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Abstract

In this note, we shall consider a Gel’fand triple associated with weighted Fock spaces and
revisit the characterization theorems for the S‐transform and the operator symbol in terms
of analytic and growth conditions. In addition, some results on higher order Bell numbers
as a non‐triviaı example of weight sequences are summarized.

1 Preliminaries

1.1 Weighted Fock Spaces

Let  H be a complex Hilbert space with inner product  \{\cdot,  \cdot\} and norm  |\cdot|_{0} . Let  A be a self‐adjoint
operator in  H with dense domain  Dom(A)\subset H satisfying  inf{\rm Spec}(A)\geq 1 . For each  p\geq 0,  a

dense subspace of  H,  \mathcal{D}_{p}  :=\{\xi\in H;|\xi|_{p} :=|A^{p}\xi|_{0}<\infty\} , is a Hilbert space. It is easy to see
 \mathcal{D}_{q}\subset \mathcal{D}_{p}\subset H=\mathcal{D}_{0} for  0\leq p\leq q . . Then, consider  \mathcal{D}  := proj   \lim_{parrow\infty}\mathcal{D}_{p} and let  \mathcal{D}^{*} denote
the dual space of  \mathcal{D} . For each  p\geq 0 , let  \mathcal{D}_{-p} be the completion of  H with respect to the norm
 |\xi|_{-p}  :=|A^{-p}\xi|_{0} . Then we get  H=\mathcal{D}_{0}\subset \mathcal{D}_{-p}\subset \mathcal{D}_{-q} for  0\leq p\leq q , and   \mathcal{D}^{*}\cong ind\lim_{parrow\infty}\mathcal{D}_{-p}.
As a result, with the identification  H\cong H^{*} by the Riesz representation theorem, we obtain a
tripıe,  \mathcal{D}\subset H\subset \mathcal{D}^{*} , where the bilinear form on  \mathcal{D}^{*}\cross \mathcal{D} is also denoted by  \langle\cdot,  \cdot\rangle.

Let  \mathcal{F}_{1}(H) be a standard Boson Fock space over  H and  \alpha=\{\alpha(n)\}_{n=0}^{\infty} be a weight sequence
of positive real numbers satisfying the condition,

(A1)  \alpha(0)=1,   \inf_{n\geq 0}\alpha(n)>0.

Now we introduce a weighted Boson Fock space as folıows. Let  \mathcal{F}_{\alpha}(\mathcal{D}_{p}) be a weighted Boson
Fock space over  \mathcal{D}_{p} given by

  \mathcal{F}_{\alpha}(\mathcal{D}_{p}):=\{\phi:=(f_{n})_{n=0}^{\infty};f_{n}\in
\mathcal{D}_{p}^{\otimes^{\wedge}n}, \Vert\phi\Vert_{p}^{2},.:=\sum_{n=0}
^{\infty}n!\alpha(n)|f_{n}|_{p}^{2}<\infty\}
where  .\otimes n\wedge for the  n‐fold symmetric tensor product of  \cdot and  |f_{n}|_{p}  :=|(A^{p})^{\otimes n}f_{n}|_{0} . The condition
 \alpha(0)=1 in (A1) is simply to ensure that the norm on  \mathcal{D}_{p}^{\otimes^{\wedge}0} coincides with the absolute value on
 \mathbb{C} . The condition   \inf_{n\geq 0}\alpha(n)>0 in (A1) is required to have  \mathcal{F}_{\alpha}(H)\subset \mathcal{F}_{1}(H) . By identifying
 \mathcal{F}_{1}(H) with its dual space, we have a chain of weighted Fock spaces,

 \subset \mathcal{F}_{\alpha}(\mathcal{D}_{p})\subset \subset \mathcal{F}
_{\alpha}(H)\subset \mathcal{F}_{1}(H)\subset \mathcal{F}_{1/\alpha}(H)\subset 
\subset \mathcal{F}_{1/\alpha}(\mathcal{D}_{-p})\subset , p\geq 0,

 *
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where the norm on  \mathcal{F}_{1/\alpha}(\mathcal{D}_{-p}) is given by  \Vert .  \Vert_{-p,1/\alpha}:=\Vert(A^{-p})^{\otimes n}\cdot||_{0,1/\alpha} . Consider the space
 \mathcal{F}_{\alpha}(\mathcal{D}) of test functions defined by

