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1 Introduction

Let U, C R? be a bounded open set and have a smooth boundary M; for ¢t € [0,T).
The family of hypersurfaces { M }c(o,r) is called the volume preserving mean curvature
flow if the velocity vector v of M, is given by

v=h—(h-n)n on M, t€(0,T), (1.1)

where h and n are the mean curvature vector and the inner unit normal vector of M,

respectively, and
1 d-1
(h.n):= 7= I(Mt)/ h-ndH*".

Here H% ! is the (d — 1)-dimensional Hausdorff measure. By (1.1), for the volume
preserving mean curvature flow {M;}.co,7) We have

—Ed(Ut) = / v-ndH*' =0 (volume preserving property), (1.2)
M,

where £¢ is the d-dimensional Lebesgue measure. By (1.2) we have

i’;.ld—l(Mt) - _/ h-vdH! = —/ (v+ (h-n)n) - vdH"!
Mt Mt

@ w3
_ _/ o2 dH* < 0 '
M

for the solution for (1.1).

The time global existence of the classical solution to (1.1) for convex initial data
was proved by Gage (8] (d = 2) and Huisken [10] (d > 2). Escher and Simonett (7]
proved the short time existence of the solution to (1.1) for smooth initial data, and
they showed that if M, is sufficiently close to the Euclidean sphere, then there exists

*This work was supported by JSPS KAKENHI Grant Numbers 16K17622, 17J02386.
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the time global solution. Mugnai, Seis and Spadaro [15] proved the existence of the
global distributional solution to (1.1) by using a variational approach. Takasao [19]
showed the weak solution to (1.1) via the phase field method for d = 2, 3.

Let g = g(z,t) be a smooth function with g(z,t) > 0 for any (z,t) € R? x [0, c0).
In this article, we consider the following weighted volume preserving mean curvature
flow equation:

Sy, (h-n)gdH*™" — [, Bgdx
fM, g2 dH4-1

v=h-— gn on M, te (0,T). (1.4)
( )

Note that if g is constant then (1.4) is the volume preserving mean curvature flow

equation (1.1). For the solution {M;}icjo7) of (1.4), we have the weighted volume
preserving property:

—-/ gdr=— | (v-n)gdH* '+ [ B,9dz=0. (1.5)
Uz M, Uz

S, (hn)gdHiT [ Begde

Set A = A(t) == T F T . By (1.4) and (1.5) we have

din-l(M,) = —/ h-vdH*! = —/ (v + Agn) - vdH*!
t M, M.

—_ /M o 4 — A /M (v - n)g dH (1.6)

= —/ [v|*dH* — A | Bigdz.
M,

U
Hence, if g depends only on z, then we obtain

d
E’H‘H(Mt) =— [ pPdH* <. (1.7)
M

Harthley also studied the following another weighted volume preserving mean cur-
vature flow equation:

., o, (B )G dHE
v= ‘( o GaHTT

where § = §(z) is a given function with g(z) > 0 for any z € R%. We remark that for
the solution {M,}(o,) of (1.8) we also have the weighted volume preserving property:
d

— [ gdz=- [ (v-n)gdH*'=0. (1.9)
dt Ut Mt

Remark 1.1. The solution for (1.8) does not satisfy (1.7) in general.

Remark 1.2. Set M} := {z € R?||z| = r} for 7 > 0. Then {M]}:>o is a stationary
solution for (1.8), even if § is not a constant function. However, whether {M]};>0 is
a solution for (1.4) or not depends on g.

)n on M,, t € (0,T), (1.8)

96



Let U C R? be a-bounded open set with smooth boundary M = 8U. For any
[ € CHR%RY), we define Us .= {y e R |y =z +6f(z), z € U} and M := {y €
Ré|ly=z+6f(x), * € M} for 6 € (—1,1). Then we have

Hd_l( / h-fdH%! and iﬁd(Ué)l - —/ n-fdH*?, (1.10)
dé =0 M

where h and n are the mean curvature vector and the inner unit normal vector of M
respectively. Thus

d

= (o) = )| = - /M (h—An)- fdH*' for AeR.  (L11)

