$_{i}\}^{x}}{x!}\exp[-$\Lambda$_{i}] (i, x=0,1,2, \cdots) . (1)
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In Eq. (1), \mathrm{P}\mathrm{r}\{A\} means the probability of event A, $\Lambda$_{i} is the mean value function of the discrete‐time
NHPP. The mcan value function, $\Lambda$_{i} , also represents the expected cUmulative number of faults detected

up to i‐th testing‐period.

Let H_{i} denote a mean value function following a discretized cxponential software reliability growth

model [3]. The discretized exponcntial software reliability growth model is derived from the following
difference equation:

H_{i+1}-H_{i}= $\delta$ b (a—Hi), (2)

which is the discrete analog of the differential equation of the corresponding continuous‐time exponential

software reliability growth model [1]. In Eq. (2), a is the expected total number of potential faults to be
detected in an infinitely long duration or the expected initial fault content, and b the fault detection rate

per one fault. Regarding the discretization method, we use the Hirota:s bilinearization methods [2] for
conserving the property of the continuous‐time exponential software reliability growth model. Solving

the above integrable difference equation in Eq. (2), we can obtain an exact solution H_{i} in Eq. (2) as

$\Lambda$_{i}\equiv H_{i}=a[1-(1- $\delta$ b)^{i}] (a>0, b>0) , (3)

where  $\delta$ represents the constant time‐interval. As  $\delta$\rightarrow 0 , Eq. (3) converges to the exact solution of the
original continuous‐time exponential software reliability growth model.

The discretized exponential software reliability growth model in Eq. (3) has two parameters, a and  $\delta$ b,

which have to be estimated by using actual data. In the point estimation, the parameter estimations of a

and  $\delta$ b , â and \hat{ $\delta$}b , can be obtained by the following procedure using the method of least‐squares. Suppose
we have observed fault counting data D \equiv (i, y_{i})(i = 1,2, \cdots , n) , where y_{i} represents the cumulative

number of faults detected up to i‐th testing‐period. We can derive the following regression equation from

Eq. (2):

c_{i}= $\alpha$+ $\beta$ d_{i} , (4)

where

\left\{\begin{array}{l}
c,=H_{i+1}-H_{i}\equiv y_{i+1}-y_{i},\\
d_{i}=H_{i}\equiv y_{i_{\dot{}}}\\
 $\alpha$ = $\delta$ ab,\\
 $\beta$ =- $\delta$ b.
\end{array}\right. (5)

Based on the regression analysis, we can estimate \hat{ $\alpha$} and \hat{ $\delta$ b} , which are the estimations of or and  $\delta$ b in Eq.

(4). Then, thc parameter estimations, â and \hat{ $\delta$}b , can be obtained as

\left\{\begin{array}{l}
\^{a}=-\hat{ $\alpha$}/\hat{ $\beta$},\\
\hat{ $\delta$ b}=-\hat{ $\beta$},
\end{array}\right. (6)

respectively. It is worth noting that c_{l} in Eq. (4) is independent of  $\delta$ because  $\delta$ is not used in calculating
 c_{i} as showing Eq. (5). Hence, we can obtain the same parameter estimates â and \hat{b}, respectively, when
we choose any constant value of  $\delta$ [3].

Regarding software reliability assessment measures, the discrete version of the expected number of

remaining faults, M_{i} , represents the expected number of undetected faults in the software system at

arbitrary testing‐period. Then, we have

M_{i}\equiv \mathrm{E}[N_{\infty}-N_{i}]=a-$\Lambda$_{i}

=a(1- $\delta$ b)^{i} (7)
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if we assume that N_{i} follows the discrete‐time NHPP with mean value function H_{i} in Eq. (3). In Eq.
(7), \mathrm{E}[N_{i}] represents the expectation of N_{i} . And the discrete‐time software reliability function, R(i, h) , is
defined as the probability that a software failure does not occur in the time‐interval (i, i+h] (h=1,2, \cdots)
given that the testing has been going up to the i‐th testing‐priod. Then, we have

R(i, h)\equiv \mathrm{P}\mathrm{r}\{N_{i+h}-N_{i}=0|N_{i}=x\}

=\exp[-\{$\Lambda$_{i+h}-$\Lambda$_{i}\}]

=\exp[-H_{h}(1- $\delta$ b)^{i}] . (8)

