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THRESHOLDS AND RESONANCES OF
SCHRODINGER OPERATORS ON A LATTICE

Fumio Hiroshima,
Faculty of Mathematics, Kyushu University

1 Discrete Schrodinger operators H), on lattice

This is the joint work with Z. Muminov and U. Kuljanov [2] which is a continuation of
[3] where a discrete Schrodinger operator with single delta potential is considered. See
also related paper [1]. In the present article we consider discrete Schrédinger operators
with multi-delta potentials. Let Z" be the n—dimensional lattice. The Hilbert space of ¢2
sequences on Z" is denoted by ¢2(Z"), and we use ¢% (Z") (resp. £2(Z")) to denote its
subspace of all even (resp. all odd) functions. Let T(y) be the shift operator by y € Z":
(T()f)(x) = f(x+y) for f € *(Z") and x € Z". Let A= %Zﬁzrlt (T(x)—17(0)) be the
discrete Laplacian on ¢*(Z"). Thus the discrete Schrodinger operator on £2(Z") is defined
by

Hyy=-A-V,
where the potential 1% (Figurel) depends on two parameters A, i € R and satisfies

. pf(x), if x=0
VHE) =4 4f@), if |x=1
0’ if |x| >1

which awards Hj,, to be a bounded self-adjoint operator. A notation T" = (R/27Z)" =
(=, )" means the n-dimensional torus equipped with its Haar measure. We set L?(T") =
L2, and let L2 (resp. L?) denote the subspace of all even (resp. odd) functions of the
Hilbert space L2 of L2-functions on T". Let (-,-) mean the inner product on L2. Let . be the
standard Fourier transform . : L> —» €Z(Z") defined by Z f(x) = (27) ™ [1u f(8)e 040,

Then the inverse Fourier transform is given by %~ 17(0) = Yoezn f (x)e™*®. The Laplacian A
in the momentum representation is defined as A=F~ IAZ, and A acts as the multiplication
operator: (Af)(p) = —E(p)f(p), where E(p) is given by E(p) = i=1(1 —cospj). Set

Hy = —A. The operator Hj, u acts L2 as

Hy, =Ho—V,



)
l

Figure 1: Potential V

and V is an integral operator of convolution type

VH®) =@ [ vp—s)s)ds, fel>

Here the kernel function is v(p) = W (L+A Y7 | cosp;), and it allows the potential op-

erator V to get the representation V = V}:L +V, ", where

A& I W
Vit = hGco)cot+ 5 Y neiles Vi =5 X (85
J=1 j=1

Here {cg,c},s;: j=1,...,n} is an orthonormal system in L?, where

1 _ V2 _ V2 ‘
Co(P)—W, Cj(P)~WCOSPj, Sj(P)—WSInPﬁ j=1,...,n

Adopting V = Vfu +V, . we can see that the restriction HI L (resp. H,) of the operator Hj
to L2+ (resp. L? ) acts with the form

H;#:HQ—V/{L (resp. H; = Ho—V,).

Hence H, , is decomposed as Hy , = H}Tﬂ ©H, under [*=12 ®L*. We have Oess(Hypu) =
Oac(Hpy) = [0,2n]. Then we are interested in considering point spectrum of Hj,, and study-
ing their behaviors as two parameters A and i are varied.

2 Spectrum of even part H; P

The Birman-Schwinger principle helps us to reduce the problem to the study of spectrum
of a finite dimensional linear operator. Denote by (Hy — z)_1 the resolvent of Hy, where
z € C\ [0,2n]. We can see that (Hy — z)_lV;L is a finite rank operator. Let M, denote
the linear hull of {cg,--,c,}. Then M, is an (n+ 1)-dimensional subspace of L2. We
define M1 = (Ho —z) "' My for z € C\ [0,2n]. Then My.1 is also an (n+ 1)-dimensional
subspace of L% since (Hp —z) ! is invertible. We define Cy : C**! — L2 by the map

_ A& -
C1:C" s (wo, -+ ,wn) T+ (Ho—2) ! (ﬂWoCo-i-E ZWjCj> € My+1,
s
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and define C; : L3 — C"1 by
Cai L5 5 ¢ ({§,c0), -+, (9,ca))T € CMHL
Then we have the sequence of maps: L3 Gy ort1 Gy 2. In particular
(Ho—2)"'V}}, =CiCa.
Define G, (z) = C;Cy : CM1 — 1.

