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Abstract

A review on spectral analysis of infinite dimensional Dirac type operators
on an abstract boson‐fermion Fock space is presented.

1 Introduction

For each pair (\mathscr{H}, \mathscr{K}) of complex Hilbert spaces, the tensor product Hilbert space

 \mathscr{F}(\mathscr{H}, \mathscr{K}):=\mathscr{F}_{b}(\mathscr{H})\otimes 
\mathscr{F}_{f}(\mathscr{K})

of the boson Fock space

  \mathscr{F}_{b}(\mathscr{H}):=\bigoplus_{n=0}^{\infty}\bigotimes_{s}^{n}
\mathscr{H}=\{\psi=\{\psi^{(n)}\}_{n=0}^{\infty}|\psi^{(n)}\in\bigotimes_{s}^{n}
\mathscr{H}, \sum_{n=0}^{\infty}\Vert\psi^{(n)}\Vert^{2}<\infty\}
over  \mathscr{H} and the fermion Fock space

  \mathscr{F}_{f}(\mathscr{K}):=\bigoplus_{p=0}^{\infty}\wedge \mathscr{K}=
p\{\phi=\{\phi^{(p)}\}_{p=0}^{\infty}|\phi^{(p)}\in p\wedge \mathscr{K}, \sum_{p
=0}^{\infty}\Vert\phi^{(p)}\Vert^{2}<\infty\}
over  \mathscr{K} is defined, where  \otimes_{s}^{n}\mathscr{H} denotes the  n‐fold symmetric tensor product of  \mathscr{H}

with  \otimes_{s}^{0}\mathscr{H}  :=\mathbb{C},  \wedge^{p}\mathscr{K} denotes the  p‐fold anti‐symmetric tensor product of  \mathscr{K} with
 \wedge^{0}\mathscr{K}  :=\mathbb{C} and, for a vector  \Psi in a Hilbert space,  \Vert\Psi\Vert denotes the norm of  \Psi . We call
the Hilbert space  \mathscr{F}(\mathscr{H}, \mathscr{K}) the abstract boson‐fermion Fock space over  (\mathscr{H}, \mathscr{K}) .
In a previous paper [2], the author introduced a general class of infinite‐dimensional
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Dirac operators on  \mathscr{F}(\mathscr{H}, \mathscr{K}) and clarified general mathematical structures behind
some supersymmetric quantum field models giving an abstract unification of them.
In particular, a path (functional) integral representation of analytical index of an
infinite dimensional Dirac operator was derived, which gives a kind of index theorem.
But spectral analysis of the infinite dimensional Dirac operators is still missing. Only
partial results are available [10]. In the present paper, we review some aspects of
spectral analysis of infinite dimensional Dirac operators.

2 Preliminaries

We first recall basic objects and facts associated with Fock spaces. See [11] for more
details.

In general, for a linear operator  A from a Hilbert space to a Hilbert space, we
denote its domain by  D(A) .

For each vector  f\in \mathscr{H} , there is a unique densely defined closed linear operator
 a(f) on  \mathscr{F}_{b}(\mathscr{H}) such that its adjoint  a(f)^{*} takes the following form:

 D(a(f)^{*})= \{\psi\in \mathscr{F}_{b}(\mathscr{H})|\sum_{n={\imath}}^{\infty}
\Vert\sqrt{n}S_{n}(f\otimes\psi^{(n-1)})\Vert^{2}<\infty\},
 (a(f)^{*}\psi)^{(0)}=0,  (a(f)^{*}\psi)^{(n)}=\sqrt{n}S_{n}(f\otimes\psi^{(n-1)}),  n\geq 1,  \psi\in D(a(f)^{*}) ,

where  S_{n} denotes the symmetrization operator (symmetrizer) on the  n‐fold tensor
product  \otimes^{n}\mathscr{H} of  \mathscr{H} . The operator  a(f) (resp.  a(f)^{*} ) is called the boson annihila‐
tion (resp. creation) operator with test vector  f.

There is a distinguished vector

 \Omega_{b}:=\{1,0,0, \cdots\}\in \mathscr{F}_{b}(\mathscr{H}) ,

called the boson Fock vacuum in  \mathscr{F}_{b}(\mathscr{H}) , which is vanished by the annihilation
operator:

 a(f)\Omega_{b}=0, \forall f\in \mathscr{H}.

