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Abstract

The Church-Rosser theorem in the type-free A-calculus is well inves-
tigated both for S-equality and S-reduction. We provide a new proof of
the theorem for $-equality simply with Takahashi’s translation. Based
on this, we analyze quantitative properties of witnesses of the Church—
Rosser theorem by using the notion of parallel reduction. In particular,
upper bounds for reduction sequences on the theorem are obtained as the
fourth level of the Grzegorczyk hierarchy, i.e., non-elementary recursive
functions. Moreover, the proof method developed here can be applied to
other reduction systems such as A-calculus with Arn-reduction, Girard’s
system F, Godel’s system T, combinatory logic, and Pure Type Systems
as well.

1 Introduction

1.1 Background

The Church—Rosser theorem [4] is oue of the most fundamental properties on
rewriting systems, which guarantees uniqueness of the computational result and
consistency of a formal system. For instance, [or proof trees and formulae of logic
the unique normal forms of the corresponding terms and types in a Pure Type
System (PTS) can be chosen as their denotations [26] via the Curry—Howard
isomorphisr.

The confluence property states that if M — Ny and M —» Ny then there
exists P such that Ny -» P and Ny — P. Here, we write — for the reflexive and
transitive closure of one-step reduction —. There have been well-known proof
techniques of the theorem: tracing the residuals of redexes along a sequence of
reductions [4, 1. 13] and working with parallel reduction by the method of Tait
and Martin-Lof [5, 1, 13, 23]. Recently, a simple proof of the theorem is also
known with Takahashi’s translation [24] (the Gross-Knuth reduction strategy
[1]), but with no use of parallel reduction [17, 6, 16, 18].

*This work was partly supported by Grants-in-Aid for Scientific Rescarch KAKENHI (C)
17K05343.



On the other hand. the Church—Rosser theorem states that if M +— N
then there exists P such that M — P and N — P. Here. we write! M <— N
iff M is obtained from N by a finite series of reductions (—) and reversed reduc-
tions («). It is well known that the Church~Rosser theorem follows repeated
application of the confluence property, so that each peak can be made one by
one into its own valley and finally one gorge.

One of our motivations is to analyze quantitative properties in general of
reduction systems. For instance, measures for developments are investigated
by Hindley [12] and de Vrijer [22]. Statman [21] proved that deciding the Bn-
equality of typable A-terms is not elementary recursive. Schwichtenberg [19]
analysed the complexity of normalization in the simply typed A-calculus, and
showed that the number of reduction steps necessary to reach the normal form
is bounded by a function at the fourth level of the Grzegorezyk hicrarchy €4 [11],
i.e., a non-elementary recursive function. Later Beckmann [3] determined the
exact bounds for the reduction length of a term in the simply typed A-calculus.
Xi [27] showed bounds for the number of reduction steps on the standardiza-
tion theorem, and its application to normalization. Ketemna and Simonsen [14]
extensively studied valley sizes of confluence and the Church—Rosser property
in term rewriting and A-calculus as a function of given term sizes and reduction
lengths. However, a bound in at least the fifth level of the Grzegorczyk hierar-
chy has been conjectured [14] for the complexity of finding common reducts for
a B-equality in A-calculus. Our main goal in this paper is to show that an upper
bound [unction for the Church—Rosser theorem ol A-calculus with S-equality is
to be in the fourth level of the Grzegorczyk hierarchy which is the same level as
finding common reducts for the confluence property [14].

In this study, we are interested in quantitative analysis of witnesses® of the
Church—Rosser theorem: how to find common reducts with the least size relating
10 space and with the least number of reduction steps relating to time. For the
theorem for S-equality (M «— N implies M —!* P and N —% P for some P),
we study functions that set bounds on the least size of a common reduct P, and
the least number of reduction steps l; and ly required to arrive at a common
reduct, involving the term sizes of M and N. and the length of +—.