3 Bayesian Estimation

The point estimations of the parameters in Eq. (3) can be obtained by the linear regression approach
as discussed in Section 2. This implies that the parameter a and  $\delta$ b are estimated by the method of
maximum‐likelihood assuming c_{i} \sim  N( $\alpha$+ $\beta$ d_{i}, $\sigma$^{2}) , which indicates cí follows the normal distribution
with mcan  $\alpha$+ $\beta$ d_{i} and standard deviation $\sigma$^{2} . The likelihood function for D is derived as

p(D| $\alpha$,  $\beta,\ \sigma$^{2})=\displaystyle \prod_{i=1}^{n}\frac{1}{\sqrt{2 $\pi \sigma$^{2}}}\exp[-\frac{(c_{i}- $\alpha$- $\beta$ d_{i})}{2$\sigma$^{2}}]
\displaystyle \propto\exp [-\frac{n( $\alpha$-\hat{ $\alpha$})^{2}+\sum_{i=1}^{n}( $\beta$-\hat{ $\beta$})^{2}d_{i}^{2}}{2$\sigma$^{2}}] . (9)

Now, we derive the posterior distribution of  $\alpha$ based on the Bayes’ theorem. The Bayes’ theorem gives
us the following relationship between the prior and posterior:

 p( $\alpha$| $\beta,\ \sigma$^{2}, \mathcal{D})\propto p(D| $\alpha$,  $\beta,\ \sigma$^{2})p( $\alpha$) , (10)

when D,  $\beta$ and  $\sigma$^{2} are given. Assuming  $\alpha$\sim N($\mu$_{ $\alpha$}, $\tau$_{ $\alpha$}^{2}) , we can derive the posterior for  $\alpha$ as

 $\alpha$| $\beta$, $\sigma$^{2}, \displaystyle \mathcal{D}\sim N(\frac{n\hat{ $\alpha$}$\tau$_{ $\alpha$}^{2}+$\sigma$^{2}$\mu$_{ $\alpha$}}{$\tau$_{ $\alpha$}^{2}n+$\sigma$^{2}}, \frac{$\sigma$^{2}$\tau$_{ $\alpha$}^{2}}{n$\tau$_{ $\alpha$}^{2}+$\sigma$^{2}}) . (11)

The posterior of  $\beta$ given  $\alpha$, $\sigma$^{2} and D is derived as

p( $\beta$| $\alpha,\ \sigma$^{2}, D)\propto p(D| $\alpha$,  $\beta,\ \sigma$^{2})p( $\beta$) . (12)

Then,

 $\beta$| $\alpha$, $\sigma$^{2}, D\displaystyle \sim N(\frac{$\tau$_{ $\beta$}^{2}\hat{ $\beta$}\sum_{i=1}^{n}d_{i}^{2}+$\sigma$^{2}$\mu$_{ $\beta$}}{$\tau$_{ $\beta$}^{2}\sum_{i=1}^{n}d_{i}^{2}+$\sigma$^{2}}J\frac{$\sigma$^{2}$\tau$_{ $\beta$}^{2}}{$\tau$_{ $\beta$}^{2}\sum_{i=1}^{n}d_{i}^{2}+$\sigma$^{2}}) , (13)

where the prior of  $\beta$ is assumed that  $\beta$\sim N($\mu$_{ $\beta$}, $\tau$_{ $\beta$}^{2}) . Regarding the posterior of $\sigma$^{2} , we apply an inverse

gamma distribution to the prior because thc inverse gamma distribution is the conjugate distribution of
the variance for data following the normal distribution. Thc inversc gamma distribution is given by

IG(\displaystyle \frac{r_{0}}{2}, \frac{s_{0}}{2}) =\displaystyle \frac{(s_{0}/2)^{r\mathrm{o}/2}}{ $\Gamma$(r_{0}/2)}($\sigma$^{2})^{-\frac{r}{2}11}+\exp[-\frac{s_{0}}{2$\sigma$^{2}}] , (14)

where r_{0}/2>0 and s_{0}/2>0 . The posterior of $\sigma$^{2} given  $\alpha$_{i} $\beta$ and  D follows p($\sigma$^{2}| $\alpha$,  $\beta$, D)\propto p(\mathcal{D}| $\alpha$,  $\beta,\ \sigma$^{2})p($\sigma$^{2}) .
Then, thc posterior is dcrivcd as

 $\sigma$| $\alpha$,  $\beta$, D\displaystyle \sim IG(\frac{n+r_{0}}{2}, \frac{\sum_{$\iota$'=1}^{n}(y_{i}- $\alpha$- $\beta$ d_{i})+s_{0}}{2}) (15)
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Fig 1 : The MCMC samplcs and posterior distribution for thc expected number of remaining faults at
i=25, M_{25}.

because the likelihood function in terms of $\sigma$^{2} is

p(D| $\alpha$,  $\beta,\ \sigma$^{2})\displaystyle \propto($\sigma$^{2})^{-n/2}\exp[-\frac{\sum_{i=1}^{n}(c_{i}- $\alpha$- $\beta$ d_{i})^{2}}{2$\sigma$^{2}}] . (16)

The Gibbs sampling method, which is one of the MCMC mcthods, is used for obtaining the posterior
distribution of each parameter. Whcn software fault‐count data D is obtained, the Gibbs sampler is

concretely given by the following steps:

(Step 1) Estimate \hat{ $\alpha$} and \hat{ $\beta$} from the observed data D by using the regression analysis discussed in
Section 2.