The set  \{a(f), a(f)^{*}|f\in \mathscr{H}\} of boson annihilation operators and boson creation
operators obeys the canonical commutation relations (CCR) over  \mathscr{H} :

 [a(f), a(g)^{*}]=\{f, g\rangle_{\mathscr{H}}, [a(f), a(g)]=0, f, g\in 
\mathscr{H}

on the bosonic finite particle subspace

 \mathscr{F}_{b,0}(\mathscr{H}) :=\{\psi\in \mathscr{F}_{b}(\mathscr{H})|\exists
n_{0}\in \mathbb{N}s.t. \psi^{(n)}=0, \forall n\geq n_{0}\},

where  [X, Y]  :=XY-YX and  \langle ,  \}_{\mathscr{H}} denotes the inner product of  \mathscr{H} (linear in
the second variable).
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In general, for a subset  \mathscr{E} of a vector space, span (  \mathscr{E} ) or span  \mathscr{E} denotes the
subspace generated by all the vectors of  \mathscr{E}.

It is well known that, for each dense subspace  \mathscr{D} of  \mathscr{H} , the subspace

 \mathscr{F}_{b,fin}(\mathscr{D}) :=span\{\Omega_{b}, a(f_{1})^{*}\cdots a(f_{n}
)^{*}\Omega_{b}|n\in \mathbb{N}, f_{j}\in \mathscr{D}, j=1, . n\}

is dense in  \mathscr{F}_{b}(\mathscr{H}) . In fact, one has

 \mathscr{F}_{b,fin}(\mathscr{D})=\otimes_{s}^{n}\mathscr{D}\wedge,

the algebraic  n‐fold symmetric tensor product of  \mathscr{D}.

We next move on to the fermion Fock space  \mathscr{F}_{f}(\mathscr{K}) . For each  u\in \mathscr{K} , there is a
unique bounded linear operator  b(u) on  \mathscr{F}_{f}(\mathscr{K}) such that  b(u)^{*} is given as follows:

 (b(u)^{*}\phi)^{(0)}=0, (b(u)^{*}\phi)^{(p)}=\sqrt{p}A_{p}(f\otimes\phi^{(p-1)}
), p\geq 1, \phi\in \mathscr{F}_{f}(\mathscr{K}) ,

where  A_{p} is the anti‐symmetrization operator (anti‐symmetrizer)  on\otimes^{p}\mathscr{K} . The op‐
erator  b(u) (resp.  b(u)^{*} ) is called the fermion annihilation (resp. creation) operator
with test vector  u.

The vector

 \Omega_{f}:=\{1,0,0, \}\in \mathscr{F}_{f}(\mathscr{K})

is called the fermion Fock vacuum in  \mathscr{F}_{f}(\mathscr{K}) , which is vanished by  b(u) :

 b(u)\Omega_{f}=0, \forall u\in \mathscr{K}.

The set  \{b(u), b(u)^{*}|u\in \mathscr{K}\} obeys the canonical anti‐commutation relations (CAR)
over  \mathscr{K} :

 \{b(u), b(v)^{*}\}=\langle u, v\}_{\mathscr{K}}, \{b(u), b(v)\}=0, u, v\in 
\mathscr{K},
where  \{X, Y\}  :=XY+YX . It follows that

 \Vert b(u)\Vert=\Vert u\Vert, \Vert b(u)^{*}\Vert=\Vert u\Vert, b(u)^{2}=0, 
(b(u)^{*})^{2}=0, \forall u\in \mathscr{K},

where, for a bounded linear operator  T on a Hilbert space,  \Vert T\Vert denotes the operator
norm of  T.

For each dense subspace  \mathscr{D} of  \mathscr{K} , the subspace

 \mathscr{F}_{f,fin}(\mathscr{D}) :=span\{\Omega_{f}, b(u_{1})^{*}\cdots b(u_{p}
)^{*}\Omega_{f}p\in \mathbb{N}, u_{k}\in \mathscr{D}, k=1, , p\},

is dense in  \mathscr{F}_{f}(\mathscr{K}) .
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3 Exterior Differential Operators on the Boson‐
Fermion Fock Space

For a linear operator  L on a Hilbert space, we set

 C^{\infty}(L):= \bigcap_{n=1}^{\infty}D(L^{n}) ,

the  C^{\infty}‐domain of  L . If  L is self‐adjoint, then  C^{\infty}(L) is dense.
Let  A be a densely defined closed linear operator from  \mathscr{H} to  \mathscr{K} . Then, by von

Neumann’s theorem,  A^{*}A and  AA^{*} are non‐negative self‐adjoint operators on  \mathscr{H}

and  \mathscr{K} respectively and hence  C^{\infty}(A^{*}A) and  C^{\infty}(AA^{*}) are dense in  \mathscr{H} and  \mathscr{K}

respectively. Therefore the algebraic tensor product

 \mathscr{D}_{A}^{\infty} :=\mathscr{F}_{b,fin}(C^{\infty}(A^{*}A))\otimes 
\mathscr{F}_{f,fin}(C^{\infty}(AA^{*}))\wedge

is dense in the boson‐fermion Fock space  \mathscr{F}(\mathscr{H}, \mathscr{K}) .

