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Abstract

In the recent work [6] the authors studied the elastic flow in the hyperbolic plane
for closed curves. Subconvergence to elastica was established under an additional length
penalization. In this paper we show that this penalization is not necessary for the conver-
gence of closed geodesic circles by computing the evolution explicitly.

We supplement the paper with a comparison between the elastic flow in the hyperbolic
plane and the Willmore flow of surfaces of revolution.

1 Introduction

Let f: S! — M be a smooth immersion of a closed curve in a smooth Riemannian
manifold (M™,g) of dimension n > 2. Similar to the Bernoulli model of an elastic rod in
the Euclidean case we define its elastic energy as

E(f) = 2 / (IR +2) ds, (L1)

2 Js1
where A € R ds = |0; f|g dz and the geodesic curvature & is given as K = Vp, ;0 f, where
Of = wm ﬂ =70z f is the unit velocity vector field along f and V denotes the covariant
derivative.
Critical points of the elastic energy are called elastica and have been studied for instance
in [11]. Here, we let (M,g) be the Poincaré half-plane as in [6], thus M has constant
sectional curvature —1. Then the elastica satisfy

Vié(f) = (vgs)2z+l|z|ge—>\e-z=o, (1.2)

where VJ- denotes the projection of the covariant derivative Vg, ¢ onto the subspace
orthogonal to Osf (see [11],[6, Remark 2.5]). In this work we look for self-similar solutions
to the gradient flow associated to the energy £,. This evolution has been studied in
Euclidean space for instance in [17, 9, 8, 13] and on the sphere in [5].

The main theorem from (6] is the following.

Theorem 1.1 ([6, Theorem 1.1]). Let H? be the hyperbolic half space, fo:S* — H? be a
given smooth, reqular and closed curve, and A > 0.

(i) There ezists a smooth global solution f : S' x [0,00) — H? of the initial boundary
value problem

{ 8f = ~Vibx(f) = —(V4)2R - LRIZR+ R+ AR, in S x (0,T),

f(z,0) = fo(z), forz € S (1.3)



(1) Moreover, if A > 0, as t, — oo there exists real values p, € R, a, > 0 such that the
curves a,(f(t,, ) — (p.,0)) subconverge, when reparametrised with constant speed, to
a critical point of €y, that is to a solution of (1.2).

A crucial ingredient in the proof of [6, Theorem 1.1] is the following generalisé,tion of
the Theorem of Fenchel.

Theorem 1.2 (see [16, 14]). For any smooth, closed curve in hyperbolic space the total
absolute curvature [ |R|y ds is bounded from below by 2m.

This was applied in [6] to show that the length of the curve is uniformly bounded from
below during the elastic flow. To find an uniform upper bound on the length one penalises
the growth of the length with a positive multiplier A > 0.

Here, we consider geodesic circles in the hyperbolic plane and see that we can remove the
assumption A > 0 in Theorem 1.1(ii) in this case for the subconvergence. We show that a
convergence result even holds for A > —%. More precisely, we have the following result.

Proposition 1.1. Let A > —% and fo be a geodesic circle in H?, i.e. fo is a regular,

smooth parametrisation of 832*[2 (y) C H? for some r >0 and y € H2.
Then there ezists a family of circles f: [0,00) x S! — H? solving the elastic flow (3.1).
Moreover, f converges to the limit circle

0 cosx Qoo
foo(z) = (aw) + oo (sinx) , where = V2(A+1).
In particular, for A = 0 we see that the global solution with circular imitial value converges
to the circle satisfying %f =2

Note that the limit elastica fo, for A = 0 is called circular free elastica in [11] and
is the global minimum of the elastic energy of closed curves in the hyperbolic plane (see
Figure 1). This circle corresponds to the Clifford torus in R? (as a surface of revolution,
see [10]). This torus is the global minimum of the Willmore energy of closed surfaces of
genus 1 ([12]). The proof of Proposition 1.1 is given in Section 3.

Remark 1.1. Note that circles in the hyperbolic plane are uniquely determined up to
scaling and translation in the direction of the first coordinate, which is why the limit circle
of Proposition 1.1 is uniquely determined up to such isometries.

