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1. INTRODUCTION

Let p be a prime number and  k an algebraically closed field of characteristic  p . For
a  p‐subgroup  Q of a finite group  G and a  kG‐module  M , the Brauer quotient  M(Q)
of  M with respect to  Q is naturally a  kN_{G}(Q)‐module. A  kG‐module  M is said to be
Brauer indecomposable if  M(Q) is indecomposable or zero as a  kC_{G}(Q)‐module for any p‐
subgroup  Q of  G ([6]). Brauer indecomposability of p‐‐permutation modules is important
for constructing stable equivalences of Morita type between blocks of finite groups (see
[2]).

There is a connection between Brauer indecomposability of  p‐permutation  kG‐modules
and fusion systems, as shown in [6]. The main result in [6] is the following.

Theorem 1 ([6, Theorem 1.1]). Let  P be a  p‐subgroup of  G and  M an indecomposable
 p‐permutation  kG‐module with vertex P. If  M is Brauer indecomposable, then  \mathcal{F}_{P}(G) is
a saturated fusion system.

In the case that  P is abelian and  M is the Scott  kG‐module  S(G, P) , it is known that
the converse of the above theorem holds.

Theorem 2 ([6, Theorem 1.2]). Let  P be an abelian  p‐subgroup of G. If  \mathcal{F}_{P}(G) is
saturated, then  S(G, P) is Brauer indecomposable.

In general, the above theorem does not holds in the case that  P is non‐abelian. However,
there are some cases in which the Scott  kG‐module  S(G, P) is Brauer indecomposable
for non‐abelian  P (see [5, 7]). Moreover, it was shown that there are some relation‐
ships between Brauer indecomposability of Scott modules and fusion systems ([3, 5]). In
particular, we proved the following theorem in [3].

Theorem 3 ([3, Theroem 1.3]). Let  G be a finite group and  P a  p‐subgroup of G. Suppose
that  M=S(G, P) and that  \mathcal{F}_{P}(G) is saturated. Then the following are equivalent.

(i)  M is Brauer indecomposable.
(ii)  {\rm Res}_{QC_{G}(Q)}^{N_{G}(Q)}S(N_{G}(Q), N_{P}(Q)) is indecomposable for each fully normalized subgroup

 Q of  P.

lf these conditions are satisfied, then  M(Q)\cong S(N_{G}(Q), N_{P}(Q)) for each fully normalized
subgroup  Q\leq P.

The above theorem gives a criterion to determine whether the Scott module  S(G, P) is
Brauer indecomposable.
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We investigate the possibility of providing applications of the above theorem. In this
paper, we will prove the following result.

Theorem 4. Let  G be a finite group and  P a  p‐subgroup of G. Suppose that  \mathcal{F}:=\mathcal{F}_{P}(G)
is a saturated fusion system. Consider the following two conditions:

(i)  S(N_{G}(Q), N_{P}(Q)) is Brauer indecomposable for each fully  \mathcal{F}‐normalized subgroup
 Q\leq P.

(ii)  S(G, P) is Brauer indecomposable.
Then (i) implies (ii), and the converse holds if  \overline{\sqrt{}-}=\overline{J_{P}\Gamma}(N_{G}(P)) .

The above theorem shows that there exists some relationship between  G and its local
subgroups in terms of the Brauer indecomposability of Scott modules, and will be a useful
tool for the study of the Brauer indecomposability of Scott modules.

2. PRELIMINARIES

2.1. Scott modules. First, We recall the definition of Scott modules and some of its
properties:

Definition 5. For a subgroup  H of  G , the Scott  kG ‐module  S(G, H) with respect to  H

is the unique indecomposable summand  M of  Ind_{H}^{G}k_{H} such that  k_{G}|M.

If  P is a Sylow  p\overline{-}subgroup of  H , then  S(G, H) is isomorphic to  S(G, P) . By definition,
the Scott  kG‐module  S(G, P) is a p‐‐permutation  kG‐module.

By Green’s indecomposability criterion, the following result holds.

Lemma 6. Let  H be a subgroup of  G such that  |G :  H|=p^{a} (for some  a\geq 0). Then
 Ind_{H}^{G}k_{H} is indecomposable. In particular, we have that

 S(G, H)\cong Ind_{H}^{G}.
The following theorem gives us information of restrictions of Scott modules.