Lemma 2.1 (The Birman-Schwinger principle for z € C\ [0,2n])
(1) z€ C\ [0,2n] is an eigenvalue ofH;[u ifand only if 1 € 6(G4(2)).

(2) Ifz€ C\[0,2n] and (A, 1) satisfy det(G(z) —1) = 0. Then Z = (wy, ..., w,)T € C**!
is an eigenvector of G (z) associated with eigenvalue 1 if and only if f = C1Z, i.e.

1 1 Ay
f(p) = 22 E(p)—z (Nwo+ﬁjzzle0081)j) 2.1

is an eigenfunction of H ; u associated with eigenvalue z.

We consider the Birman-Schwinger principle for z = 0, which is the edge of the continu-
ous spectrum of H. ; w and it is the main issue to specify whether it is eigenvalue or threshold

of H; ;- In order to discuss z = 0 we extend the eigenvalue equation 4. iy ,f=0in L2 to that
in LL. Note that L2 C LL. We consider the equation

E(p)f(p) - (5%,; /T S(p)dp— (—;57 fiCOSPj /T cosp;f(p)dp=0 (22
=

in the Banach space L}r. Conveniently, we describe (2.2) as H ; u f = 0. Since we consider

a solution f € L}, the integrals . f(p)dp and [q.cosp;f(p)dp ate finite for j = 1,...,n.
The unique singular point of 1/E(p) is p = 0, and in the neighborhood of p = 0, we have
E(p) =~ |p|*. Then the following is fundamental, and its proof is straightforward.

Leinma 2.2 Let h(p) = ¢(p)/E(p), where ¢ € C(T"). Then (1)-(5) follow.
(1) It follows that h € L* for n > 5, and h € L' for n > 3.
(2) Let1 <n<4andh¢& L% Then ¢(0) = 0.
(3) Let 1 <n <4, |9(p)| <C|p|® for some C >0 and 0, > *5=. Then h € L.
(4) Letn=1,2 and h € L'. Then ¢(0) = 0.
(5) Letn=1,2, |@(p)| < C|p|* for some C >0 and o, >2 —n. Then h € L.



Operator Hy 1is not bounded in L%r as well as in L}F. It is however obvious by Lemma 2.2
and V!, f € C(T") that
2 9f»—>H(;1VﬁLfeL2+, n>5, (2.3)
Ll 9f»—>H0_1V;r”f€L£L, n>3. (2.4)

Thus for n > 3 we can extend operators Cy and C; . Let n >3 and Z = (wo,--- )T
C;: C"! — LL is defined by

1 1 A&
- ikl . .
(64 a) R E( )<uw0+\/_j21chospj>

and Gy : LYy — C*" by Ca: LY 3 ¢ = (Jpn @ (p)codp, -+, fr 9(P)cn(p)dp)” € C**1. Then
CiCy: L — L. Consequently G (0) = CoCy : C™1 — C™*1. Let n > 3. lim,_, G (z) =
G1(0) and 6 (H 1V/{L) \ {0} = 6(G+(0)) \ {0} follow.

Lemma 2.3 (Birman-Schwinger principle for z = 0) Let n > 3. Then (1) and (2) follow.

(1) Equation H;uf = 0 has a solution in L! if and only if 1 € 6(G+(0)).

(2) Let Z = (wo,...,wn)" € C"*! be the solution of G, (0)Z = Z if and only if f = C1Z,
ie.