Writing a circle in H? as
()
a sinz

with a > r > 0 (see Lemma 2.1), the quotient  is the (absolute) curvature of the circle
(see (3.5)). Proposition 1.1 is shown by studying the ODE for the curvature %, where a
and r are time-dependent (see Proposition 3.1). Writing p := a/r this ODE reads

d _ 2 1 2
5P =Pl =1)(5p" - A-1),

see (3.4). In a sumilar fashion one finds for the elastic flow in Euclidean space that circles
of radius r = r(t) satisfy

while for circles in the sphere we find

. 1-72/1/1

110



111

(see [5, Introduction]). Notice that the right hand sides of these three equations have the
following structure

1
some factor (§|F€|§ — X\ + sectional curvature),

since the sectional curvatures in H?, the Euclidean space and the sphere are respectively
—1,0 and 1.

The article is structured as follows. In the next section we recall some basic facts on
the geometry of the hyperbolic plane. In Section 3 Proposition 1.1 is proven. In the last
section we compare the elastic flow in H? for A = 0 and the Willmore flow of surfaces of
revolution and show, by a direct computation, that they differ only by the factor 2f3.

2 The geometry of the hyperbolic plane

In this article we consider the Poincaré half-plane model for the hyperbolic space, i.e.
the Riemannian manifold (H?, g) with

1 /10
H? = {(y1,2) € R? : o > 0} and I(yr,y2) = 3 (0 1) '
Y2

It is well known that (H2, g) has constant sectional curvature equal to —1. The Christoffel
symbols of (H?, g) are given by the following expressions

1 1 1
Fh:F;z:O, F%2:F;1=—_a P%l"—”‘“’ F§2=——andl‘f2=1‘§1=0‘
Y2 Y2 Y2

Identifying 8y, with (1,0)* and 8y, with (0,1)* one easily verifies the following formula for
the covariant derivative in H?

0: X, - 71;(X13zf2 +X23zf1)> (21)

Vo, X =

- (azxz + 4 (X10:f1 — X082 f2)
for a vector field X along a curve f = (f1, f2): S' = H2. Since we will consider geodesic
circles in H? the following remark will be useful.

Remark 2.1 ([2, Proposition 2.6]). The geodesic distance between (x1,v1), (T2,y2) € H?
is given by

(z2 — z1)® + (y2 — yl)z) .

distyz ((21,%1), (z2,y2)) = arccosh (1 + G

In particular, if x1 = zo = z, then distgz ((z,v1), (z,y2)) = ‘log ya'Lf .

By this formula it is easy to see that a ball in H? coincides with an Euclidean ball and
vice versa, as shown in the following lemma. In Figure 1 (an isometry of) the circular
limit curve from Proposition 1.1 is sketched.

Lemma 2.1. Let r,y; > 0 and 21 € R. Let BPz (z1,v1) be a ball in the hyperbolic plane
defined by B;Hz(xl,yl) = {(z,y) € H?: distyz((z,9), (z1,11)) < r}. Then

2 2
B (z1,1) = Bsn}nh(,)yl (21, y1 cosh(r)),
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Figure 1: The ball of radius 1/v2 and midpoint (0, 1) in the hyperbolic plane.

where B,;Rz (a) denotes the ball of radius p and center a in the Euclidean plane R? D H?.
Conversely for y; > r > 0 we find

2 2
BB (zl’yl) = Bgnh-l(fr/yl)(xl7 y% - Tz)'

Proof. Let (z,y) € H2. Then, by Remark 2.1 above and the monotonicity of cosh one sees
that’(z,y) € B (z1,y1) if and only if

(z —21)% + (y — 1)? '

cosh(r) > 1+
(r) 2y

By rearrenging the ternmis we see that this is equivalent to
2yy; cosh(r) > (z — 1) + y* + y#(cosh®(r) — sinh?(r)),

and hence to
sinh®(r)y} > (z — 21)* + (y — cosh(r)y1)?,
that gives (z,y) € Bsmh(r)yl (1,91 cosh(r)). The second part of the lemma follows using

the first part together with the fact that if BR"(zy,y;) = B¥ (z;,7), then r = sinh(R)n
and 7 cosh(R) = y;, whence

tanh(R) = yL € (0,1) and hence R = tanh™* (r/y;) .
1

Similarly we find

nV1—(r/y1)? 3/1 —rZ.