Therefore (1.1) is a gradient flow for the area H%~!(M,) subject to LLXU;) = L4(Uj).
Let g € C(R?) be a positive function. By an argument similar to (1.10) and (1.11),
we have

cZS g(x) d:cl 0 —/Mg(n‘f) dH4? (1.12)

and

= (’H" L(Mj) — /Uég(.z') da:)|6=0 - —/M(h —Agn) - fdHY, for AeR. (1.13)

Hence (1.4) is a gradient flow for the area #%~!(M,) subject to [, gdz = [ gdx| .
t t =

2 Phase field methods for (1.1) and (1.4)

In this section, we first compare the two phase field methods for (1.1), and then
we introduce the phase field method used for the proof of the existence of the weak
solution for (1.4). For simplicity, we consider the periodic boundary condition from
this section.

Let € € (0,1) and  := T? = (R/Z)%. We also use §2 to a set [0,1)?. Tostudy (1.1),
Rubinstein and Sternberg [17] considered the following non-local reaction diffusion

equation: )

{ €0t = ey — KV-E_LE) Aag, (z,t) € 2 x (0,00), 2.1)
¢*(z,0) = p(z), z€Q,

where W(s) := (1 — s?)?/2 and M\54(t) : Iﬂl fo W(e%) dz. Note that the solution ¢f

€
for (2.1) satisfies the following volume preserving property:

d
g / £ dz = 0. (2.2)

Chen, Hilhorst and Logak [4] proved that the zero level set of the solution for (2.1)
converges to the classical solution of (1.1) under several suitable conditions.
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Remark 2.1. To obtain the existence of the weak solution for (1.1) via (2.1), we need
the L2-estimates of the mean curvature, that is,

T 1(, A€
sup//s A +W(¢)) dzxdt < o©
ec(0,1) Jo Ja

(see Remark 3.8 and Theorem 4.3). However, whether the solutions for (2.1) have the
estimates or not is an open problem, due to the difficulty of the estimates of \g (see
Remark 2.6).

In 1997, Golovaty [9] studied the singular limit of the radially symmetric solutions
for the following non-local reaction diffusion equation:

{ £0,6F = eAgF — w A5/ 2W (99), (z,t) € Q x (0,00), (2.3)
¢*(2,0) = p§(z), z €9,
where
Ja V() (- A + H4)) da
2/, @ dz

Ag = Ag(t) =

Takasao [19] proved the global existence of the weak solution for (1.1) via the
singular limit of the solutions for (2.3).
Note that the solution ¢ for (2.3) also satisfies the following volume preserving

property:
d/ dz—/ V2W (¢#) 04 dz =0 (2.4)

dt
where k(s) = fo V2W(r)dr = ——.s + s. By the integration by parts, we have

d [ elVe? | W(e) / ’(w )s
E/Q( 5 + - )dx (6V<p - Vo + ——= )
Wl £
=/ ( —eAy® + #)Btcpe dz = /(—EBME + A/ 2W (9)) 0y dz (2.5)
Q Q
———/6(8t<p5)2d:c+)\e/8t<p€\/2W(g0€) dz = —/E(Btgoe)zdx,
Q Q Q

where (2.4) is used. Note that (2.5) corresponds to-(1.3).

Remark 2.2. Assume that ¢* - ¢ = +1 as e — 0 for ae. (z,t) € Q x (0,00). Then

by k(+1) = +2 we have
!1_1}1(1} Qk )dz = 3/<pdz

Thus by (2.4) we obtain the volume preserving property:

/cp(x,t)dz=/<podx fort > 0.
Q Q
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Remark 2.3. For ¢ € C?(Q), we define

E(y) :=/9(5|V2_<P|2 W(So))da: and F(p): /kz(cp)dx

Then, for ¢ € C*(Q) we have
d B W'(p)
%E(Qp+51/))|6=0—/9(—5A +— )wdz

and

%F(qp +op)| = /9 V2W )y da.

Therefore (2.3) is the gradient flow for E(¢*) subject to [, k(¢®(x,t)) dz = [, k() dz.