 \mathcal{F}_{\alpha}(\mathcal{D})= proj 1 \dot{{\imath}}m\mathcal{F}_{\alpha}(\mathcal{D}_{p})parrow\infty.
The dual space  \mathcal{F}_{\alpha}(\mathcal{D})^{*} of  \mathcal{F}_{\alpha}(\mathcal{D}) ,

  \mathcal{F}_{\alpha}(\mathcal{D})^{*}\cong ind\lim_{arrow p\infty}\mathcal{F}_
{1/\alpha}(\mathcal{D}_{-p}) ,

is caıled the space of generalized functions. Then we get a triple,

 \mathcal{F}_{\alpha}(\mathcal{D})\subset \mathcal{F}_{1}(H)\subset \mathcal{F}_
{\alpha}(\mathcal{D})^{*}.

We adopt the notation  \{(\cdot,  \cdot\rangle } to denote the bilinear form on  \mathcal{F}_{\alpha}(\mathcal{D})^{*}\cross \mathcal{F}_{\alpha}(\mathcal{D}) ,

  \langle\langle\Phi, \phi\rangle\rangle=\sum_{n=0}^{\infty}n!\langle F_{n}, 
f_{n}\}, \Phi=(F_{n})\in \mathcal{F}_{\alpha}(\mathcal{D})^{*}, \phi=(f_{n})\in 
\mathcal{F}_{\alpha}(\mathcal{D}) .

Due to the Cauchy‐Schwartz inequality, we have  |\langle(\Phi,  \phi\rangle\rangle|\leq\Vert\Phi\Vert_{-p,1/\alpha}\Vert\phi\Vert_{p,\alpha}.

1.2 Growth Bound of the  S‐transform

Moreover, let us assume that

(A2)   \lim_{narrow\infty}(\frac{\alpha(n)}{n!})^{\frac{1}{n}}=0.
This condition implies that

 G_{\alpha}(z)= \sum_{n=0}^{\infty}\frac{\alpha(n)}{n!}z^{n}
is an entire function. Then the exponential vector (coherent state)  e(\xi) given by

 e( \xi):=(\frac{\xi^{\otimes n}}{n!})_{n=0}^{\infty} \xi\in \mathcal{D}
belongs to  \mathcal{F}_{\alpha}(\mathcal{D}) due to  \Vert e(\xi)\Vert_{p,\alpha}^{2}=G_{\alpha}(|\xi|_{p}^{2})<\infty.

Definition 1.1. Assume (A1) and (A2). The  S‐transform   S\Phi of  \Phi=(F_{n})_{n=0}^{\infty}\in \mathcal{F}_{\alpha}(\mathcal{D})^{*} is
defined to be the function on  \mathcal{D} by

 (S \Phi)(\xi):=\langle\langle\Phi, e(\xi)\}\rangle=\sum_{n=0}^{\infty}\langle 
F_{n}, \xi^{\otimes n}\rangle, \xi\in \mathcal{D}.
The  S‐transform can be viewed as the generalization to distributions of the Segal‐Bargmann

transform.

Lemma 1.2. Assume that conditions (Al)(A2) hold. The  S ‐transform   F=S\Phi of a generalized
function  \Phi\in \mathcal{F}_{\alpha}(\mathcal{D})^{*} satisfies the growth condition

 |(S\Phi)(\xi)|\leq\Vert\Phi\Vert_{-p,1/\alpha}G_{\alpha}(|\xi|_{p}^{2})^{1/2}, 
\xi\in \mathcal{D}

for some  p\geq 0.
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Note that the condition (A1) guarantees that  G_{1/\alpha} given by

 G_{1/\alpha}(z)= \sum_{n=0}^{\infty}\frac{1}{n!\alpha(n)}z^{n}
is an entire function.

Lemma 1.3. Assume that condition (A1) holds. Then the  S‐transform   F=S\varphi of a test
function  \varphi\in \mathcal{F}_{\alpha}(\mathcal{D}) satisfies the growth condition

 |(S\varphi)(\xi)|\leq\Vert\varphi\Vert_{p,1/\alpha}G_{1/\alpha}(|\xi|_{-p}^{2})
^{1/2}, \xi\in \mathcal{D},
for any  p\geq 0.