Theorem 7 ([4, Theorem 1.7]). Let  P be a  p‐subgroup of H. Let  Q be a maximal element
of  P \bigcap_{G}H=\{^{g}P\cap H|g\in G\} . Then  S(H, Q) is a direct summand of  {\rm Res}_{H}^{G}S(G, P) .

2.2. Brauer quotients. Let  M be a  kG‐module and  H a subgroup of  G . We denote by
 M^{H} the set of H‐fixed elements in  M . For subgroups  L of  H , we denote b y^{\ulcorner r}r_{H}^{G} the trace
map  Tr_{L}^{H}:M^{L}arrow M^{H} . Brauer quotients are defined as follows.

Definition 8. Let  M be a  kG‐module. For a p‐‐subgroup  Q of  G , the Brauer quotient of
 M with respect to  Q is the  k‐vector space

 M(Q):=M^{Q}/( \sum_{R<Q}Tr_{R}^{Q}(M^{R})) .

This  k‐vector space has a natural structure of  kN_{G}(Q) ‐module.

Brauer quotients have the following well‐known properties.

Proposition 9. Let  P be ap‐subgroup  ofG and  M=S(G, P) . Then  M(P)\cong S(N_{G}(P), P) .

Proposition 10. Let  M be an indecomposable  p‐permutation  kG‐module with vertex  P.

Let  Q be a  p‐subgroup of G. Then  Q\leq {}_{G}P if and only if  M(Q)\neq 0.
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2.3. Fusion systems. For subgroups  Q,  R of  G , we denote by  Hom_{G}(Q, R) the set of
all group homomorphisms from  Q to  R which are induced by conjugation in  G . For a
 p‐subgroup  P of  G , the fusion system  \mathcal{F}_{P}(G) of  G over  P is the category whose objects
are the subgroups of  P and whose morphism set from  Q to  R is  Hom_{G}(Q, R) . We refer
the reader to [1] for background involving fusion systems.

Definition 11. Let  P be a p‐‐subgroup of  G

(i) A subgroup  Q of  P is said to be fully normalized in  \mathcal{F}_{P}(G) if  |N_{P}(^{x}Q)  |\leq|N_{P}(Q)|
for all  x\in G such that  XQ\leq P.

(ii) A subgroup  Q of  P is said to be fully automized in  \mathcal{F}_{P}(G) if  p (  |N_{G}(Q) :
 N_{P}(Q)C_{G}(Q)|.

(iii) A subgroup  Q of  P is said to be receptive in  \mathcal{F}_{P}(G) if it has the following property:
for each  R\leq P and  \varphi\in Iso_{\mathcal{F}_{P}(G)}(R, Q) , if we set

 N_{\varphi} :=\{g\in N_{P}(Q)|\exists h\in N_{P}(R), c_{g}o\varphi=\varphi 
oc_{h}\},
then there is  \overline{\varphi}\in Hom_{F_{P}(G)}(N_{\varphi}, P) such that  \overline{\varphi}|_{R}=\varphi.

Saturated fusion systems are defined as follows.

Definition 12. Let  P be a p‐‐subgroup of  G . The fusion system  \mathcal{F}_{P}(G) is saturated if the
following two conditions are satisfied:

(i)  P is fully normalized in  \overline{J^{-}}_{P}(G) .
(ii) For each subgroup  Q of  P , if  Q is fully normalized in  \mathcal{F}_{P}(G) , then  Q is receptive

in  \mathcal{F}_{P}(G) .

For example, if  P is a Sylow p‐‐subgroup of  G , then  \mathcal{F}_{P}(G) is saturated.

3. PROOF OF THEOREM 4

In this section, we give a proof of Theorem 4.
For a saturated fusion system  \mathcal{F} over p‐‐group  P and a subgroup  Q of  P , the normalizer

fusion system  N_{F}(Q) of  Q is defined and is a fusion system over  N_{P}(Q) (see [1, II, §2]).
We note that if  \mathcal{F}=\mathcal{F}_{P}(G) , then  N_{\mathcal{F}}(Q)=\mathcal{F}_{N_{P}(Q)}(N_{G}(Q)) .

Proof of Theorem 4. Suppose that (i) holds. Let  Q be a fully  \overline{\sqrt{}\Gamma}‐normalized subgroup of
 P . Then  S(N_{G}(Q), N_{P}(Q))(Q) is indecomposable, and we have that

 S(N_{G}(Q), N_{P}(Q))\cong S(N_{G}(Q), N_{P}(Q))(Q) .