(Step 2) Set \hat{ $\alpha$}, \hat{ $\beta$} and $\sigma$^{2}= 1 as ($\alpha$^{(1)}, $\beta$^{(1)}, $\sigma$^{2(1)}) , which are the initial values of  $\alpha$,  $\beta$ and  $\sigma$^{2}.

(Step 3) Generate $\alpha$^{(r)} from p($\alpha$^{(r)}|$\beta$^{(r-1)}, $\sigma$^{2(r-1)}, D) in Eq. (11).

(Step 4) Generate $\beta$^{(r)} from p($\beta$^{(r)}|$\alpha$^{(r)_{j}}$\sigma$^{2(r-1)_{\mathrm{i}}}D) in Eq. (13).

(Step 5) Obtain a^{(r)} and  $\delta$ b^{(r)} by -$\alpha$^{(r)}/$\beta$^{(r)} and -$\beta$^{(r)} , rcspcctivcly. And calculate software reliability
assessment measures.

(Step 6) Generate $\sigma$^{2(r)} from p($\sigma$^{2(r)}|$\alpha$^{(r)}, $\beta$^{(r)}, D) in Eq. (15).

(Step 7) r\leftarrow r+1 , then back to (Step 2).

4 Numerical Example

Wc show numcrical examples of our Bayesian interval estimation approach for software reliability

assessment based on the discretized exponential software reliability growth model. We apply the following

data: (n, y_{n})(n = 1,2, \cdots , 25; y_{25} = 136) [3] . Wc gencratcd r = 10000 samplcs for all parameters and
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Table 1 : Results of interval estimations based on 95% HPD interval ( $\alpha$=0.05) .

\displaystyle \frac{\mathrm{H}\mathrm{P}\mathrm{D}\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}1}{\mathrm{L}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}\mathrm{I}\mathrm{J}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{r}}
Expected initial fault content:  $\omega$ 135.76 144.06

Fault‐detection rate:  $\delta$ b 0.1106 0.1159

Expected number of remaining faults: M25 6.244 7.642
Software rehability: R(25,1) 0.429 0.485

software reliability assessment measures by following the steps discussed in Section 3. And the first 1,000

samples were discarded as the burn‐in samples.

For examples, Figures 1 shows the MCMC samples and the posterior distribution of the expected

number of remaining faults at i=25 , M25 in Eq. (7). From these posterior distributions, we can obtain
the interval estimations of the parameter and the software reliability assessment measures. The interval

estimation can be obtained by following the notion of the credible interval. The 100(1—  $\alpha$ )% credible
interval, denoted by  C , satisfies

\displaystyle \int_{C}p( $\theta$|\mathcal{D})d $\theta$=1- $\alpha$ , (17)

where  p( $\theta$|D) is the posterior for the parameter of interest. The HPD (highest posterior density) interval
is often used for interval estimation in Bayesian approach. The 100(1 —  $\alpha$ )% HPD interval, which is
denoted by  C_{HPD} , is obtained as C_{HPD} = \{ $\theta$ \in  $\theta$ |p( $\theta$|\mathcal{D}) \geq k( $\alpha$)\} , where  $\theta$ is the set of the value of

parameter and  k( $\alpha$) is the largest number satisfying p( $\theta$|\mathcal{D})\geq k( $\alpha$) and depends on  $\alpha$.

Needless to say, the posterior distributions of parameters a and  $\delta$ b in Eq. (3) and the software reliability
in Eq. (8) can be also obtained by following the MCMC method discussed in Section 3. Table 1 shows
the results of interval estimations based on the 95% HPD interval for the model parameters and the

software reliability assessment measures. The bootstrapping method is based on randomly resampled

data needed in the regression analysis. And the probability distribution of the parameter is obtained by

the frequentist method, i.e., we need to estimate parameter repetitively by using randomly resampled

data in thc bootstrapping approach. On the other hand, the Bayesian interval estimation is obtained

from the posterior distribution, which is updatcd by the likelihood for thc obtained data. Further, the

interval estimation in the Bayesian approach is conducted by sampling the parametcr repetitively from
thc postcrior distribution.

5 Conclusion

A Bayesian interval estimation method of a discretized NHPP model for software reliability assessment

has been discussed. Concretely, we apply the MCMC method for obtaining the probability distributions

of the parameters. Further, we showed numerical examples of our Bayesian interval estimation approach

by applying to software fault‐count data observed in an actual software testing. In our further studies,

we will confirm the difference between the results of interval estimations with the bootstrapping and the

Bayesian approaches. Further, we will apply our method to the interval estimation of optimal software
release time.
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