1.2 New results of this paper

In this paper, first we investigate the Church—Rosser theorem in the type-free
A-calculus by means of Takahashi’s translation. Although confluence and the
Church—Rosser theorem are equivalent to each other, confluence is a special
case of the Church—Rosser property. Our investigation shows that a common
reduct of M and N with M «+— N is deterinined by (i) M and the number of
occurrences of reductions (—) appearing in <—, and also by (ii) N and that of
reversed reductions («). The key lemma plays an important role and reveals
a new invariant involved in the equality +—, independently of an exponential

In the literature [1, 13], the relation of B-equality is written by =3 instead of +—.
2Here, common reducts bear witnesses to the existential statement.
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combination of reduction and reversed reduction. Next, the characterization
of the Church—Rosser theoremn makes it possible to analyse how large common
reducts are in terms of iteration of Takahashi's translations, and how many
reduction-steps are required to obtain them by means of the notion of parallel
reduction. In this way, we obtain an upper bound function for the theorem
of A-calculus with B-equality in the fourth level of the Grzegorczyk hierarchy.
Moreover. the same method can be applied for analyzing quantitative properties
of other reduction systems such as Girard’s system F and Godel’s system T.

1.3 Outline of paper

This paper is organized as follows. Section 1 is devoted to background, related
work, motivation, and new results of the paper. Section 2 gives preliminaries
including basic definitions and the key lemma and proposition. Section 3 an-
alyzes term size and reduction length in the case of 3-reduction. and provides
meastre functions for upper bounds. Based on the results section 4 demon-
strates a quantitative analysis of some (but not all)® of the witnesses of the
Church—Rosser theorem. Section 5 applies the method developed in sections 3
and 4 to A-calculus with fAn-reduction, Girard's system F, and Godel’s systemn
T as well. Section 6 concludes with remarks and further work. This paper is
an extended and revised version of the paper [8].

2 Preliminaries

First, A-terms and B-reduction are defined referring to the standard texts [1, 13]
for the definitions and related notions.

Definition 1 (A-terms)
M,N,P,QeA:=x| (Ae.M)| (MN)

We write M = N for the syntactical identity under renaming of bound variables.
The set of free variables in M is denoted by FV(M).

Definition 2 (3-reduction) One step S-reduction — is defined as usual.
1. (A\z.M)N — M|z := NJ.
2. If M - N then PM — PN, MP — MP, and Ax.M — Az.N.

We write —» for the reflexive and transitive closure of — (called S-reduction).
Note that M — N iff there exists a finite sequence of terms My, ..., M, (n > 0)
such that M = My — --- — M,, = N. For this case we also write M —™ N.
We denote the reflexive, transitive and symmetric closure of — (called 3-
convertibility) by <—. Note that M <— N iff there exists a finite sequence
of terms My,...,M, (n > 0) such that M = My < --- & M, = N where

3See Theorem 1 in [8] for other witnesses.
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> is the symmetric closure of —, namely either M, — M;,; or M;;1 — M,
(=0,...,n). Here, — in the former case M; = M, is called a right arrow,
and that in the latter case is called a left arrow. denoted also by M; <+ M;4q. If
the number of occurrences of left arrows is [ and that of right arrows is r along
the conversion sequence, then we denote this by M “IN. By L[, k] we incan
the number of occurrences of left arrows between M; and My (0 < j <k <n)
in the sequence.
Next, Takahashi’s translation [24] and its iteration are defined.

Definition 3 (Takahashi’s * [24] and iteration) 1. z* =z.
2. (Az.M)N)* = M~z := N*|.
3. (MN)*=(M*N~).
4. (Ar.M)* = e M~.

The third case above is available provided that (M N) is not a redex. We write
M™ for the n-fold iteration of the translation * as follows [25].

1. M° =M,
2. M™ = (M(nfl)x)*.

Then we have the following properties of Lemma 1. According to the literature,
Loader [17] treated the second and third properties for proving confluence of A-
calculus with g-reduction. Dehornoy and van Oostrom [7] called the properties
Z-propertly, and demonstrated a nummber of examples with the Z-property. See
also [16, 18] for examples and an extension on the properties.

Lemmal 1. M*[z:= N*] » (M|z := NJ)*.
2. If M — N then M* — N*.
8. If M — N then N — M*.

Proof. The first property is proved by induction on M. The sccond and third
properties are proved by induction on the derivation of M — N. a

Now the Church—Rosser theorem [4] can be proved as the following proposi-
tion [8] by using the key lemma [8].