Up to here, the nuclearity of  \mathcal{F}_{\alpha}(\mathcal{D}) is not assumed.

2 Analytic Characterizations

The characterization of generalized functions in terms of analytic and growth conditions is
called the analytic characterization, which was first discussed by Potthoff‐Streit [24] for Hida
distributions (Kuo et al. [20] for test functions). From the point of infinite dimensional analytic
functions, equivaıent results were obtained by Lee [21].

It is well‐known that the nuclearity of  \mathcal{F}_{\alpha}(\mathcal{D}) is a sufficient condition for the analytic charac‐
terization. It is recently proved [1] that the nuclearity of  \mathcal{F}_{\alpha}(\mathcal{D}) is a necessary condition for it.
In proof, the infinite dimensional Bargmann‐Segal space [14][16], the space of square integrable
analytic functions on infinite dimensional complex Gaussian space, pıays important roles.

From now on, we suppose that the self‐adjoint operator  A satisfies the condition,

(H1)  inf{\rm Spec}(A)>1 and  A^{-r} is of Hilbert‐Schmidt type for some  r>0.

Then  \mathcal{D} becomes a nucıear space and so is  \mathcal{F}_{\alpha}(\mathcal{D}) . In such a case, we denote  \mathcal{D} and  \mathcal{F}_{\alpha}(\mathcal{D}) by
 \mathcal{E} and  \mathcal{F}_{\alpha}(\mathcal{E}) , respectiveıy, and so a Gel’fand triple

 \mathcal{F}_{\alpha}(\mathcal{E})\subset \mathcal{F}_{1}(H)\subset \mathcal{F}_
{\alpha}(\mathcal{E})^{*}

is referred to as a CKS‐space where a condition   \inf_{n\geq 0}\alpha(n)>0 in (A1) is assumed in [11].
However, a weaker condition,

(A1)
 *

 \alpha(0)=1,   \inf_{n\geq 0}\alpha(n)\sigma^{n}>0 for some  \sigma\geq 1,

is strong enough to assure that the nuclear space  \mathcal{F}_{\alpha}(\mathcal{E}) is a subspace of  \mathcal{F}_{1}(H) . This weaker
condition was first introduced in [4]. Therefore, the condition (A1) on Theorem 2.1 and Theorem
2.2 can be replaced by (A1)

 *

.

Theorem 2.1 ([ı1]). Assume that conditions (Al)
 *

(A2) hold. The  S‐transform   F=S\Phi of a
generalized function  \Phi\in \mathcal{F}_{\alpha}(\mathcal{E})^{*} satisfies the conditions:

(a) For any  \xi,  \eta\in \mathcal{D} , the function  F(z\xi+\eta) is an entire function of  z\in \mathbb{C}.

(b) There exist constants  K>0,  a>0,p\geq 0 such that

 |F(\xi)|\leq KG_{\alpha}(a|\xi|_{p}^{2})^{\frac{1}{2}}, \xi\in \mathcal{E}.

Conversely, assume that
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(B1)   1 \dot{{\imath}}m\sup_{narrow\infty}(\frac{n!}{\alpha(n)}r\dot{{\imath}}
n>f0\frac{G_{\alpha}(r)}{r^{n}})^{\frac{1}{n}}<\infty
holds and let a  \mathbb{C} ‐valued function  F on  \mathcal{E} satisfies the above two conditions  (a)(b) . Then, there
exists a unique  \Phi\in \mathcal{F}_{\alpha}(\mathcal{E})^{*} such that   F=S\Phi . Moreover, for any  q>p with  ae^{2}\Vert A^{-(q-p)}\Vert_{HS}^{2}<
 1 , we have the norm estimate

 \Vert\Phi\Vert_{-q,1/\alpha}\leq K(1-ae^{2}\Vert A^{-(q-p)}\Vert_{HS}^{2})^{-
\frac{1}{2}}.
For the space  \varphi\in \mathcal{F}_{\alpha}(\mathcal{E}) of test functions, which was not studied in [11], we have

Theorem 2.2 ([3]). Assume that condition (A1)
 *

holds. Then the  S ‐transform   F=S\varphi of a
test function  \varphi\in \mathcal{F}_{\alpha}(\mathcal{E}) satisfies the conditions:

(a) For any  \xi,  \eta\in \mathcal{D} , the function  F(z\xi+\eta) is an entire function of  z\in \mathbb{C}.