n= cosh(R

3 The elastic flow of circles in the hyperbolic plane

In this section, we study the evolution of circles under the elastic flow in the hyperbolic
plane. Since we will consider a family of parametrised curves f = f(z,t) whose time-
derivative 8; f is not necessarily normal to 9, f we will work with the following flow instead
of (1.3). We consider

{ (atf)'L = —Vsz,')\(f), in S x (07 T)’ (3 1)
f(z,0) = fo(z), for € S!, :



where * denotes the normal component Note that one can always transform a solution
to (31) to a solution of (13) using the flow of vector fields on S! = R/z, 1e wvia a
reparametrisation (seeeg [6 p 12])

The following proposition gives a necessary and suffient condition under which a family
of circles 1s a solution to the elastic flow (3 1) Here and n the following we will always
assume that fy parametrises a geodesic circle in H? 1e by Lemma 2 1 we may assume
that

fo(z) = (fo) + 70 (COS(“”)) for some ag > o > 0 (32)

sin(z)
Proposition 3.1 Let Ae€R and 0< T < 00

1 Leta(t) [0,T) > R, r(t) [0,T7) — R be smooth functions satisfying a(0) = ao
7(0) = 79 and a(t) > r(t) > 0 for all0 < t < T If the followwng family of curves

f S'x[0,T) - H?
flo,t) = (a?t)) +r(t) (g;;f;j) (33)

15 a solution to (3 1) wath witial value fo as mn (32) then p(t) = % [0,T) —
(0, 0) 15 a solution to the ODE

{ Solt) = Ha(p) 34

1 a,
where H(p) = —5p(p* = 1)(p” = 2(A +1)) and po = ;g >1

2 Moreover ifp [0,T) — (0,00) 15 a smooth solution to (3 4) with po > 1, then writing
Po = ag/ro with ag > ro > 0 there exist unigue smooth functions a,v [0,T") — (0, 00)
satisfying a(0) = ap 7(0) = ro and a(t) > r(t) > 0 for all 0 <t < T, such that f
(gwen by (3 3)) 1s a solution to (3 1) with wnatial value fo from (3 2)

8 For all A € R and py > 1 there exists a uniqgue smooth solution p [0,00) — (1,00)
to (34)

4 If X > —1 then the smooth solution p [0,00) — (1,00) converges monotonically to

pa =/2(A+1)

The last part of the statement yields the existence of circular self similar solutions
to the elastic flow, and these circles converge monotonically to the circle with constant
curvature uy (see below)

Corollary 3.1 For any A € R and any wnatial value fo as i (3 2) there emists a famaly
(33) of circles that satisfies the elastic flow (31) Moreover for A\ > —% this famaly
converges to the circle which 1s given by

a
1

If A < —3 then the circular self-sumalar solution still exst but the circles expand to infinity
ast— oo

Note that this corollary and Lemma 2 1 immediately imply Proposition 1 1
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Proof. The first part of this corollary follows from the third and second claim of Proposition
3.1. The statement for A > —% is also given in Proposition 3.1 whereas for A < -—% Lemma
A.1 gives a solution p of (3.4) that converges asymptotically from above to p = 1. For the
associated circular solution f this means that the quotient a/r converges to 1 and hence
the circular solutions converge to a circle touching tangentially the line {(z,0) : z € R}
(see Lemma 2.1), i.e. expanding to infinity. |

The proof of Proposition 3.1 is given after the next lemmata. Note that the condition
a > r > 0 ensures that f is a well defined circle in H?2.

Lemma 3.1. For the circular curve f from (3.3) with a > r > 0 it holds
a

R =5, (35)
1a? . .a [cosz
=V (f) = - ()\+ 1- Eﬁ) (a+ rsinz) - <§inx) . (3.6)
In particular, f is an elastic curve if and only if A > —% and g =+v2(A+1).
Proof. We have 0, f =r (_czlsnzx>’ whence
1 T
|azf'g - Elazf'euc = m

(that is well defined since a > r > 0) and thus for the arc length derivative 85 = El_fﬁaz
we find )
0s = ;(a+ rsinz)d; = %31.