Lemma 2 ([8]) If M “— N then we have both M — N** and M™ « N.
Proof. By induction on the length of (I + ), together with Lemma 1. O

Proposition 1 ([8]) If M "I N, then there exists a term P such that M —
P and P** « N where k = §L[0,7].

Proof. Let k = §L[0,7] and n = [ + 7. At the length r from the left. we can
divide the conversion sequence M “ 3 N into two sub-sequences such that
M = M, ket M, with k., = r — k, and M, Lk M, = N with k, =1 —k.
Then, from Lemma 2, we have M —» MF¥* for the left sequence, and M¥* « N

for the right sequence. Hence. we obtain a common reduct Mf" of M,N. O
We note that 0 < #L[0,r] < min{l,r}.
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3 Quantitative analysis of term size and reduc-
tion length

Following Lemma 2 and Proposition 1, we analyze quantitative properties of
the Church—Rosser theorem. For this analysis the basic properties of term size
and reduction length are summarized here through parallel reduction.

Definition 4 (Term Size) 1. |z| = 1.

2. \z.M| =1+ |M|.

3. [MN| =1+ |M|+|N|.
We write (x € M) for the number of free occurrences of the variable x in M.
Lemma 3 1. f(z e M) <271(|M|+1).

2. |[M[z:= N|| = |M|+t(x € M) x (|N|—1).
Proof. Both are proved by straightforward induction on M. a
Proposition 2 If M —-™ N (n > 1) then |N| < Size(|M|,n) where

Size(m,n) =8 (%)T

Proof. By induction on the length n. ]
It should be remarked that the denominator 8 of Size is almost strict, in the sense
that we have |(Az.xz)(A\z.zz)| = 9 and lim,,_, Size(|M|,n) < 8 for | M| < 8.

The notion of parallel reduction is defined inductively following [23, 24].

Definition 5 (Parallel 5-reduction [23, 24]) 1. z=«z.
2. Av.M = M\z.N if M = N.
3. MiMs = N1N; if M; = N; and My = No.
4. (Az.M;)My = Ni[z := No] if My = Ny and My = Ny.

From the definitions, if M — N then M = N, and if M = N then M —» N.
We write M =" Nif M = My = M; = --- = M, = N for somen >0 and M,
(i=0,1,...,n). Wealsowrite M «S N.if M= My My & - & M, =N
for somen > 0and M; (i =0, 1,...,n) where < denotes either = or <= together
with 7 the number of occurrences of = and ! that of <=. By #§L][j, k] we mean
the number of occurrences of <= between M; and My (0 < j < k < n) in the
sequence where n =1 + r.

The first property [24] of Lemma 4, called triangle property [7], is proved by
induction on M, and accordingly the second property can be proved as well.

Lemmad4 1. IfM = N then N = M~.
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2. If M = N then M* = N~.

Based on Proposition 2, we adopt a bound function Fy(z) = v2". We define
the n-fold iteration of function f(z), denoted by f*(z,n), as follows.

Definition 6 (Iteration of f(z)) 1. f*(z,0) =z,
2. f*(za n) = f(f*(a:an - 1))

According to convention [19, 3|. in the case of f(z) = 2% we write 2,(z) in-
stecad of f*(x,n). In the case of f(z) = Fy(z), we may write v/2,(z) rather
than Fy(z,n). From the definition, v/2,(z) belongs to the fourth level of the
Grzegorczyk hierarchy. For z > 8, we have the basic properties such that
2v/2,,(z) < V2,41 () by induction on n. and then for z > 8,

f:\/’zl(x) < 2v2,(z).

2=0
Proposition 3 1. If M = N, then M —' N where | < 371(|M| — 1).

2. If M = N, then IN| < v2™" for M| > 4.
8. If M =™ N (n>1), then M = N where l < \/2,_1(|M|) for |[M| > 4.
Proof.
1. By induction on the derivation of M = N. We show one of the cases here.
(a) Case of (Ax.M1)My = Ni[z := N3] from M; = N; and Mz = Na:

From the induction hypotheses, we have M; —™ N; with m <
37Y(|M,] - 1), and My —»™ Ny with n < 371(IMz| — 1). Then we get

()\’EMl)Mg —m ()\.Z'N]_)Mz —" (Al‘.]\rl)Nz — Nl[.’.b' = Ng],
where m +n + 1 < 37Y(|My| + |Ma| + 1) = 371(|(A\x. M) Ma| — 1).
2. By induction on |M|. We note that |N| = |M| for |M| =1,2,3.