(b) For any  p\geq 0,  a>0 , there exists a constant  K>0 such that

 |F(\xi)|\leq KG_{1/\alpha}(a|\xi|_{-p}^{2})^{\frac{1}{2}}, \xi\in \mathcal{E}.

Conversely, assume that

 ( \tilde{B}1)\lim_{narrow}\sup_{\infty}(n!\alpha(n)\inf_{r>0}\frac{G_{1/\alpha}
(r)}{r^{n}})^{\frac{1}{n}}<\infty
holds and let a  \mathbb{C} ‐valued function  F on  \mathcal{E} satisfies the above two conditions  (a)(b) . Then there
exists a unique  \varphi\in \mathcal{F}_{\alpha}(\mathcal{E}) such that   F=S\varphi . Moreover, for any given  a,p>0 , choose  q\in[0,p)
such that  ae^{2}\Vert A^{-(p-q)}\Vert_{HS}^{2}<1 , then we have the norm estimate

 \Vert\varphi\Vert_{q,\alpha}\leq K(1-ae^{2}\Vert A^{-(p-q)}\Vert_{HS}^{2})^{-
\frac{1}{2}}.

Remark 2.3. (1) It will be seen that (A3) and (A4) given in Section 4 are necessary and sufficient
conditions for (B1) and  (\tilde{B}1) , respectively.
(2) It was our starting point [5][6] to clarify minimal conditions on  \{\alpha(n)\}_{n=0}^{\infty} to carry out
theories of generalized functions and operators associated with a CKS space,

 \mathcal{F}_{\alpha}(\mathcal{E})\subset \mathcal{F}_{1}(H)\subset \mathcal{F}_
{\alpha}(\mathcal{E})^{*}

such that Theorems 2.1 and 2.2 hold.

3 Examples and  {\rm Log}‐concavity Criterion

Example 3.1. It is easy to see that the classical examples,

(1)  \alpha(n)=1 for the Hida‐Kubo‐Takenaka space [19],

 \mathcal{F}_{1}(\mathcal{E})\subset \mathcal{F}_{1}(H)\subset \mathcal{F}_{1}
(\mathcal{E})^{*},

and  \beta(n)=(n!)^{\beta}(0\leq\beta<1) for the Kondratiev‐Streit space [17],

 \mathcal{F}_{\beta}(\mathcal{E})\subset \mathcal{F}_{1}(H)\subset \mathcal{F}_{
\beta}(\mathcal{E})^{*},

satisfy  (Al)(A2)(Bl)(\overline{B}l) , which can be checked by direct computations.
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(3) Let  \exp_{k}(x) denotes the  k‐times iterated exponential function for an integer  k\geq 2 , that
is,

 \exp_{k}(x)=\exp(exp\cdots(\exp(x))) .

The k‐th order Beıl numbers  b_{k}(n) are defined by

  \frac{\exp_{k}(x)}{\exp_{k}(0)}=\sum_{n=0}^{\infty}\frac{b_{k}(n)}{n!}x^{n}, k
\geq 2,
where the numbers  b_{2}(n),  n\geq 0 are known as the (standard) Beıl numbers. Then

 \mathcal{F}_{b_{k}}(\mathcal{E})\subset \mathcal{F}_{\beta}(\mathcal{E})\subset
\mathcal{F}_{1}(\mathcal{E})\subset \mathcal{F}_{1}(H)\subset \mathcal{F}_{1}
(\mathcal{E})^{*}\subset \mathcal{F}_{\beta}(\mathcal{E})^{*}\subset \mathcal{F}
_{b_{k}}(\mathcal{E})^{*}.

It is not difficult to check (Al)(A2) for  \{b_{k}(n)\}_{n=0}^{\infty} . Cochran et. al [11] proved by direct
computations that the condition (B1) is satisfied, but they did not study  (\tilde{B}1) . It seems
impossible to check by direct computations whether or not  (\tilde{B}1) holds for the case of the
k‐th order bell numbers. Hence it is natural to seek an easy criterion for  (\tilde{B}1) .