The tangential vector is

Osf = (a+rsinz) (— sinx)

cosT
and from (2.1) we find

_ —Xicosz+ Xosinz) _ Xicosx — Xosinx
Vo, s X =0.X + (—Xl sinz — X cos x) =0, X - (X1 sinz + X» cosx) 3.7
for vector fields X = (X;,X2) along f. Using this formula we compute the curvature

vector field
R(x) = Voa,50sf

a+rsinx . —sinx . sinzcosx + coszsinz
=——-08; |(a+rsinz) + (a+rsinzx) . o 9
r cos T sin® x — cos“ x
. . 2
. —sinx a-+rsmx —CcosZX
= (a+rsinz)cosz +¥ .
coszT r —sinz

sin? z — cos? z

sin  cos m) (a+ rsinz)? (cos a:>

sin?z r sinx

. 2sinzcos T
+ (a + rsinz)
= (a + rsinx) (

a
= —(a+rsinz) - (c9sw) .
r \sinz
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Thus,

I| ! ¢ (a+rsing) = <
Rlg=———-=-(a z) = —
97 a+rsinz r r’

that is (3.5). Using (3.7) again we find for £ = (K1, K2) that
Kisinz + Rz cosx

i o K1C0ST — Rasinz
Vasfl*c:asﬁ‘,—( 1 2 )

1 a a 2 z — sin®
=—=(a+rsinz)d; [(a+rsinx) - (C?Sz)] + (a+rsinz) — (cos r—sm I)
r r \sinz r \ 2coszsinz
1 a [—si
=——(a+rsinz) [acosx (C9S$) + (@ +rsinz) - < smx)]
r sinx r \ cosz

2 in2
. a (cos?x —sin“z
+ (a + rsinz) — .
r \ 2coszsinx
2 e <2 2 .2
cos®x — (£ sinx + sin® z) — (cos® z — sin“ x)
coszsinz + (% cosx + sinzcosx) — 2sinz cosx

. 2 .
. a (—%sinx . a sinz
=—(a+rsinz)—|{ " = (a+rsinz) —
r\ Zcosz r2 \—cosz

a
= —(a+rsinz) " (

—sinx

) . Thus
cos T

is tangential to f, i.e. a multiple of 9, f = r (

(Va,£)*R=0

and hence
((Va,5)*)*R =0.

Summarising, we find
V£—Vl2"1""“)\"
=ViEx(f) = =(Va,5) K‘§|'€|g'i+'€+ K
1
(—§|f{|§+)\,+1)k‘

1a? . .a {cosz
- (A +1- 51"_2) (a+7‘smx) ; (sinx) ,
that is (3.6).

Since a > r > 0 then V2E,(f) = 0 only when the quotient a/r is constant and equal
to 4/2(A +1). Since the quotient has to be bigger than one, this can only be the case
when A is strictly bigger than —%. This yields the claim. O

I

Lemma 3.2. Let A € R, fo given by (3.2) and f be as wn (3.3). Then f: S' x[0,T) — H?
is a solution to the elastic flow (3.1) if and only if the functions a,r: [0,T) — R satisfy

a . T _afa . 1 /a\?
;s1nw+;—;(;+smx) (5(;) —(/\+1)), t>0,zeR,
a(0) _ a0

r(0) o’

(3.8)

where the dot represents the time derivative of a and r.
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Proof. For (0;f)* we calculate
7 COSZT
Of = ((1 + fsina:) ’

and thus, since N := (:?;i) 1 O, f we find 8, f = (2) + 7N and hence, using

1 .
o0\~ _,/0 N  (a+rsinz)? | e
(1) = ((1> N £(2) |N|§'(x) = (a+7‘sinz)2(smx)N = (sinz)N

we find
(B:f)* = (@ sinz + 7)N.