1 1 A &
f(p)=———F%=—= | uwo+—=) wjcosp; 2.5)
(P) (2m)"/2 E(p) \/§j=1 J I
is a solution of H f M f =0, where wy,--- ,wy, are actually described by

1 V2 .
wo = W/Wf(p)dp, wj= W/Tnf(p)cospjdp, j=1,...,n. (2.6)

By the Birman-Schwinger principle in what follows we focus on investigating the spec-
trum of G (z). Since G(z) is defined for z € (—e0,0) for n = 1,2, and z € (—o0,0] for
(=0,0) n=1,2,
(—o0,0] n>3.
E(p)=E(p1,...,pn) is invariant with respect to the permutations of its arguments py, ..., p,,
the integrals used for studying the spectrum of G (2):

n > 3. Hence it this section we suppose that z € { As the function

@) = {eo, (Ho =) o). b(E) = —s(eo, (Ho—2) e @)
o)) =5lcjp (o= 7)), d@)=plenHo—D ey, %) @B
1

s(z) = 2(sj,(Ho—z)‘1sj). (2.9)
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also do not depend on the particular choice of indices 0 < i, j < n. Note that a(z),b(z),c(z)
and 5(z) are defined for n > 1 but d(z) for n > 2. Hence the (n+ 1) x (n+ 1) matrix G4 (z)

has the form
paz)  Lb ... .. L)
V2ub(z) Acz) Ad(z) ... Ad(z)
Gi(z) = E 2d(z) : (2.10)
: : ... R ¥ (¢9)
V2ub(z) Ad(z) ... 2Ad(z) Ac(z)

In order to study the eigenvalue 1 of G (z) we calculate the determinant of G (z) —I. We
have det(G(z) —I) = 6,(A, 14;2)8c(A;2), where

MW):{ (1-1a@){1-A(c@ + (= Dd@) | ~nAub@), n22
(1-na(2)) (1 —Ae(z) = Apb?(z), n=1,
60(/1;z)={ f’l(C(Z)—d(Z))—l}"él’ Zi% 2.12)
We set
a(Z)={ iggf(n_l)d(z)’ Zif 1@) =a@a) —nb*z).  (2.13)

Functions a(z), o(z) , ¥(z), b(z), ¢(z) — d(z) and s(z) are monotone increasing and positive
in (—o0,0]. Moreover, their limits tend to zero as z tends to —oo. Note that c(z) — d(z) is
considered only in the case of n > 2. The following relations hold:

a(z)s(z) =b(z), n=1,z<0,
a(z)s(z) <b(z), n=2,z<0,
a(z)s(z) < b(z), n>3,z<0,
c(z)—d(z) <s(z), n>2,z<0. (2.14)

The function a(z)/b(z) is monotone decreasing in (—e0,0], and there exist limits:

alz) _ . alz) L for n=1,2,
z%~oob(Z) = oo, zl—l)%l— b(z) - { %%, for n>3. (2.15)

We extend 8,(A, i1;-) and 5,(A;-), and discuss zeros of them to specify the eigenvalue of
HLL. Let z € (—eo,0). Applying notation in (2.13), we describe 6,(,u;z) as

5"(17“;2) = Y(Z)HZ(A"”) (2.16)
where
H (A1) = —%%) (h=(r=2)—n 2.17)
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Figure 2: Hyperbola I,

Instead of the equation 6,(A, 11;z) = 0, relation (2.16) allows us to study the family of rect-
angular hyperbola H, indexed by z.i.e. equilateral hyperbola H, on (A, tt)-plane, which is
defined by

H, = {(}“7”) € Rz’Hz(lﬂl) = O}
with asymptote (Aw(z), Ueo(z)) = (a(z) /b(z),n—z). H (A, 1t) can be extended to z € (—o,0]
for any dimension n > 1 as

o _ HZ(;L;u)a 2 <0,
Hz(l,u)—{ —X)(—n)—n, 2=0 (2.18)

Here X = 1 for n = 1,2 and X = a(0)/b(0) for n > 3. Refer to see Figure 2. Note that
H,(0,0) = le; > 0 for z < 0. We also extend the family of hyperbola Hl, z € (—e=,0), to
that of hyperbola I, indexed by z € (—oo, 0] by