Definition 3.2. A sequence  \{\delta(n)\}_{n=0}^{\infty} is  \log‐concave if  \delta(n)\delta(n+2)\leq\delta(n+1)^{2} and  \{\delta(n)\}_{n=0}^{\infty}
is  \log‐convex if  \delta(n+1)^{2}\leq\delta(n)\delta(n+2) .

In fact, the following criterion was mentioned in [11].

Proposition 3.3. If  \{a(n)/n!\}_{n=0}^{\infty} is log‐concave, then (B1) holds.

Due to this proposition, it is easy to see the following.

Corollary 3.4. If  \{1/n!\alpha(n)\}_{n=0}^{\infty} is log‐concave, then  (\tilde{B}1) holds.

However, it was not proved in [11] if the sequences  \{b_{k}(n)/n!\}_{n=0}^{\infty} and  \{1/n!b_{k}(n)\}_{n=0}^{\infty} are
 \log‐concave or not. We fiııed up these gaps [2].

Theorem 3.5. (1)  \{b_{k}(n)/n!\}_{n=0}^{\infty} is log‐concave.

(2)  \{b_{k}(n)\}_{n=0}^{\infty} is log‐convex and hence  \{1/n!b_{k}(n)\}_{n=0}^{\infty} is log‐concave.

(3)  \{b_{k}(n)\}_{n=0}^{\infty} satisfies (A1)(A2)(B1)  (\tilde{B}1) .

Remark 3.6. One can find a different way of proof by Engel [12] concerning the  \log‐convexity of
 \{b_{2}(n)\}_{n=0}^{\infty} . Canfield [9] showed that the  \log‐concavity of  \{b_{2}(n)/n!\}_{n=0}^{\infty} holds asymptotically.

In [18], the following  \log‐additivity” conditions were introduced in order to prove the con‐
tinuity of various operators acting on  \mathcal{F}_{\alpha}(\mathcal{E}) and  \mathcal{F}_{\alpha}(\mathcal{E})^{*} :

(C1) There exists a constant  c_{1} such that for any  n\leq m,

 \alpha(n)\leq c_{1}^{m}\alpha(m) .

(C2) There exists a constant  c_{2} such that for any  n,  m,

 \alpha(n+m)\leq c_{2}^{n+m}\alpha(n)\alpha(m) .

(C3) There exists a constant  c_{3} such that for any  n,  m,

 \alpha(n)\alpha(m)\leq c_{3}^{n+m}\alpha(n+m) .
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Theorem 3.7. Let  \{a(n)\}_{n=0}^{\infty} be a sequence of positive numbers with  \alpha(0)=1.

(1) If  \{a(n)\}_{n=0}^{\infty} is log‐convex, then

 \alpha(n)\alpha(m)\leq\alpha(n+m) , n, m\geq 0.

(2) If  \{a(n)/n!\}_{n=0}^{\infty} is log‐concave, then

 \alpha(n+m)\leq 2^{n+m}\alpha(n)\alpha(m) , n, m\geq 0.

Due to Theorem 3.5 and Theorem 3.7, one has the folıowing inequalities.

Corollary 3.8.  \{b_{k}(n)\}_{n=0}^{\infty} satisfies (Cl)(C2)(C3) with  c_{1}=1,  c_{2}=2,  c_{3}=1 , that is,

 b_{k}(n)b_{k}(m)\leq b_{k}(n+m)\leq 2^{n+m}b_{k}(n)b_{k}(m) , n, m\geq 0.

Remark 3.9. In [18], it was proved that (C3) implies (C1) and the k‐th order Belı numbers
 \{b_{k}(n)\}_{n=0}^{\infty} satisfies (Cl)(C2)(C3) in an asymptotical consideration. Moreover, we proved in [2]
that  c_{1}=1,  c_{3}=1 for any  k\geq 2 and  c_{2}=2 for  k=2 are best constants. It is not known if
 c_{2}=2 for  k\geq 3 is the best constant.