3. Suppose M = My = M, = --- = M, = N. Then we have My —h
M; =z ... Sla M, for some Iy, 1, ..., 1,. If |[M;| < 3 for some i (1 <
it < n — 1), then |M,| = |M,| for each j > ¢, and hence we get [; = 0
for each j > 4. Now we consider the case where |[M;| > 4 for every
i=0,1,...,n—1. Then we have I, < 371(|M,_;| — 1) and |M;_;| <
V2,_1(]M]) (i = 1,2,...,n). Therefore, [ is bounded as follows provided
|M| > 8.

o~
I
Nk
N

1=1

1 n—1 '
< 3 2 (\/Ez(IM') - 1)
< 3 (2vBu (M) - n).
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Finally, v2,,_1(|M|) can be applied even to [M| > 4, since v/2;(z) < V2i(y)
for x <y. O

Lemma 5 If M “=I N then M =+ N** and N =4 M.

Proof. By induction on the length (I + r) with Lemma 4. O

Proposition 4 If M “—I N then there ezists a term P such that M =" P**
and N =! P** with k = {L[0,].

Proof. Let n =1+r. Then at the length r from the left, we divide the sequence
M "= N into two sub-sequences such that M = M, ko tr M, with k, = r—k,
and M, N M, = N with k; =1 — k. Hence, we obtain M =" Mf* and
N =! M** by Lemma 5. i

4 Quantitative analysis of the Church—Rosser
theorem for [-equality

Based on the results in the previous section, we analyze quantitative properties
of Lemma 2 and Proposition 1, respectively.

Proposition 5 If M “ I N then M -™ M™ and N —™ M™ where m <
\/ir—l(iMi)y n < \/§l+r71(|Nl)7 and |MTK| < \/_2_r(|M|) provz'ded IMlv iN‘ > 4.

Proof. Suppose that M “ I N. Then we have M l¢:>r N. and hence N =7
M™ from Lemma 5 and N —™ M™ with n < V/2;,,_;(|N|) from Proposition
3. On the other hand, we have M = M from the definition. Then M = M™
and M =" M"™ from Lemma. 4, and hence M —™ M™ with m < v/2,_(|M|)
and |[M™| < v/2,.(|M|) from Proposition 3. a

Theorem 1 If M “ I N then there exists a term P such that M —™ Pk
and N —™ P** where k = {L[0,r], m < v/2,_1(|]M]), n < v2;_1(IN]), and
|P**| < min{v2,(|M|), V2,(|N|)} provided |M|,|N| > 4.

Proof. From Proposition 4 we can take P = M,., and then apply Proposition 3.
O

A simple example is given as in [3]. The Church numerals ¢, = Afz.f"(z)
are defined [1], where FO(z) = z, and F"*!(z) = F(F™(z)). Define Q, and P;
as follows: Q1 = €2, Qn = Qn_1C2, and P, = (Avy ... v,0.0)v1 ... vy Where
Vl,...,Vn,,¥y are fresh variables. Then Q, —% ¢z, (1) witha =3 E::ll 2;(1) -
n+1<6x2, 1(1). We have the following peak with M = Q, P, (n > 2):

Ny = Qny M e M, = C2n(1)(()\v1 R ’Un’U.’U)’Ul Lo ’Uny)
- Ny = Az ((Av)y) O ().
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A4fn+1)*

For this, we obtain the common reduct by Theorem 1 and the valley:

Ny —° Ml("+1)* % Ny,

where b = 2,(1) and ¢ = 1 + a. Observe that b is non-elementary with respect
to n, i.e., the number of occurrences of <, and c is elementary with respect
to that of —. While our bound functions provide the inequalities as follows:
b=2,(1) < V2, (IN1]) = V2,(2+ 5 x 2,(1)) and c = 1 + a < V2,,,(IN2|) =
V244 (8n + 1), both of which still belong to the fourth level since the level is
closed under the composition of functions in the same level.