Therefore,  S(G, P) is Brauer indecomposable by Theorem 3.
Next, suppose that (ii) and  \mathcal{F}=\mathcal{F}_{P}(N_{G}(P)) hold. Then any subgroup  Q of  P is fully

 \mathcal{F}‐normalized. Let  Q be any subgroup of  P . Then  \mathcal{F}_{N_{P}(Q)}(N_{G}(Q))=N_{F}(Q) is saturated
by [1, II, Theorem 2.1]. Let  R be a fully  N_{F}(Q)‐normalized subgroup of  N_{P}(Q) . It is
sufficient to show that  S(N_{N_{G}(Q)}(R), N_{N_{P}(Q)}(R)) is indecomposable as  kC_{N_{G}(Q)}(R)‐module
by Theorem 3.

Since  QR is fully  \mathcal{F}‐normalized,  S(N_{G}(QR), N_{P}(QR)) is indecomposable as  kC_{G}(QR) ‐
module, and hence is also indecomposable as  kC_{N_{G}(Q)}(R)‐module. Therefore, it is suffi‐
cient to show that

 {\rm Res}_{N_{N_{G}(Q)}}^{N_{G}(QR)}{}_{(R)}S(N_{G}(QR), N_{P}(QR))\cong 
S(N_{N_{G}(Q)}(R), N_{N_{P}(Q)}(R)) ,
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and if we show that  N_{N_{P}(Q)}(R) is a maximal element of  N_{P}(QR) \bigcap_{N_{G}(QR)}N_{N_{G}(Q)}(R) , then
the isomorphism holds by Theorem 7 and the indecomposability of  S(N_{G}(QR), N_{P}(QR))
as a  N_{N_{G}(Q)}(R)‐module.

Let  g be an element of  N_{G}(QR) such that  N_{N_{P}(Q)}(R)\leq gN_{P}(QR)\cap N_{N_{G}(Q)}(R) . Then

we have  Q^{g}\leq(QR)^{g}=QR\leq P and hence there is  h\in N_{G}(P) such that  gh^{-1}\in C_{G}(Q)
since  \mathcal{F}=\mathcal{F}_{P}(N_{G}(P)) . We have that

 |N_{N_{P}(Q)}(R)|\leq|^{g}N_{P}(QR)\cap N_{N_{G}(Q)}(R)|
 =|^{g}P\cap N_{G}(QR)\cap N_{G}(Q)\cap N_{G}(R)|
 =|^{g}P\cap N_{G}(Q)\cap N_{G}(R)|
 =|P\cap N_{G}(Q^{g})\cap N_{G}(R^{g})|

 =|N_{N_{P}(Q^{g})}(R^{g})|
 =|N_{N_{P}(Q^{h})}(R^{g})|
 =|N_{N_{P}(Q)^{h}}(R^{g})|

 =|N_{N_{P}(Q)}(R^{gh^{-1}})^{h}|
 =|N_{N_{P}(Q)}(R^{gh^{-1}})|.

On the other hand, since

 R^{gh^{-1}}\leq N_{N_{P}(Q)}(R)^{gh^{-1}}
 \leq(^{g}N_{P}(QR)\cap N_{N_{G}(Q)}(R))^{gh^{-1}}
 \leq(^{g}P\cap N_{G}(Q))^{gh^{-1}}
 =P^{h^{-1}}\cap N_{G}(Q^{gh^{-1}})
 =P\cap N_{G}(Q)

 =N_{P}(Q)

and  gh^{-1}\in C_{G}(Q)\leq N_{G}(Q) , the conjugation map  ()^{gh^{-1}}:Rarrow R^{gh^{-1}} is an isomor‐
phism in  N_{\Gamma}(Q) . Since  R is fully  N_{F}(Q)‐normalized, we have that  |N_{N_{P}(Q)}(R^{gh^{-1}})|\leq
 |N_{N_{P}(Q)}(R)| . Therefore,  N_{N_{P}(Q)}(R)=9N_{P}(QR)\cap N_{N_{G}(Q)}(R) , and  N_{N_{P}(Q)}(R) is maximal
in  N_{P}(QR) \bigcap_{N_{G}(QR)}N_{N_{G}(Q)}(R) , as desired.  \square 
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