Proposition 3.1 There exists a unique  den\mathcal{S}ely defined closed linear operator  d_{A} on
 \mathscr{F}(\mathscr{H}, \mathcal{K}) such that the following (i) and (ii) hold:

(i)  \mathscr{D}_{A}^{\infty}\subset D(d_{A}) and  \mathscr{D}_{A}^{\infty} is a core of  d_{A}.

(ii) For each vector  \Psi\in \mathscr{D}_{A}^{\infty} of the form

 \Psi=a(f_{1})^{*}\cdots a(f_{n})^{*}\Omega_{b}\otimes b(u_{1})^{*}\cdots 
b(u_{p})^{*}\Omega_{f}, n, p\geq 0,

where  a(f_{1})^{*}\cdots a(f_{n})^{*}\Omega_{b}  (resp.  b(u_{1})^{*}\cdots b(u_{p})^{*}\Omega_{f}) with  n=0 (resp.  p=0)
should read  \Omega_{b} (resp.  \Omega_{f}),  d_{A} acts as

 d_{A}\Psi=0 for  n=0,

 d_{A} \Psi=\sum_{j=1}^{n}a(f_{1})^{*}\cdots\overline{a(f_{j})^{*}}\cdots 
a(f_{n})^{*}\Omega_{b}\otimes b(Af_{j})^{*}b(u_{1})^{*}\cdots b(u_{p})^{*}
\Omega_{f}
for  n\geq 1 , where  \overline{a(f_{j})^{*}} indicates the omission of  a(f_{j})^{*} In  particular_{f}d_{A}
leaves  \mathscr{D}_{A}^{\infty} invariant.

Moreover, the following (iii)  -(v) hold:

(iii)  \mathscr{D}_{A}^{\infty}\subset D(d_{A}^{*}) and  d_{A}^{*}\Psi=0 for  p=0,

 d_{A}^{*} \Psi=\sum_{k=1}^{p}(-1)^{k-1}a(A^{*}u_{k})^{*}a(f_{1})^{*} . . .  a(f_{n})^{*}\Omega_{b}\otimes b(u_{1})^{*} . . .  \overline{b(u_{k})'} . . .  b(u_{p})^{*}\Omega_{f}

for  p\geq 1 . In particular,  d_{A}^{*} leaves  \mathscr{D}_{A}^{\infty} invariant.
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(iv)  D(d_{A}^{2})=D(d_{A}) and, for all  \Psi\in D(d_{A}),  d_{A}^{2}\Psi=0.

(v) Let  B be a bounded linear operator from  \mathscr{H} to  \mathcal{K} with  D(B)=\mathscr{H} . Then,
for all  \Psi\in \mathscr{D}_{A}^{\infty} and  \alpha,  \beta\in \mathbb{C},

 \alpha d_{A}\Psi+\beta d_{B}\Psi=d_{\alpha A+\beta B}\Psi.

We call the operator  d_{A} the exterior differential operator on  \mathscr{F}(\mathscr{H}, \mathscr{K}) associ‐
ated with  A.

4 Infinite Dimensional Dirac Operators

The Dirac operator on  \mathscr{F}(\mathscr{H}, \mathscr{K}) associated with  A is defined by

QA  :=d_{A}+d_{A}^{*}.

Theorem 4.1 The operator QA  i\mathcal{S} self‐adjoint and unbounded from above and below.

The Laplace‐Beltrami‐de Rham operator on  \mathscr{F}(\mathscr{H}, \mathscr{K}) associated with  A is
defined by

 \triangle_{A}:=d_{A}^{*}d_{A}+d_{A}d_{A}^{*}.

Theorem 4.2  \triangle_{A}=Q_{A}^{2}.

5 Supersymmetric Structure
Let

 \mathscr{F}_{+}:=\mathscr{F}_{b}(\mathscr{H})\otimes(\oplus_{p=0}^{\infty}
\wedge^{2p}\mathscr{K}) (even forms),
 \mathscr{F}_{-}  :=\mathscr{F}_{b}(\mathscr{H})\otimes(\oplus_{p=0}^{\infty}\wedge^{2p+1}
\mathscr{K}) (odd forms).

Then we have the orthogonal decomposition

 \mathscr{F}(\mathscr{H}, \mathscr{K})=\mathscr{F}_{+}\oplus \mathscr{F}_{-}.