5 The Church—Rosser theorem for other reduc-
tion systems

‘We show that the methods developed in sections 3 and 4 still work for quantita-
tive analysis of other reduction systems such as the A-calculus with 8n-reduction,
Girard’s system F, Gddel’s systeru T, combinatory weak reduction, and Pure
Types Systems as well. As a summary, we extract the common pattern of the
theorems. For a reduction system with one-step reduction relation — and term
size | |, suppose the following two conditions (A) for reduction and translation
and (B) for measure functions.

(A): We have a binary relation = on terms and a translation * between terms
as follows.
(a) f M — N then M = N.
(b) t M = N then M - N.
(¢) If M = N then N = M*.

(B): We have two monotonic functions f,g: N — N as follows.

If M = N then [N| < f(|M|) and M —! N with I < g(|M|), where f and
g are respectively in the p-th and g-th levels of the Grzegorczyk hierarchy.

Then the following enriched form of the Church—Rosser theorem already holds.

Theorem 2 (Quantitative Church—Rosser Theorem) If M “ I N then
there exists a term P such that M —™ P** and N —™ P** where

1. k={L[0,7] < min{l,r},

r—1 -1
2. m <Y g(f(IMl,3), n<) g(f*(IN},3)), and
1=0 1=0

8. m,n are bounded by functions in the level of max{p + 1,q} of the Grze-
gorczyk hierarchy.
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As an instance of the theorem, we can take A-calculus with grn-reduction.

Corollary 1 (M-calculus with 8n) If M l(;—f N then there exists a term P
n

such that M —7, P* and N —Bn P where k = {L[0,7], m < v2,_1(|M|),
n < V31 (IND), and |P¥*| < min{v/3, (M), VE(N))} provided |M], |N| > 4.

Proof. From Theorem 2. For (A), take the parallel reduction =g and Takahashi
translation * in [23], and take f(z) = v2° with z > 4, g(z) = 3~ 1(z — 1) for

(B). O
We write - (respectively T) for one-step reduction (respectively con-

vertibility) of system F for both extensional and non-extensional ones {10].

Corollary 2 (Girard’s system F) If M 14?{ N then there ezists a term P

such that M —7 P* and N —% P** where k = {L[0,r], m < v2,_,(|M]),
n < V2;_1(IN}), and |P**| < min{v/2,.(|M|), V2,(IN|)} provided |M|,|N| > 4.

Proof. From Theorem 2. For (A), take the parallel reduction = and Takahashi
translation * in [24], and take f(z) = V2" with > 4, g(z) = 37 (z — 1) for
(B). O

We write = (respectively T) for one-step reduction (respectively con-

vertibility) of system T [10].

Corollary 3 (Godel’s system T) If M ZT; N then there exists a term P

such that M —% P** and N —% P** where k = {L[0,7], m < v2,_1(|M]),
n < v2,_1(IN]), and |P*| < min{v/2,.(|M|), V2,(|N|)} provided |M|,|N| > 4.

Proof. From Theorem 2. For (A). take the parallel reduction = and Takahashi
translation * in [24], and f(z) = V2~ with z > 4, g(z) = 3 1(z — 1) for (B). O

We show another example of combinatory weak reduction, see also [13] for
the basic definitions. We use the notations 4— and b™ for terms denoted by

X,Y, Z as follows. v
XY, Z :=2|K|S|(XY)

Corollary 4 (Combinatory logic) If X “J Y then there emists a term Z

such that X o™ Z** and Y o™ Z** where k = {L[0,7], m < 271 x 2,_,(1X]),
n <271 x 21_1(|Y]), and |Z%| < 271 x min{2,(|X]),2,(|Y])}.

Proof. For (B), take f(z) =2°71, and g(z) = 4 1(z - 1). O

We show yet another example of Pure Type Systems (PTSs), see also [2] for
the basic definitions. For PTSs with S-reduction, the Church—Rosser property
on well-typed terms follows that for pseudo-terms denoted by T,U and the
subject reduction property.

T,U :=z|c|(Az:T.U) | (TU)| (Nz:T.U)
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Corollary 5 (Pure Type Systems) If T l<7>r U then there ezists a term P

such that T —™ P** and U —™ P** where k = {L[0,7], m < 2,.(|T|), and
n < 24(|U).

