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1 Summary

This paper presents proof that Buss’s  S_{2}^{2} can prove the consistency of a fragment of Cook

and Urquhart’s PV [4, 3] from which induction has been removed but substitution has
been retained. This result improves Beckmann’s result [1], which proves the consistency
of such a system without substitution in bounded arithmetic S_{2}^{1}.

Our proof relies on the notion of “computation” of the terms of PV [5]. In our work,
we first prove that, in the system under consideration, if an equation is proved and either

its left‐ or right‐hand side is computed, then there is a corresponding computation for
its right‐ or left‐hand side, respectively. By carefully computing the bound of the size of

the computation, the proof of this theorem inside a bounded arithmetic is obtained, from

which the consistency of the system is readily proven.

This result apparently implies the separation of bounded arithmetic because Buss and

Ignjatovič stated that it is not possible to prove the consistency of a fragment of PV

without induction but with substitution in Buss’s S_{2}^{1} [2] . However, their proof actually

shows that it is not possible to prove the consistency of the system, which is obtained by

the addition of propositional logic and other axioms to a system such as ours. On the

other hand, the system that we have considered is strictly equational, which is a property

on which our proof relies.
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