Let  P\pm:\mathscr{F}(\mathscr{H}, \mathscr{K})arrow \mathscr{F}_{\pm} be the orthogonal projections. Then the operator

 \Gamma:=P_{+}-P_{-}.

is unitary, self‐adjoint and the grading operator for the above orthogonal decompo‐
sition.
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Proposition 5.1 (anti‐commutativity) Operator equality  Q_{A}\Gamma=-\Gamma Q_{A} holds.

Corollary 5.2 (spectral symmetry) The spectrum  \sigma(Q_{A}) of QA is reflection sym‐
metric with respect to the origin of  \mathbb{R}:\sigma(Q_{A})=\sigma(-Q_{A}) .

The quadruple  SQFT_{A}  :=(\mathscr{F}(\mathscr{H}, \mathscr{K}), Q_{A}, \triangle_{A}, \Gamma) is a supersymmetric quantum
theory in the abstract sense [1], where QA is a self‐adjoint supercharge,  \triangle_{A} is the
supersymmetric Hamiltonian and  \Gamma is the state‐sign operator. We remark that
 SQFT_{A} gives a unification of some supersymmetric free quantum field models [2,
3, 4, 5, 6].

6 Relations with Second Quantization Operators

For each self‐adjoint operator  S on  \mathscr{H} , one can define the bosonic second quantiza‐
tion of  S by

 d\Gamma_{b}(S):=\oplus_{n=0}^{\infty}d\Gamma_{b}^{(n)}(S)
with

 d \Gamma_{b}^{(0)}(S) :=0, d\Gamma_{b}^{(n)}(S) :=\sum_{j={\imath}}^{n}I\otimes
\otimes I\otimes jth\smile S\otimes I\otimes \otimes I, n\geq 1,
where, for a closable operator  T on a Hilbert space,  \overline{T} denotes the closure of  T . It
follows that  d\Gamma_{b}(S) is self‐adjoint. If  S\geq 0 , then  d\Gamma_{b}(S)\geq 0 . Moreover,

 0\in\sigma_{p}(d\Gamma_{b}(S)) , \Omega_{b}\in ker(d\Gamma_{b}(S)) .

Similarly, for each self‐adjoint operator  T on  \mathscr{K} , one can define the fermionic
second quantization of  T by

 d\Gamma_{f}(T):=\oplus_{p=0}^{\infty}d\Gamma_{f}^{(p)}(T)
with

 d \Gamma_{f}^{(0)}(T) :=0, d\Gamma_{f}^{(p)}(T) :=\sum_{j=1}^{p}
I\otimes\cdots\otimes I\otimes jthT\smile\otimes I\otimes\cdots\otimes I, p\geq 
1.
It follows that  d\Gamma_{f}(T) is self‐adjoint. If  T\geq 0 , then  d\Gamma_{f}(T)\geq 0 . Moreover,

 0\in\sigma_{p}(d\Gamma_{f}(T)) , \Omega_{f}\in ker(d\Gamma_{f}(T)) .
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As we have already mentioned, the operator  A yields the non‐negative self‐adjoint
operators  A^{*}A and  AA^{*} . Therefore  A^{*}A (resp.  AA^{*} ) may be a one‐particle Hamilto‐
nian for a boson (resp. fermion). Then the Hamiltonian of a non‐interacting system
consisting of such bosons and fermions is given by

 H(A) :=d\Gamma_{b}(A^{*}A)\otimes I+I\otimes d\Gamma_{f}(AA^{*}) .

It follows that  H(A) is a non‐negative self‐adjoint operator acting in  \mathscr{F}(\mathscr{H}, \mathscr{K}) and

 0\in\sigma_{p}(H(A)) , \Omega_{b}\otimes\Omega_{f}\in kerH(A) .

Theorem 6.1  H(A)=\triangle_{A} . In particular,  H(A) is a supersymmetric Hamiltonian.

7 Spectra of  H(A) and  Q_{A}

In what follows, we assume that  \mathscr{H} and  \mathscr{K} are separable. For a linear operator  T

from a Hilbert space to a Hilbert space, we set

nul  T  :=\dim kerT\in\{0\}\cup \mathbb{N}\cup\{+\infty\}.

Theorem 7.1

 \sigma(H(A)) = \{0\}\cup\overline{(\bigcup_{n=1}^{\infty}\{\sum_{j=1}^{n}
\lambda_{j}\lambda_{j}\in\sigma(A^{*}A)\backslash \{0\},j=1,\cdots,n\})},
 \sigma_{p}(H(A))  =   \{0\}\cup(\bigcup_{n=1}^{\infty}\{\sum_{j=1}^{n}\lambda_{j}\lambda_{j}
\in\sigma_{p}(A^{*}A)\backslash \{0\},j=1, \cdots , n\}) .