Proof. For (B), take f(z) = 2%, and g(z) = z. a

6 Concluding remarks and further work

Although a bound in at least the fifth level of the Grzegorczyk hierarchy had
been conjectured [14], it is in the fourth level of the hierarchy that our bound
function is obtained for the valley size of the theorem for 3-equality and fn-
equality.

Based on Lemma 2, we revealed that common reducts of M lf—; N can
be determined by M™ with r the number of occurrences of —, N'* with [

that of <, and also M** with k = §L[0, 7|, although we have (l:!r:!) ! patterns of

combinations of — and « for ~—.

For a quantitative analysis of the Church—Rosser theorem for F-reduction
we provided a measure function Fy(z) = /2 “ based on Proposition 2. Our
bound is given in terms of Takahashi's translation and analyzed via the notion
of parallel reduction? [23, 24] which makes technical proofs simpler, compared
with a previous version [8]. In [24] Takahashi showed that the notion is useful for
proving not only confluence but also other fundamental theorems. In addition,
here this is indeed useful even for a quantitative analysis of reduction.

The first property of Proposition 3 essentially corresponds to the complete se-
quential reduction relative to a minimal sequence [5]. so-called minimal complete
development [12, 13] that yields shortest coruplete developments [15, 20]. Under
the reduction, iteration of the exponential function leads to a non-elementary
recursive function as described by Fi(z,n) for bounds on term size and reduc-
tion length. Proposition 3 and Lemma 4 should be investigated further from a
viewpoint of reduction paths [9].

Moreover, all of the quantitative propertics in sections 3 and 4 can be ap-
plied straightforwardly to the Church-Rosser theorem for Br-cquality. It is
known that the triangle property [23] is equivalent to the Z-property in general
(6], and hence for the A-calculus with Bn-reduction, the corresponding proper-
ties to Lemma 2 and Proposition 1 hold still where +— (respectively —) is
replaced with (B—> (respectively —gy). In fact, section 5 demoustrates that our
approach in secgons 3 and 4 has a lot of potcutial for analysing quantitative
properties not only of system F and system T, but also of other reduction sys-

tems with x-reduction following Theorem 2, where the corresponding Lemma 2
and Proposition 1 with +— and —», respectively hold from the condition (A)

X
and play an important role. It turns out that the properties of Propositions 2

4We note that in [14]. the notion of parallel rewriting which is similar to but different from
this is applied successfully to orthogonal TRSs for investigating upper bounds on valley sizes.
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and 3, and Theorem 2 are invariant for the typical examples of A-calculi under
the appropriate definitions of term size.

A connection to typed calculi should be remarked. Following notewor-
thy investigations [19, 17, 3], the exact bounds for the reduction length in
the simply typed A-calculus is known as 2gar)(I(M)) [3]° where the degree
g(M) = max{Ilv(A) | A is a type of a subterm of M} and the level (rank) Iv(A)
of a type A are defined as usual such that Iv(X) = 0 for atowic types and
Iv(A — B) = max{1+Iv(A),Iv(B)}. For typed A-terms, normal terms provide a
common reduct to which the reduction length is still bounded by the function.
From the point of the *-translation, there exists a natural number n such that
M™ serves a normal term of well-typed M =3 N. Here, the number n of itera-
tion is given by the depth d(M) = max{dp(A) | A is a type of a subterm of M},
where the depth dp(A) of a type A is defined as usnal such that dp(X) = 0 for
atomic types and dp(A — B) = 1 + max{dp(A4),dp(B)}. If M contains a redex
(Az4. M) M, with type B, then for any redex (Ay4 .M} )M} with type B’ in M*
we have either (4’ — B’) = A or (A’ = B’) = B, see also [17, 27]. Hence, for
well-typed M =g N we have M —! M= such that M9M)* is a normal termn,
i.e., common reduct with | < Fy(|M|,d(M) — 1) by Proposition 3. According
to the literature [19, 17, 3] the number of reduction steps to common reducts
of M =g N is bounded by non-elementary functions depending on the level of
types and the length of terms, while our bound functious depend ou the size of
terms and the iteration number of * which relates directly to the depth of types
or the length of equality. This subject should be investigated further for a wide
variety of reduction systems.
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