Thus, together with (3.6) this shows that f from (3.3) is a solution to (3.1) if and only if

(@ sinz+ AN =~ (A+1- 22 (@t rsinz) IN
a smx = 272 a Sinx e

ie.
a . r a/a . 1a?
—smz+-=-—(—+smx) A+l-=-—=).
r r r\r 22

Taking the initial values into account this yields the system (3.8). O

Proof of Proposition 3.1. We use here several times Lemma 3.2.

1. Let f from (3.3) be a solution to the elastic flow with initial value fy as in (3.2). Then,
by the previous lemma, the functions 0 < r < a are solutions to (3.8). Differentiating
(3.8) with respect to z yields

a a1l ra\2
Scosz = — (5 (;) -\ + 1)) cosx

for all z, in particular for x = 0 we find

d=a(% (g)z-(,\+1)>. (3.9)

Plugging this equation into (3.8) yields
) a 1 /a\2 1 /a\2 .
= a(; + sinz) (5 (;) (A + 1)) -a (5 (;) -(A+ 1)) sinz
. a? (1 sa\2
=T (5 (7) ‘(“1))-

Thus the function p := g satisfies p(0) = #2 and

(G -0m) -5 (GCY )

= —%p (P = 2(A+1)) (p* — 1) = Hx(p).



2. Conversely, let p be the solution to p = Hx(p) and p(0) = py = ? for some

()
ag > 19 > 0. Then p > 1 by Lemma A.1. Moreover, let a be the solution to
the linear ODE

d=a-%(p2—2()\+l)), t>0

(3.10)
a(O) = ap

and define r by r(t) = ;—g%. Then a > 0 since ap > 0, thus 7 > 0 and hence

p(t) = ':—% for all t € [0,T). Moreover, a satisfies (3.10), whence

dtlogr

diloga (;itlogp

_a_f

a p

(@) -20) - Em(2)

- 1(@ ) 3 (@) 2000) (@)
=l( —2(,\+1)) (g)z

which shows that
s £ (0 ) (0 -2000) )
-2(zrans) (3(2)'-000),

i.e. (3.8) holds. Lemma 3.2 implies the rest of the claim.

3. The last two assertions follow from Lemma A.1. a

4 Relationship to the Willmore flow of surfaces of rev-
olution

It is well known (see e.g. [10, 11]) that there is a very interesting relation between the
elastic energy £ (that is £, with A = 0) of curves in the hyperbolic half plane and the
Willmore energy of surfaces of revolution. As a consequence the two gradient flows are
also closely related as observed in [6]. Here, we give the detailed computations to see that
the two differ only by a factor when we take into account that the Willmore flow keeps
the rotationally symmetry. We shortly fix some notation to state the result.

Let f:S' — ]R2+ := {(z,2)! : z > 0} be a closed curve parametrised by Euclidean
arc-length, i.e. (f])? + (f})? = 1. By rotating the curve around the z-axis we obtain a
surface of revolution in R3

hy : St % [0,27] 3 (z,) = (f1(), fa(z) cos(p), f2(z) sin())* € R®.
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Its Willmore energy is given by
W(hys) = /HZdS,

with H the mean curvature. The same curve f can be considered as a curve in H2. In
order to stress this fact we denote it as fy2. Similarly, when needed, we write fg2 to
indicate that f is now considered as a curve in R2.

Theorem 4.1. One has
1. &(fu2) = 2W(hyg);
2. the L2-gradient of £ satisfy
Vi52E(fuz) = —2f3(AH + 2H(H? - K))fig
where we recall that

Vi2W(hs) = (AH + 2H(H? - K))N

with fige = (f3,~f{) and N = (f}, ~ f{ cos(), = f{ sin(¢));
8. the elastic flow can be written as
(O fu)t = =V 12E(fuz) = 2f3(AH + 2H(H? ~ K))fiye
= —2f3(AH + 2H(H? - K))iga .

The last part of the statement gives the relation between the elastic flow and the
Willmore flow of surfaces of revolution. Of course we cannot compare directly these two
flows since one lives in H? while the other takes place in R3. On the other hand, as we
will explain below, when we start from a surface of revolution this symmetry is preserved
by the Willmore flow and hence we can describe the Willmore flow simply considering the

evolution of the generating curve in R2. This is the flow that differ by a factor 2f4 from
the elastic flow in HZ2.