Theorem 7.2 The spectrum  \sigma(Q_{A}) and the point spectrum  \sigma_{p}(Q_{A}) of  Q_{A} are sym‐
metric with respect to the origin and

 \sigma(Q_{A})  =  \{0\}\cup(\overline{\bigcup_{n=1}^{\infty}\{\pm\sqrt{\sum_{j--1}^{n}\lambda_{j}
}\lambda_{j}\in\sigma(A^{*}A)\backslash \{0\},j=1,\cdots,n\}}) ,

 \sigma_{p}(Q_{A})  =   \{0\}\cup(\bigcup_{n=1}^{\infty}\{\pm\sqrt{\sum_{j--1}^{n}\lambda_{j}}\lambda_
{j}\in\sigma_{p}(A^{*}A)\backslash \{0\},j=1, \cdots, n\})
with

nul  (Q_{A}-\lambda)= nul  (Q_{A}+\lambda) ,  \lambda\in\sigma_{p}(Q_{A}) .
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8 A Simple Perturbation

In this section, we consider a simple perturbation of QA via a perturbation of  d_{A}.
Let

 g\in D(A)\backslash \{0\}, v\in D(A^{*})\backslash \{0\}
and

 d(\alpha):=d_{A}+\alpha a(g)\otimes b(v)^{*}

with a constant  \alpha\in \mathbb{C} being a perturbation parameter. It is easy to see that  d(\alpha)
is densely defined with  D(d(\alpha))\supset \mathscr{D}_{A}^{\infty} and

 d(\alpha)^{2}=0 on  \mathscr{D}_{A}^{\infty}.

Moreover,  d(\alpha)^{*} is densely defined with  \mathscr{D}_{A}^{\infty}\subset D(d(\alpha)^{*}) and

 d(\alpha)^{*}=d_{A}^{*}+\alpha^{*}a(g)^{*}\otimes b(v) on  \mathscr{D}_{A}^{\infty}.

Hence  d(\alpha) is closable. We denote the closure of  d(\alpha)[\mathscr{D}_{A}^{\infty} by  \overline{d}(\alpha) .

Lemma 8.1 For all  \Psi\in D(\overline{d}(\alpha)),\overline{d}(\alpha)\Psi is in  D(\overline{d}(\alpha)) and

 \overline{d}(\alpha)^{2}\Psi=0.

Using the operator  \overline{d}(\alpha) , one can define a perturbed Dirac operator:

 Q(\alpha):=\overline{d}(\alpha)+\overline{d}(\alpha)^{*}

We note that

 Q(\alpha)=Q_{A}+V_{g,v}(\alpha) on  \mathscr{D}_{A}^{\infty}

with

 V_{g,v}(\alpha) :=\alpha a(g)\otimes b(v)^{*}+\alpha^{*}a(g)^{*}\otimes b(v) .

8.1 Self‐adjointness of  Q(\alpha)
Let  T_{g,v}:\mathscr{H}arrow \mathscr{K} be defined by

 T_{g,v}f:=\{g, f\rangle v, f\in \mathscr{H}.

It is obvious that  T_{g,v} is a bounded linear operator (a one‐rank operator). Hence

 A(\alpha):=A+\alpha T_{g,v}

is a densely defined closed linear operator with  D(A(\alpha))=D(A) .
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Remark 8.2 Perturbations of a linear operator by one‐rank or two‐rank operators
have been studied in various contexts. See, e.g. [12, 13] and references therein.

Lemma 8.3 (a key lemma) For all  \alpha\in \mathbb{C} , the following operator equality  hold_{\mathcal{S}} :

 \overline{d}(\alpha)=d_{A(\alpha)}.

Theorem 8.4

(i) For all  \alpha\in \mathbb{C},  Q(\alpha)i\mathcal{S} self‐adjoint and

 Q(\alpha)=Q_{A(\alpha)}.

(ii) For all  \alpha\in \mathbb{C},  Q(\alpha) is essentially self‐adjoint on  \mathscr{D}_{A}^{\infty}.

(iii) For all  \alpha\in \mathbb{C},
 Q(\alpha)=\overline{Q_{A}+V_{g,v}(\alpha)}.

(iv) The operator  \Gamma leaves  D(Q(\alpha)) invariant and

 \Gamma Q(\alpha)+Q(\alpha)\Gamma=0 on  D(Q(\alpha)) .