I, = {(A, ) € R xR[H (A, n) = 0}.
For any z; < z2, 21,22 € (—o°,0], we note that the hyperbola I, can be moved to HL, in

Aoo(22) = Aeo(21)

whose components are positive. Refer to
en(22) — poo(21) ) P P

parallel by the vector g = (
see Figure 3

Figure 3: Hyperbola IH; moves as z approaches to —eo from 0.
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_ Let By(z) (resp. B;(z)) denote the left brunch (resp. the right brunch) of the hyperbola

H,, ie. H; = B;(z) U B-(z), where U denotes the disjoint union. We then see that for any
=0 and B,(z1) N fr(z2) = 0.

.- . f z
72 < z1 < 0 it follows that f(z1) N Bi(z2)

Lemma 2.4 [t follows that
. oo A,u) ¢ H
(n=1) lim,,o-&(A,p;2) :{ 1—pu &ﬁ;iﬂﬁ ’
. o0 A,u) ¢
2) limg - 8,(,12) ={ 1—p/2 El,ﬁgiﬁg’

(n=
(n>3) lim,yo- 6,(A,u;2) =b(0)Hp(A,u)

Proof: In the case of n > 3 it is trivial to see that lim,_,o_ 8,(A4, ;z) = b(0)Ho(A, ut). Then

we consider cases of n = 1,2. We recall that
(2)Ho(A, ) +¥(2) (H (A, 1) — Ho(A, 1))

8 (A, u52) = Y(2)H (A, p) =y

and ]
Nz2) =b(z) = alz) — ~ — ~za(2).

a(z)

We can also directly see that forn =1,2
1 — -
(1-+2a(2) (1 —n) +2(4 - 15

(0 ) ~Ho(Aob) = =

Together with them we have
80,159 = (ald) ~ D oA )+ (1 +2a@) () 4,
where
— _az), , 1+za(z) ((1+za(z))(u—n) _a(2)
6= s+ (B 0 ).
It is well known in {5] that
1
©==a—r b
a(z) = —%/-gln(—z) + (% - g) +0(=2), as z—0-, n=2.
By this it is crucial to see that
zl—if(?—— Za(z) =0, zl—i}(?— b(z) =% z;>0— % -
and
201+ zal) () =1 -

ng_é 0, 11m ' 50)
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forn=1,2. Letn = 1. Then
a(z)
b(z)

and the corollary follows for n = 1. Let n = 2. In a similar manner to the case of n =1 we
have

8 (A, u;2) = (a(z) — 1 —za(z))Ho(A, 1) + —= (1 +za(z)) (1 —u) + &

D200y 1) + E §<1+za<z>><1~—>+é,

and the corollary follows for n = 2. Hence the proof of the corollary can be derived.
We define 6,(A, u;z) for z € (—o0,0] by

(A’ H; Z), z€ (—°°>0)7
0 (A 152) = { lim0- 6:(A,152), 2=0 @19)

0 (A, 1;2) = (a(z) —

From Lemma 2.4 we can see that §,(1, i;z) converges to

_ l—p, n=1, (Ad,p)ecH,
5r(l,ﬂ§0) = 1- ”/27 n=2, (A'au) € Ho, (2.20)
0, n>3, (A,u)eHo.

Then we can show the continuity of Sr(l, [,L;z) on z:
Lemma 2.5 It follows that
(n=1,2) §,(A,u;z) is continuous in z € (—oo,0] for (A, ) € Hy,
(n>3) 8:(A,u;z) is continuous in z € (—eo,0] for (A, 1t) € R,
We set §; = B;(0) and B, = B,(0). The brunches f; and B, of the hyperbola I split R? into
three open sets

Go={(A, 1) € R*Ho(A, 1) > 0,4 < A(0)},

={(&,n) € R*Ho(A, p) < 0},

Ga={(A, 1) € R*Ho(A, 1) > 0,4 > A(0)}.

Refer to see Figure 4. Hence dGy = f§; and dG, = f3, follow.