4 Growth Functions

In this section, we shall recall key notions and results from [5][6]. Let  c_{+,{\imath} og} denote the collection
of all positive continuous functions  u on  [0, \infty ) satisfying

 r arrow\infty 1\dot{{\imath}}m\frac{\log u(r)}{{\imath} ogr}=\infty.
The Legendre transform  \ell_{u} of  u\in c_{+,\log} defined as the function,

  \ell_{u}(t) :=r>0\dot{{\imath}}nf\frac{u(r)}{r^{t}} , t\in[0, \infty) .

Let  C_{+,1/2} denotes the collection of all positive continuous functions  u on  [0, \infty ) satisfying

  \lim_{rarrow\infty}\frac{\log u(r)}{\sqrt{r}}=\infty.
The dual Legendre transform  u^{*} of  u\in C_{+,1/2} is defined to be the function

 u^{*}(r)= \sup_{s\geq 0}\frac{e^{2\sqrt{rs}}}{u(s)}, r\in[0, \infty) .

It can be proved that  u^{*}\in C_{+,1/2}.
Remark 4.1. One can see that  \exp[\sqrt{r\rfloor}\in c_{+,{\imath} og} , but  \not\in C_{+,1/2} . In addition,  \exp[2\sqrt{r\log\sqrt{r\rfloor}}\in
C + ,ı/2.

Definition 4.2. We say that two sequences  \{a(n)\} and  \{b(n)\} are equivalent denoted by
 \{a(n)\}\sim\{b(n)\} if there exist constants  K_{1},  K_{2} , cı,  c_{2}>0 such that for all  n,

 K_{1}c_{1}^{n}a(n)\leq b(n)\leq K_{2}c_{2}^{n}a(n) .

Now we state the weaker conditions for the sequence  \{\alpha(n)\} :
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(A3)  \{\alpha(n)\} is equivalent to a positive sequence  \{\lambda(n)\} such that  \{\lambda(n)/n!\} is ıog‐concave.

(A4)  \{\alpha(n)\} is equivalent to a positive sequence  \{\lambda(n)\} such that  \{1/n!\lambda(n)\} is  \log‐concave.

Then it is easy to see the following Lemma.

Lemma 4.3. (1) (B1) is equivalent to (A3).

(2)  (\tilde{B}1) is equivalent to (A4).

For our discussion, the following conditions on  u play important roles:

(U1)   \inf_{r\geq 0}u(r)=1.

(U2)   \lim_{rarrow\infty}\frac{\log u(r)}{r}<\infty.
(U3)  u(r^{2}) is a  \log‐convex function on  [0.\infty).

For a given  u\in c_{+,{\imath} og} , define a sequence  \{\alpha_{u}(n)\}_{n=0}^{\infty} given by

  \alpha_{u}(n):=\frac{1}{\ell_{u}(n)n!},
which plays a role of a sequence  \{\alpha(n)\}_{n=0}^{\infty}.

Lemma 4.4. (1) If  u\in c_{+,\log} satisfies (U1)(U2), then  \{\alpha.(n)\}_{=0}^{\infty} satisfies (A1)
 *

.

(2) If  u\in C_{+,1/2} satisfies (U3), then  \{a.(n)\}_{n=0}^{\infty} satisfies (A2).

(3) If  u\in c_{+,Iog} satisfies (U3),  \{\alpha_{u}(n)\}_{n=0}^{\infty} satisfies (A3).

(4) If  u\in c_{+,\log} , then  \{\alpha_{u}(n)\}_{n=0}^{\infty} satisfies (A4).

Theorem 4.5. Suppose that  u\in C_{+1/2} satisfies (Ul)(U2)(U3). Then,

(1) a sequence  \{\alpha_{u}(n)\}_{n=0}^{\infty} satisfies conditions (Al)
 *

(A2)(A3)(A4).

(2) (A3)  (\Leftrightarrow (B1)) implies (C2).

(3) (A4)  (\Leftrightarrow(\tilde{B}1)) implies (C3).

(4) (C3) implies (C1).

Definition 4.6. Two positive functions  f and  g on  [0, \infty ) are called equivalent, denoted by
 f\sim g , if there exists constants  c_{1},  c_{2} , aı,  a_{2}>0 such that

 c_{1}f(a_{1}r)\leq g(r)\leq c_{2}f(a_{2}r), r\in[0, \infty) .