(v) For all  \Psi\in \mathscr{D}_{A}^{\infty} , the vector‐valued   function:\alpha\mapsto Q(\alpha)\Psi is strongly contin‐
uous on  \mathbb{C} . Moreover, for all  z\in \mathbb{C}\backslash \mathbb{R},  (Q(\alpha)-z)^{-1} is strongly continuous
in  \alpha\in \mathbb{C}.

8.2 Spectra of  Q(\alpha)
Theorem 8.5 For all  \alpha\in \mathbb{C},  \sigma(Q(\alpha)) and  \sigma_{p}(Q(\alpha)) are symmetric with respect to
the origin and

 \sigma(Q(\alpha))=\{0\}\cup(\overline{\bigcup_{n={\imath}}^{\infty}
\{\pm\sqrt{\sum_{j--1}^{n}\lambda_{j}}\lambda_{j}\in\sigma(A(\alpha)^{*}
A(\alpha))\backslash \{0\},j=1,\cdots,n\}}) ,

  \sigma_{p}(Q(\alpha))=\{0\}\cup(\bigcup_{n=1}^{\infty}\{\pm\sqrt{\sum_{j--1}
^{n}\lambda_{j}}\lambda_{j}\in\sigma_{p}(A(\alpha)^{*}A(\alpha))\backslash \{0\}
, j=1, \cdots, n\})
with

nul  (Q(\alpha)-\lambda)= nul  (Q(\alpha)+\lambda) ,  \lambda\in\sigma_{p}(Q(\alpha)) .

This theorem shows that the spectrum and the point spectrum of  Q(\alpha) are
completely determined from those of  A(\alpha)^{*}A(\alpha)\backslash \{0\}.
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8.3 Identification of the domain of  Q(\alpha)
Recall that  |A|  :=(A^{*}A)^{1/2} acting in  \mathscr{H} . It follows that  A is injective if and only if
 |A| is injective.

Theorem 8.6 Suppose that  A is injective and  g\in D(|A|^{-1}) .  Then_{f} for all  |\alpha|<
 1/(\Vert v\Vert\Vert|A|^{-1}g\Vert),  Q(\alpha) is self‐adjoint with  D(Q(\alpha))=D(Q_{A}) and

 Q(\alpha)=Q_{A}+V_{g,v}(\alpha) .

Moreover,  Q(\alpha) is essentially self‐adjoint on any core for  Q_{A}.

Proof. The essential part of the proof is to show that  V_{g,v}(\alpha) is  Q_{A}‐bounded
with a relative upper bound  |\alpha||v|\Vert|A|^{-1}g\Vert . Then one needs only to apply the
Kato‐Rellich theorem. For more details, see the proof of [10, Theorem 17].  \bullet

9 Kernel of  Q(\alpha)
We now investigate the kernel of  Q(\alpha) . We need a classification for conditions on
 \{A, g, v\} :

(C.1)  A is injective,  v\in D(A^{-1}) and  \{g, A^{-1}v\}\neq 0 . In this case we introduce a
constant

  \alpha_{0}:=-\frac{1}{\langle g,A^{-1}v\rangle} . (9.1)

(C.2)  A^{*} is injective,  g\in D(A^{*-1}) and  \langle v,  A^{*-1}g\rangle\neq 0 . In this case we introduce a
constant

  \beta_{0}:=-\frac{1}{\langle A^{*^{-1}}g,v\rangle}.
(C.3) (a)  A is injective and  v\not\in D(A^{-1}) or (b)  A is injective and  v\in D(A^{-1}) with

 \{g,  A^{-1}v\rangle=0.

(C.4) (a)  A^{*} is injective and  g\not\in D(A^{*-1}) or (b)  A^{*} is injective  g\in D(A^{*-1}) with
 \langle v,  A^{*-1}g\rangle=0.

We first consider the kernel of  A(\alpha) and  A(\alpha)^{*}.

Lemma 9.1

(i) Suppose that (C. 1) holds. Then

 kerA(\alpha) = \{0\}, \alpha\neq\alpha_{0},
 kerA(\alpha_{0}) = \{cA^{-1}v|c\in \mathbb{C}\}.
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(ii) Suppose that (C.2) holds. Then

 kerA(\alpha)^{*} = \{0\}, \alpha\neq\beta_{0},
 kerA(\beta_{0})^{*} = \{cA^{*-1}g|c\in \mathbb{C}\}.

(iii) Suppose that (C.3) holds. Then, for all  \alpha\in \mathbb{C},

 kerA(\alpha) = \{0\}.

(iv) Suppose that (C.4) holds. Then, for all  \alpha\in \mathbb{C},

 kerA(\alpha)^{*} = \{0\}.