Proof. Relation between the energies This is well known and can be found for instance
in [10, 11, 4, 3]. We repeat the arguments. The first fundamental form of the surface of

revolution hy is given by
1 0
I= ,
(0 f%)

the induced area element is f, dz dy, the normal vector is
N = (f3, = f{ cos(e), = f1sin(p))",

) :
the principal curvatures are A1 = f1'f; — f{ f1 and A2 = % and the mean and Gauss
curvatures are respectively

fi fi
S 2’

(see [7, page 161]) and the Willmore energy of this surface of revolution is given by

H=%( i - A+ ) and K = (f{f; = 3 f1)

7N\ 2
Wiy = [mwas=3 [ (sn-nn+0) poas.
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Now we consider the same curve as a curve f : S! — H?, f = fy2. Since this curve is
parametrised by Euclidean arc-length we find

Osf = X figa of = f20:f and O = f20,

For the ‘hyperbolic’ curvature from (2.1) we find
2 2
- V.0.f = ( 031 = £0:110s 1 ) _ (f§3§f1 —fzazflazfz) 1)

82f2 + 4:((8s£1)? ~ (8s£2)*) f302f2 + f2(8:f1)?
and
R[5 = fz (£ = fa£112)° + (F312 + fo(11)%)?]
1\2

= #lur - By + Ll

— f2 1\ 2 (f{)z(fé)z _ Il_f_{ / 1 (f1)4 Il(fl)2

= Bl + S 2 (0 gl 2
which, using that f satisfies (f])% + (f3)? = 1 and hence

f@)f (z) + f3(z) f5 () = 0, (4.2)

can be rewritten as

2 = g2t — g+ UE o fipy o U0

Y 2
1" f Hf " (f)

= BB~ B+ 50 A ]

_ el fiya, A

=Bl s - B+ 3]

This formula gives directly the relation between the elastic energy in the hyperbolic
plane and the Willmore energy of surfaces of revolution, indeed since the curve is closed

£(fw) / et do= [ (- fi+ T2+ )

- ——W(hf) +4/ z) do = -W(hf)

Notice that here £(f) denotes £x(f) with A = 0.
The Willmore flow starting from a surface of revolution The Willmore flow of
hy is given by
(8ihs)t = V2 W (hs) = —(AH +2H(H? - K))N, (4.3)
with N the normal to the surface as fixed before and A the Laplace-Beltrami operator.
Blatt in [1] proved that the Willmore flow, as long as it exists, keeps its rotational sym-

metry. Hence we can restrict the flow directly on the {(z, z) : z > 0} plane (or take p = 0
in the rotation) and obtain that the right hand side of (4.3) so restricted is given by

—(AH +2H(H? - K))(f3,- f1)"-
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Hence, by taking into account this rotational invariance, the Willmore flow corresponds
to the following flow equation for the evolving curve in R?

(Bsfr2)t = —(AH + 2H(H? — K))fige ,

with 7ig: = (f3, - f])*.
We compute now AH + 2H(H? — K). 'We do the computations locally where f} # 0,
so that using again (4.2) in the form of f) = —Lf—zl- we have

f1) 1 f1

H= and K = ——.

(fz f2 f2f3

Note that a similar formula holds where f; # 0, see [4]. By a direct computation (using
(4.2) several times)

2AH = 2fia,( f20,H)
2

(3) 1"en " ’ ot / (3) " en " ' ot
_ Af A0 _fk\ (L7 _fAf A _ff
% (fz W TETR >+f2(fé @ f%)
(3) 2 " 't ’ 3) 1\2 g1 7" ' gt
B (O A VAN W 0 [ Y
‘af(fzf’ FACHR> f§)+fz(fé+ VA f%)
(4) (3) (3) p1r g1 M\ 3 N2 £ et
— 1 fl flfl (1) _ (1)f12
AL ) I 7 R e AT
(0 R U i AN (0 L 00 O e I 00k

YRR TR TR tRTR TR B
(4) ls)f{,fl 1(3)
=Tty th

P LUDRA B L UDM AW . U0

+ +3 Lz - 4+

(f3)? (f2)° 2 fzfz 3 fa (fé)2

whereas
o 0= (5 +£) G+ 57 )
1 7\ 2
G G- (44)

The elastic low We consider now the gradient flow for the elastic energy in the
hyperbolic half-plane

(00 fus)* = ~(VE)R — SIRIZR + .