Remark 2.4. By +/2W(0) = 1'and \/2W(%1) = 0, it can be interpreted that the
term A/2W (¢?) of (2.3) affects ¢ only on the neighborhood of the zero level set of

€

e,

Remark 2.5. We denote o := f_ll V2W (s)ds. The solution for the Allen-Cahn
equation such as (2.1) and (2.3) has the following approximate expressions (see [11]):

HEM ~ 2 /Q(E'Vf L Y) g (26)
and
thE.ded_lzéfn ( At +W(<p))'<p€-fdx, @7

where M{ := {z | ¢°(z,t) = 0} and h° is the mean curvature vector for M.
Assume that {M,}ic(o,0) is the solution for (1.1), My ~ M, for sufficiently small
€ > 0, and the following equilibrium of energy:

elVe?  W(p)

3 in  x (0, 00) (2.8)
for the solution of (2.3) (see Theorem 4.3). Then we have
2 (W), 1 [ (Ve W), oa
a/n - dac~0/ﬂ( 5t )dx~7-l (M) (2.9)

and

/Q 2W(<p( Ay* +W( )>dx

/s Ayf + W( )>V(p nde~ | h-ndHOl
Q

M,

(2.10)

er—-QIr—'



Here n® := I—g—‘%- is the inner unit normal vector of d{z | ¢*(z,t) > 0}. by (2.9) and

(2.10) we have

e — VW) (- b+ M) de

¢ 2, &:’5—) dz T HE(M,)

h-ndH®t.  (211)

Hence, A seems complicated, however it is an approximation of the non-local term of
(1.1).

Remark 2.6. Assume that there exist Dy > 0 and wp > 0 such that

E(gg) < Do
and
| / k(5) d:c < Z_w (2.12)
for any € € (0,1). Takasao [19] proved that there exist € € (0,1) and Cy > 0 such that
T
sup / (OS)2dt < Co(l+T) (2.13)
e€(0,e0) JO

by using an argument similar to that in [3]. By (2.5) we have

E(¢f(: //s(atgo )2 dzdt = E(p5) < Dy (2.14)

for any T > 0. By (2.13) and (2.14) we obtain
’ W'(¢))?
Ay — dzdt
/0 /QE( v €2 ) v
T T V2V ()N 2
< / / £(BugF)? dudt + / / e Ag&) dedt
o Jo (2.15)

T
<Dy + / (%2 / 2W(‘”)dxdt< Do + 2D / ()2t
0

<Dy(1+2Co(1 + T)),

where [, m dz < 2E(¢°(-,t)) < 2E(p§) < 2Dy is used. Hence we obtain the L?
estimate of the mean curvature(see Remark 2.1). For (2.1), Bronsard and Stoth [3]
proved the boundedness of sup, fOT (A%5)?dt. However we need the boundedness of

sup, e~ fo &s)? dt to obtain a estimate similar to (2.15).

For (1.4), we consider the following reaction diffusion equation:

Wl €
{ 0" = eAyf — %) +X°gV2W(¢*), (2,t) € 2 x (0,00), (2.16)
¢°(2,0) = ¢5(a), zeq,
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where

Jo {V 2W (¢*) ( — Ay + W—;(;’f-))g - 12((,0‘)6,9} dx

2 o P i

A= X(h) =

where k(s) := k(s)+ [, v/2W(7) dr = —1s3+s+2. (2.16) has the following property:

d [ - -
:ﬁ/ k(o) gdr = / V2W (p2)dp°g dx + / k(¢®)0:gdz = 0. (2.17)
Q Q Q
By an argument similar to that in Remark 2.3, (2.16) is the gradient flow for E(pf)
subject to [, k(¢®(z,t))g(x,t) dz = [, k(¢§)g(z,0) dz.

Remark 2.7. Assume that ¢ — ¢ = +1 as ¢ — 0 for a.e. (z,t) € 2 x (0,00). Then
by k(+1) = § = o and k(—1) = 0, we have

/I.c(tps)gdxz/Jx{«,szﬂ}gdx::a/ gdz.
Q Q Ut

Therefore (2.17) corresponds to (1.5).

Remark 2.8. By an argument similar to (2.11), we have

a7 {\/W( — Ayt + %)g —~ k(we)atg} dz

. 207 [og?*E da (2.18)
Jag,(h-n)gdH*" — [, Bigdx

~ fMt gz dHe-1 '

AE

By (2.17) and the integration by parts, we have

d €12 €
[ (AT Wy o [ (et + AW
dt Q 2 € Q

:—/6(3t<p5)2dx+)\5/3t<p5g\/2W(<pE)dx (2.19)
Q Q
z—/s(atcps)zdx—/\E/I~c(<p5)6,gdz.