Theorem 9.2

(i) Assume (C.1). Then

 kerQ(\alpha_{0})=\oplus_{n,p=0}^{\infty}[(\otimes^{n}\{zA^{-1}v|z\in \mathbb{C}
\})\otimes\wedge^{p}(kerA(\alpha_{0})^{*})].
and hence nul  Q(\alpha_{0})=\infty.

Moreover, for all  \alpha\neq\alpha_{0},

 kerQ(\alpha)=\oplus_{p=0}^{\infty}\mathbb{C}\otimes\wedge^{p}(kerA(\alpha)^{*}) .

(ii)  A_{S\mathcal{S}}ume (C.2). Then

 kerQ(\beta_{0})=\oplus_{n=0}^{\infty}\{[\otimes_{s}^{n}ker(A(\beta_{0}))]
\otimes[\mathbb{C}\oplus span(\{A^{*-}g\})]\},
 kerQ(\alpha)=\oplus_{n=0}^{\infty}[\otimes_{s}^{n}kerA(\alpha)\otimes 
\mathbb{C}], \alpha\neq\beta_{0}.

(iii) Assume (C.3) Then, for all  \alpha\in \mathbb{C},

 kerQ(\alpha)=\oplus_{p=0}^{\infty}[\mathbb{C}\otimes\wedge^{p}(ker(A(\alpha)
^{*})].

(iv)  A_{\mathcal{S}}sume (C.4). Then, for all  \alpha\in \mathbb{C},

 kerQ(\alpha)=\oplus_{n=0}^{\infty}[\otimes_{s}^{n}kerA(\alpha)\otimes 
\mathbb{C}].

Corollary 9.3

(i) Assume (C.1) and (C.2). Then

 kerQ(\alpha_{0})= span  (\{a(A^{-1}v)^{*}n\Omega_{b}\otimes b(A^{*^{-1}}g)^{*}j\Omega_{f}|n\geq 0,  j=0,1\}) ,

 kerQ(\alpha)=\{c\Omega_{b}\otimes\Omega_{f}|c\in \mathbb{C}\}, 
\alpha\neq\alpha_{0}.
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(ii) Assume (C.1) and (C.4). Then

 kerQ(\alpha_{0})=\overline{span(\{a(A^{-1}v)^{*}n\Omega_{b}\otimes\Omega_{f}
|n\geq 0\})},
 kerQ(\alpha)=\{c\Omega_{b}\otimes\Omega_{f}|c\in \mathbb{C}\}, 
\alpha\neq\alpha_{0}.

(iii) Assume (C.2) and (C.3). Then

 kerQ(\beta_{0})=span(\{\Omega_{b}\otimes b(A^{*-1}g)^{*}\Omega_{f}|jj=0,1\}) .

 kerQ(\alpha)=\{c\Omega_{b}\otimes\Omega_{f}|c\in \mathbb{C}\}, \alpha\neq\beta_
{0}.

(iv) Assume (C.3) and (C.4). Then, for all  \alpha\in \mathbb{C},

 kerQ(\alpha)=\{c\Omega_{b}\otimes\Omega_{f}|c\in \mathbb{C}\}.

10 Non‐zero Eigenvalues of  Q(\alpha)
Hypothesis (A)

(i)  \mathscr{H}=\mathcal{K} ;
(ii)  A is an injective and nonnegative self‐adjoint operator;

(iii)  g=v\in D(A^{-1}) .

Under Hypothesis (A), the constant  \alpha_{0} defined by (9.1) takes the form

  \alpha_{0}=-\frac{1}{\{v,A^{-1}v\rangle}<0.
Theorem 10.1 Let Hypothesis (A) be  \mathcal{S} atisfied and  \alpha<\alpha_{0}(<0) . Then, there
exists a unique constant  x_{0}(\alpha)<0 such that  \alpha\langle v,  (x_{0}(\alpha)-A)^{-1}v }  =1 and, for all
 n\in\{0\}\cup \mathbb{N},

 \pm\sqrt{n}x_{0}(\alpha)\in\sigma_{p}(Q(\alpha)) .

with eigenvectors

 [Q(\alpha)\pm\sqrt{n}x_{0}(\alpha)]\{a(\phi.)^{*n-p}\Omega_{b}\otimes 
b(\phi_{\alpha})^{*p}\Omega_{f}\}
 \in ker(Q(\alpha)\mp\sqrt{n}x_{0}(\alpha))(n\geq p\geq 0) ,

where

 \phi_{\alpha}:=(x_{0}(\alpha)-A)^{-1}v.
Moreover,  x_{0}(\alpha) , as a function of  \alpha<\alpha_{0} , is strictly monotone increasing on

 ( ‐00,  \alpha_{0}) with   \lim_{\alphaarrow-\infty}x_{0}(\alpha)=-\infty and   \lim_{\alphaarrow\alpha_{0}}x_{0}(\alpha)=0.