Example 4.7. (1) For  0\leq\beta<1 , one can see that

 u_{\beta}(r)=\exp[(1+\beta)r^{\frac{1}{1+\beta}}]\in C_{+,1/2}\Leftrightarrow 
u_{\beta}^{*}(r)=\exp[(1-\beta)r^{\frac{1}{1-\beta}}]\in C_{+,1/2}.
In fact, the series  G_{\alpha} and  G_{1/\alpha}with  \alpha(n)=(n!)^{\beta} cannot have the closed forms unless  \beta=0,
but we have the following estimates:

 \{\begin{array}{l}
\exp[(1-\beta)r^{\frac{1}{1-\beta}}]\leq G_{\alpha}(r)\leq 2^{\beta}\exp[(1-
\beta)2^{\frac{\beta}{1-\beta}}r^{\frac{1}{1-\beta}}],
2^{-\beta}\exp[(1+\beta)2^{-\frac{\beta}{1+\beta}}r^{\frac{1}{1+\beta}}]\leq 
G_{1/\alpha}(r)\leq\exp[(1+\beta)r^{\frac{1}{1+\beta}}].
\end{array} (4.1)
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That is,  u_{\beta}(r) \sim\sum_{n=0}^{\infty}\frac{1}{(n!)^{1+\beta}}r^{n} and  u_{\beta}^{*}(r) \sim\sum_{n=0}^{\infty}\frac{1}{(n!)^{1-\beta}}r^{n}.
(2) Let  \log_{j}(\cdot) denote the j‐th iterated logarithmic function inductively defined by

  \log_{1}(r) :=\log(\max\{r, e\}), \log_{j}(r) :=\log_{1}(\log_{j-1}(r)), j\geq
2.

Then we have

 u_{k}^{*}(r)  :=\exp_{k}(r)/\exp_{k}(0)\in C_{+,1/2}\Leftrightarrow u_{k}(r)\sim w_{k}(r)=
\exp[2\sqrt{r\log_{k-1}v\neg r}\in C_{+,1/2}
and  w_{k}(r) \sim\sum_{n=0}^{\infty}\frac{1}{n^{1}b_{k}(n)}r^{n}.

If one merges everything together with replacements of growth conditions in Theorem 2.1
and Theorem 2.2 respectively by

 \bullet  |F(\xi)|\leq Ku^{*}(a|\xi|_{p})^{\frac{1}{2}} for  \mathcal{F}_{\alpha}(\mathcal{E})^{*},

 \bullet  |F(\xi)|\leq Ku(a|\xi|_{-p})^{\frac{1}{2}} for  \mathcal{F}_{\alpha}(\mathcal{E}) ,

where  \alpha=\{\alpha_{u}(n)\}_{n=0}^{\infty} , then we obtain

Theorem 4.8. Suppose that  u\in C_{+1/2} satisfies (Ul)(U2)(U3). The  S ‐transform   F=S\Phi of a
generalized function  \Phi\in \mathcal{F}_{\alpha}(\mathcal{E})^{*} satisfies the conditions:

(a) For any  \xi,  \eta\in \mathcal{E} , the function  F(z\xi+\eta) is an entire function of  z\in \mathbb{C}.

(b) There exist constants  K>0,  a>0,p\geq 0 such that

 |F(\xi)|\leq Ku^{*}(a|\xi|_{p}^{2})^{\frac{1}{2}}, \xi\in \mathcal{E}.

Conversely, let a  \mathbb{C} ‐valued function  F on  \mathcal{E} satisfies the above two conditions  (a)(b) . Then there
exists a unique  \Phi\in \mathcal{F}_{\alpha}(\mathcal{E})^{*} such that   F=S\Phi . Moreover, for any  q>p with  ae^{2}\Vert A^{-(q-p)}\Vert_{HS}^{2}<
 1 , we have the norm estimate

 \Vert\Phi\Vert_{-q,1/\alpha}\leq K(1-ae^{2}\Vert A^{-(q-p)}\Vert_{HS}^{2})^{-
\frac{1}{2}}.
Theorem 4.9. Suppose that  u\in C_{+1/2} satisfies (Ul)(U2)(U3). The  S ‐transform   F=S\varphi of a
test function  \varphi\in \mathcal{F}_{\alpha}(\mathcal{E}) satisfies the conditions:

(a) For any  \xi,  \eta\in \mathcal{E} , the function  F(z\xi+\eta) is an entire function of  z\in \mathbb{C}.