Q Q

Note that (2.19) corresponds to (1.6), and if 8,g = 0 then £E(¢°(-,t)) < 0.

3 Preliminaries and main results

In this section we define the weak solution (L-flow) and show the time global existence
of the weak solution for (1.4). We recall some notations and definitions from geometric
measure theory and refer to [1, 2, 5, 6, 18] for more details.

Let d > k + 1 and Gx(R?) be a Grassmann manifold of unoriented k-dimensional
subspaces in R¢.



Definition 3.1. A set M C R? is called a countably k-rectifiable set if M is HE-
measurable and there exists a family of C! k-dimensional embedded submanifolds
{M,}®, such that H¥(M \ U®, M;) = 0.

Definition 3.2. Let M be an H*-measurable subset of R? and 6§ € L}, (H*¥(M)) is
a positive function. We say M has an approximate tangent plane P € G,(R%) at
zp € M with respect to 8 if

lim / F()8(z0 + y) dHH(y) = 6(z0) / £(v) dH¥(y)
Nzg A(M) P

Al0

holds for any f € C.(R?). Here ngy(2) := 3(z — o).

Remark 3.3. If M C R? is H*-measurable and k-rectifiable, then there exists an
approximate tangent plane with respect to # H*-a.e. on M for any positive function
6 € L}, (H¥(M)).

Definition 3.4. A Radon measure y is called k-rectifiable if there exists a countable
k-rectifiable set M and a function § : M — (0,00) such that 6 € L. .(H¥|») and
p = OHF | ar, that is, p(A) = [,.,, 0 dH* for any measurable set A C R%. Moreover if
6 € N H*-a.e. on M, p is called k-integral.

Definition 3.5. Let M be an H*-measurable subset of R? and ¢ € L} (H*¥(M)) is a
positive function. For a (d — 1)-rectifiable Radon measure u = §H*|y, h is called a
generalized mean curvature vector if

/ dingd,uz—/ h-gdu (3.1)
Re R4

holds for any g € C!(R¢; R?). Here, divy g = Zz,l=l O, 91 (0t — vin), v = (11, - - ., Va)
is the unit normal vector of the approximate tangent plane of M and g = (g1, - - -, g4)-

Remark 3.6. If M C R? is an oriented smooth hypersurface, then by the divergence
theorem for manifolds, we have

/dingdH‘H=—/ h-gd’Hd_l+/ v-gdH?
M M oM

for any g € C}(R%R?), where h and y are the mean curvature vector of M and the
outer unit normal vector of M on OM, respectively. If 9M = ), then h is also the
generalized mean curvature vector with p = H%|, in (3.1).

The following definition is similar to Brakke’s weak solution for the mean curvature
flow:

Definition 3.7 (L*flow [13]). Let U C R? be an open set and {}te(o,r) be a family
of Radon measures on U. We call {p}te(o,r) L2-flow if the following hold:

1. pq is (d—1)-rectifiable and integral, and has a generalized mean curvature vector
h € L*(i) ae. t € (0,T),

102



2. and there exists C > 0 and a vector field v € L(0, T; (L?(u,))?) such that
v(z,t) L Tppy for p ® L-ae. (z,t) € U x (0,T),
{ ‘ foT Joe +Vn-v) dﬂtdtl < Clnllcowxoryy for any n.e CH(U x (0,T)).
Here T, p, is the approximate tangent plane of y; at .
Moreover the vector valued function v is called a generalized velocity vector.

Remark 3.8. Let M; C U be a closed, bounded and smooth hypersurface for ¢t €
[0,T). Assume that {M;}icpor) is a classical solution for the mean curvature flow
equation with force term:

v=h+f on M, te(0,T), (3.2)

where f is a given smooth vector valued function with foT Ju, |f1?dH*1dt < C for
some C > 0. Then we have

HEY (M) — ’H"“(Mo)—/ H"“(Mt //Mh, vdHdt

—/ h-(h+ f)dH%dt < ——/ |h|? dH* dt + le
0 M 2 0 M 2

103

1 1
Hence we have the boundedness of Cr := ( fOT Jag, IRI? d?-ld‘ldt) ’ ( fOT S, 012 d’Hd_ldt) :