Note that Theorem 10.1 holds even if  Q_{A} has no non‐zero eigenvalues. This is
an interesting phenomenon. Since the condition  \alpha<\alpha_{0}<0 implies that  |\alpha|>|\alpha_{0}|,
the phenomenon may be regarded as a strong coupling effect.

116



117

Acknowledgement

This work is supported by KAKENHI  15K04888 from JSPS.

References

[1] A. Arai, Supersymmetry and singular perturbations, J. Funct. Anal. 60 (1985),
378‐393.

[2] A. Arai, A general class of infinite‐dimensional Dirac operators and path inte‐
gral representation of their index, J. Funct. Anal. 105 (1992), pp.342‐408.

[3] A. Arai, Dirac operators in Boson‐Fermion Fock spaces and supersymmetric
quantum field theory, J. Geome. Phys., 11 (1993), 465‐490.

[4] A. Arai, Supersymmetric extension of quantum scalar field theories, Quan‐
tum and Noncommutative Analysis (H. Araki et al, eds.), Kluwer Academic
Publishers, Dordrecht, 73‐90, 1993.

[5] A. Arai, On self‐adjointness of Dirac operators in boson‐fermion Fock spaces,
Hokkaido Math. J. 23 (1994), 319‐353.

[6]  \vartheta^{*}\#M_{L}7\not\in,  \varepsilon_{D}^{\not\supset}\pi\backslash \mathbb{F}\prime\backslash \mathfrak
{W}\pm_{\mathscr{D}^{B}} の   \frac{\in 1}{\ovalbox{\tt\small REJECT}}\mp_{\hat{f}}^{\frac{\wedge}
{\hat{\mathfrak{l}1}}}tffif\beta N_{\wedge}^{\backslash \wedge}
\prime\Lambda\overline{\pi}\Phi^{p}m,  \ovalbox{\tt\small REJECT}*\backslash \mp\mapsto 46 (1994), 1‐10.

A. Arai, Supersymmetric quantum field theory and infinite‐dimensional analysis
[translation of Sugaku 46 (1994), no. 1, 1−10], Sugaku Expositions 9 (1996), no.
1, 87‐98.

[7] A. Arai, Operator‐theoretical analysis of a representation of a supersymmetry
algebra in Hilbert space, J. Math. Phys. 36 (1995), 613‐621.

[8] A. Arai, Strong anti‐commutativity of Dirac operators on Boson‐Fermion Fock
spaces and representations of a supersymmetry algebra, Math. Nachr. 207
(1999), 61‐77.

[9] A. Arai, Infinite dimensional analysis and analytic number theory, Acta Ap‐
plicandae Mathematicae 63 (1999), 41‐78.

[10] A. Arai, A special class of infinite dimensional Dirac operators on the abstract
boson‐fermion Fock space, J. Math. Vol. 2014, Article ID 713690, 13 pages.

[11]  Sk^{z}\#\ovalbox{\tt\small REJECT}\gamma\ovalbox{\tt\small REJECT},  \Gamma 7 ff  \grave{}ノク  =1*_{i}\ovalbox{\tt\small REJECT}_{B}\ovalbox{\tt\small REJECT} と   \frac{H}{\ovalbox{\tt\small REJECT}}\mp\downarrow_{\mathscr{D}}^{B} ‐bT  [\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} \mathfrak{N}
^{\frac{arrow}{\vec{\overline{D}}}}T\ovalbox{\tt\small REJECT}]] ,  F\exists\Phi_{\vec{O}\hat{\hat{t1}1}}^{\vec{-}+t\pm}1^{\wedge}\prime , 2017.
A. Arai, Fock Spaces and Quantum Fields  I,  II (revised and expanded version),
Nippon‐hyoron‐sha, 2017, in Japanese.

117



118

[12] A. Kula, M. Wojtylak and J. Wysoczański, Rank two perturbations of matrices
and operators and operator model for  t‐transformation of probability measures,
J. Funct. Anal. 272 (2017), no. 3, 1147‐1181.

[13] B. Simon, Spectral analysis of rank one perturbations and applications. Mathe‐
matical quantum theory II. Schrödinger operators, 109‐149, CRM Proc. Lecture
Notes, 8, Amer. Math. Soc., Providence, RI, 1995.

118