(b) For any  p\geq 0,  a>0 , there exists a constant  K>0 such that

 |F(\xi)|\leq Ku(a|\xi|_{-p}^{2})^{\frac{1}{2}}, \xi\in \mathcal{E}.

Conversely, let a  \mathbb{C} ‐valued function  F on  \mathcal{E} satisfies the above two conditions  (a)(b) . Then there
exists a unique  \varphi\in \mathcal{F}_{\alpha}(\mathcal{E}) such that   F=S\varphi . Moreover, for any given  a,p>0 , choose  q\in[0,p)
such that  ae^{2}\Vert A^{-(p-q)}\Vert_{HS}^{2}<1 , then we have the norm estimate

 \Vert\varphi\Vert_{q,\alpha}\leq K(1-ae^{2}\Vert A^{-(p-q)}\Vert_{HS}^{2})^{-
\frac{1}{2}}.

Remark 4.10. Consult our papers [6] [7] to see connections Gannoun et al. [13].
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5 Generalization of Obata’s Theorem

Obata [22][23] characterized the operator symbol of  ---\in \mathcal{L}(\mathcal{F}_{1}(\mathcal{E}), \mathcal{F}_{1}(\mathcal{E})^{
*}) and Chung et al. [10]
presented a simplified proof.

Definition 5.1. For any  ---\in \mathcal{L}(\mathcal{F}_{\alpha}(\mathcal{E}), \mathcal{F}_{\alpha}
(\mathcal{E})^{*}) , the operator symbol  ---\wedge of  ---is defined by

 ---\wedge(\xi, \eta)=\langle\langle---e(\xi), e(\eta)\}\}, \xi, \eta\in 
\mathcal{E}.

The operator symbol is an operator version of the  S‐transform. Therefore, one can generalize
the characterization theorem for the operator symbol as follows.

Theorem 5.2. Suppose that  u\in C_{+1/2} satisfies (Ul)(U2)(U3). The symbol   G=---\wedge of − --\in

 \mathcal{L}(\mathcal{F}_{\alpha}(\mathcal{E}), \mathcal{F}_{\alpha}(\mathcal{E}
)^{*}) satisfies the conditions:

(a) For any  \xi_{1},  \xi_{2},  \eta_{1},  \eta_{2}\in \mathcal{E} , the function  G(z\xi_{1}+\eta_{1}, w\xi_{2}+\eta_{2}) is an entire function of
 (z, w)\in \mathbb{C}\cross \mathbb{C}.

(b) There exist constants  K>0,  a>0,p\geq 0 such that

 |G(\xi, \eta)|\leq Ku^{*}(a(|\xi|_{p}^{2}+|\eta|_{p}^{2}))^{\frac{1}{2}}, \xi, 
\eta\in \mathcal{E}.
Conversely, suppose a  \mathbb{C} ‐valued function  G on  \mathcal{E}\cross \mathcal{E} satisfies the above two conditions  (a)(b) .
Then there exists a unique  ---\in \mathcal{L}(\mathcal{F}_{\alpha}(\mathcal{E}), \mathcal{F}_{\alpha}
(\mathcal{E})^{*}) such that  G=---\wedge.

Proof. Due to Theorem 4.5, there exist constants  c_{1},  c_{2}>0 such that

 u^{*}(s)u^{*}(t)\leq u^{*}(c_{1}(s+t))\leq u^{*}(c_{2}s)u^{*}(c_{2}t) , s, 
t\geq 0 . (5.1)

Thanks to this inequality (5.1), one can apply the idea of Chung et al. [10]. It means that the
proof can be done by applying Theorem 4.8 two times.

 \square 

Remark 5.3. It is not difficult to generalize further and state Theorem 4.8, Theorem 4.9 and The‐
orem 5.2 in a unified manner as of Ji‐Obata [15]. It is because essential properties what we need
for norm estimates related with a CKS space can be derived from conditions (Al)

 *

(A2)(A3)(A4).
on  \{\alpha(n)\} and  (U1) (U2)(U3) on  u\in C_{+,1/2}.
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