Set pq := H4 | p,. For any n € C1(U x (0,T)) we compute that

T T
| / /(8#7 +Vn-v) dutdt' = | / / (8m + V- v) de—ldtI
o Ju o Ju,

’ 3.3
S||77||C°(Ux(o,T))|/ / (h-v) d’}{d“dtl (33)
0 M,
<Crlnllcowx,1))>
where d
o /M nd*t = | (=nh+Vn) v+ andH* (34)
t t

and n(-,0) = n(-,T) = 0 are used. Therefore {y¢}ico,r) is the L?>-flow with the
generalized velocity vector v = h + f. The formula (3.4) also relates to the definition
of Brakke’s mean curvature flow.

Let ¢¢ be a solution for (2.16). We define a Radon measure p by

)= 1 [[o(TEL L K,

for any ¢ € C.(Q2). Here 0 = f_ll V/2W (s) ds. The main result of this article is the
following;:
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Theorem 3.9. Let d = 2,3 and Uy C 2 be an open set with C! boundary M,.
Assume that there exist C; > 0, § € (0,1) and w > 0 such that [|glc1@xjo,00) < Ch,
supQX[O,oo) |g - ll < 67 and

wS/ 9(z,t)dr < (1-6)|Q —w  foranyt>0.
U
Then there exists a family of functions {¢g }22, with €* | 0 as ¢ — oo such that the

following hold:

(a) Let ¢ be a solution for (2.16) with initial data ¢g* for ¢ > 1. Then there exists
1
Y € BVjoe(Q2 X [0,00)) N C2([0, 00); L*(2)) such that

(al) ¥(-,0) = xv, a-e. on Q and ¢ — 2¢ — 1 in L} (Q x [0,00)) and a.e.
pointwise.

(a2) (Volume preserving property) ¥(-,t) is a characteristic function with

/Qw(x,t)g(x,t) dx=/nw(x,0)g(x,0) dz

for any ¢ € [0, 00).

(b) There exists a family of (d—1)-rectifiable and integral Radon measures {11t }tc[o,00)
on 2 such that u;* — p; as Radon measures on Q for any ¢ € [0, 00).

(c) There exists A € L2 (0,00) such that for any T > 0, we have

A — X weakly in L?(0,T).

(d) There exists f € L2,.(0,00; (L%(ue))?) such that {u}e(0,00) is & L2-flow with a
generalized velocity vector
v=h+f

and v satisfies

lim 0w Vit
1200 Jr1gge (0)£0px (0,00) | VP [Vipe|

- @ dygrdt = / v - ®dy,dt
Q% (0,00)

for any ® € C,(Q x [0,00); R%). Moreover there exists a measurable function
6 : 0*{¢p = 1} — N such that

v="h-— %/\gn H%a.e. on 0" {y) = 1}, (3.5)

where n is the inner unit normal vector of {¥(-,t) = 1} on 8*{9(-,t) = 1}.



4 Outline of the proof

The key estimate is the following:

Lemma 4.1. Let T > 0, d > 2 and g satisfy the assumptions of Theorem 3.9. Assume
that there exists D > 0 such that p§(Q) = 0 E(p§) < D for any € € (0,1). Then there
exist ¢; = ¢1(d,w,d,D,T) > 0 and €; = €;(d,w,d,D,T) € (0,1) such that

T
sup  pE(Q)+ sup / IN(E)[2dt < . (@.1)
e€(0,e1), 0<t<T e€(0,e1) JO

Note that the existence of D > 0 is natural from H%}(M,) < 0o, and the bound-
edness of 4£(Q) is not clear (see (2.19)). The proof of Lemma 4.1 is similar to that in
(3] and [19]. To show the existence of the L:-flow, we use the following:

Theorem 4.2 ([14]). Let d = 2,3 and ¢° be a solution for the following equation:

W' (f
{ £0,0° = eAp® — # + f5, (x,t) € 2 x (0,00). (4.2)
¢*(z,0) = p§(z), ze.
We assume that there exists € > 0 such that
T ri
sup (uﬁ(ﬂ) +/ /—(f‘g)2 d:cdt) < o0 (4.3)
€€(0,€) o Ja¢€

for any T > 0. Then there exits a subsequence € — 0 such that the following hold:

1. There exists a family of (d — 1)-integral Radon measures {1 }c(0,00) On §2 such
that

(a) p® — p as Radon measures on Q X [0, c0), where du = dy,dt.
(b) pé — u as Radon measures on Q2 for all ¢ € [0, c0).