Working again locally where f} # 0 using (4.2) we can rewrite the curvature (see (4.1)) as

Ez( fzflfl +f1) )

with figz the normal vector in the hyperbolic half plane given by

iz = fa(—=0zf2,0: f1) = — fofige .
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Hence it has the same direction as the normal vector to the curve fg2 in the Euclidean

plane but it differs by a factor of — fs.
Since Vg2 is tangential, we directly obtain that

Viz = fzaz( f}{l +f1)nHz

_ _ Il_f2f1 f2f1 " H2
= (== R g )
_ (310 BAUD -
- (- 7 TAE )7

and similarly

L B BRED -
(V)R = 120 (= =~ R )

(- BAY o BEY PRGN B

R RE2 (e (23
BARRY L BAGD? -
- 2R+ 3 e ) e

B GBS LRI B
‘f2( SRR S g A g T Ty

fl
2
using (4.4), whereas
1 1 17 3
EIR'IEE—E:E _%_*.f{) ﬁMz_(_fsz” )
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1 2
g 10 () B+ (5~ s

One sees that the first three terms in (V)2& differ only by a factor from the first three

terms in 2AH.
Relation between the L2-gradients and the gradient flows Comparing the ex-

pression we see that

~(Bufi ) = Viat(fun) = (VEVR+ g RIZR ~
(4) (3) (3) 17\2 IN2/ £11\3
- 1 AUDE R DR
=R (5 25 3 1f1+2f2f2)2+( AT
o (B LVE L Ay
+AH(H" - K) (fé 2) B qE )
) LU LRGBS UDME R
= BA -G e T g R G




fU? P D)

PR TR T (e
2 gy (S _AVA A AN
+4H(H? - K) (fé fz) 7, fg(f2)2+f§)n”
o vr DM RUDE U
=3 (28 + Tt - St - - e

! f{)zf_{ 1 f{)ﬂ

2 . (J1_ N1 _ SR
HHUE =K = (= ) = g + )
Clonn SRR U
= -3(28H - 220t 4 e+ T
"IN fIN
+4H(H? - K) - (f_z_f_;) f-;)nw

= —2f3 (AH +2H(H? - K))ﬁ]le
=2f} (AH +2H(H? - K))ﬁRz = —2f2(O fra)* .

Hence the two flows differ by the factor 2f5. O
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A Analysis of the ordinary differential equation

Here, we shortly study the ODE for the curvature p = ¢. We remind the reader that

"

we define py 1= /2(A+ 1) for A > —%, see Proposition 3.1.

Lemma A.1. Let A € R and po > 1. There erists a unique global smooth solution
p: [0,00) = (1,00) to (3.4), i.e. to

{ Solt) = H(p) = ~2p(s" ~ 1)(o" ~ 2 +1)
p(0) = po.
Depending on A, we have the following asymptotic behaviour of p:
1. If x> =1, then the solution p satisfies
(i) if p(0) > px, then p(t) \y pr ast — oo,
(i) if p(0) < px, then p(t) / ux ast — oo.
2. If X< -3, then p(t) \\1 as t — 0.

Proof. Existence and uniqueness of a global solution follow from smooothness of the right
hand side and the existence and uniqueness theory of autonomous ODEs (see e.g. [15]).
Concerning the asymptotic behavior, for A > —--;— we have py > 1, and hence Hy(p) > 0 for
1< p < py as well as Hy(p) < 0 for p > p (see Figure 2). In the case of A < —3 we have
H)(p) <0 for any p > 1, and since Hy(1) =0 we find p > 1 for all times 0 <t <oco. 0O



Figure 2: The graph of H) for A > -%.
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