2. There exists f € L2,_(0,00; (L?(p1¢))?) such that

lim 1 —feVy® - ddzxdt = / f-®du (4.4)

€20 0 Jax(0,00) 2x(0,00)
for any ® € C,(Q x [0, 00); RY).

3. {1} teo,00) IS aN L?-flow with a generalized velocity vector v = h + f and

lim v5-<I>d,u€=/ v-®dy
€20 Jax(0,00) Q2x(0,00)
for any ® € C,(Q x [0, 00); R?), where h is the generalized mean curvature vector
of u; and
[Ve| [Ve|

L =\
o otherwise.
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Note that the reason for the assumption for d is that the following results are used
for the proof of [14]:

Theorem 4.3 ([16]). Let d = 2,3, U C R? be an open set and {¢,}; be a positive
sequence such that e, — 0 as i — oco. Assume that ¢* € C?(U) for any i > 1. Set

w(g):=L1f ¢ (ﬂz";ﬁ V—V%) dz. Suppose that

! 1 2
sup p*(U) < oo, sup/ et(Agp’ - &f)) dr < o0
U &

1€EN €N i

and
u' — p as Radon measures.

Then p is integral and for any ¢ € C.(U) we have

&|Ve'?  W(p) ,
/Uq&( 5 - , )dx—>0 as i — 00.

Moreover

1. . W'(')\2
2 L v _
/U|h,| du < allmmf/ue,(Ag) 22 ) dz,

where h is the generalized mean curvature vector of .

Proof of Theorem 8.9. For simplicity, we show Theorem 3.9 under the assumptions of
Lemma 4.1. Set f¢ := A°g+/2W (¢*). Then we have

/0 ' /,, %(fe)"’dxdt <2(1 +6)? /O "oy /Q @dxdt

<2(1 +6)%07'c3,

where (4.1) and [, W(we) dr < 07 111,(£2) is used. Thus we obtain (4.3) and there exists
a subsequence {&,, }J , such that the conclusions of Theorem 4.2 hold.

By an argument similar to that in [12, Theorem 4.7], we obtain (al). By (al) and
(2.17), we have

/’¢' z,t)g(z,t)d -1 hm / k(o™ (z,t))9(z, t) dx
i [ k™ (@, 0)g(e0de = / ¥(z,0)g(x, 0) dz
J—00 Q
where
Jllq}ok(w —Jllglo/ V2W (s) ds+/ V2W(s)ds =oy a.e. on Qx (0,00)

(4.5)
is used. Note that o = 2f01 V/2W (s) ds. Thus we have (a2).
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By Lemma 4.1, there exist A € L},.(0,00) and a subsequence {e, }52, (denoted by
the same index) such that (c) holds.
Finally, we show (3.5). By (4.4), for any & € C}(Q x [0, 00); R%) we compute that

/ f-®dy = lim 1 =X g/ 2W (¢*9)V ™ - @ dxdt
Qx(0,00) I 0 Jax(0,00)
= lim l )% ngE((pe’J) - ®dxdt (4.6)
I 0 Jax(0,00)
= lim 1 29 k(o )div (@) dadt.

170 0 Jax(0,00)

By (4.5), (4.6), and the Radon-Nikodym theorem we have

/ f-<1>du=/°°/\/1/)div(g<1>)dxdt
2 (0,00) 0 Q
V(- )l

=——/ A/gv-@d“Vzp(-,t)lldt:/ —)\gd”—u-@du
0 Q 2x (0,00) dpe

for any ® € C}(Q x [0,00); R?), where v(-,t) is the inner normal vector of {z €
Q|Y(z,t) = 1} on 0*{z € Q|Y(z,t) = 1}. Set 6 : &*{(z,t) € Q x (0,0)|¢Y(z,t) =

dvuo)) ! is i
1} = (0,00) by 6 := (d—m) . Note that p, is integral by Theorem 4.3. Thus
6 € N H%a.e. Hence we have (3.5). O

(4.7)
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