Lemma2.6 (1) 1. Let(A,u) € GoUPB. Then §,(A,pu;z) # 0 for z € (—os,0).
2. Let (A, 1) € By Then §,(A,1;0) # 0 forn=1,2.
3. Let (A,u) € By Then §,(A,u;0) =0 forn > 3.

(2) 1 Let(A,1) € GyUB,. Then 31z € (—,0) such that 5,(A,u;z) = 0.
2. Let (A1) € B,. Then §,(A,1;0) #0 forn=1,2.
3. Let (A,p) € B,. Then §,(A,u;0) =0 for n > 3.

(3) Let (A,1) € Gy. Then 3z1,72 € (~0,0) such that §,(A,l;21) = & (A, 1;22) =
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Proof: Let (A, 1) € GoU B;. Then we can see that (A,1) & H, for any z € (—o0,0). Thus
(1)1 follows. Also it can be seen that U,e(_o, 0)Bi(z) D Gi1, Bi(z) N Bi(w) = 0 if z # w, and
B-(z) NGy = 0. Hence there exists a unique z € (—eo,0) such that (A,u) € B;(z), which
proves (2)1. We can also see that U ¢(_a0)Bi(2) D G2, Uze(—e00)Br(2) D G2, Bi(z) N Bi(w) =
0if z # w, Br(z) NP (w) =0 if z # w, and B;(z) N B,(z) = 0. Hence there exist z1,z; € (—0,0)
such that (4,u) € By(z1) and (A,u) € B,(z2), which proves (3). Finally we note that since
(A,p) € B implies that 1 # u forn=1, and 2 # pu for n =2, &(A,u;0) # 0 forn = 1,2
follows. Hence (1) 2 and (1) 3 follow from (2.20), and (2) 2 and (2) 3 are similarly proven.

qed
” : ﬁr
5 G
Gi
[/ R Ao
[3-1\\\ i
Go \ | A
a(0)
5(0)

Figure 4: Region of G;

By virtue of Lemma 2.6, &,(A, ;) has at most two zeros in (—eo,0).
Lemma 2.7 Let n > 1. Then (1) and (2) follow.
(1) Let A # 0. We assume that z1,z2 € (—0,0) and 8,(A,u;zx) = O (if they exist). Then

1 — pna(zx) # 0 and G4 (zx)Zy = Zy has the solutions: Zj = (%l—f%(%,l,m ,1),

k=1,2, and the corresponding eigenfunctions, H;“ L Jx = z2fy, are

fi(p) =

A 1 1 nb(zk) L
— + Y cospi), k=1,2. 2.21)
V5 G E ) —a T ey * 1) (
(2) Let 2 = 0. We assume that z € (—o0,0) and 6,(0,u;z) = 0. Then 1 — pa(z) = 0 and
G+(2)Z=Z has the solution: Z=(1,/2ub(z),--- , \/fub(z))T and the corresponding
eigenfunction, H; uf=2fis

u 1

flp)= G R EG) 2 (2.22)

Proof: We prove the case of n > 2. The proof for the case of n = 1 is similar. Since
o,(A,u;z) =0, we see that

(1- 1a@) (1-2(c(@) + (1= 1)d(2)) ) —nApb*(z) =0.
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Then 1 — pa(z) # 0 if and only if A # 0, and we also have the algebraic relation

aA b2
1—A(c(z)+(n—1)d(z)) = %%.

From this relation it follows that G (zx)Z = Z; for A # 0. In the case of A = 0 we can prove
the lemma in a similar way. ged

We study zeros of 6,(A;z). In a similar manner we extend 6;(A,z) for z € (—o,0].
When n > 2, the function c¢(z) —d(z) exists, and we can define o = lim,_,o_ c(z) — d(z).
Note that @ > 0 and we set A. = L. Let us write 8:(1;2) = p(A;2)""!, where p(A;z) =
A(c(z) —d(z)) — 1. We define 8.(1;z) by

] 8(0z),  z€(—e,0)n>1,
&(A;z) =4 Aa—1)""1 z=0, n>2,
1, ZZO, n=1.

Lemma 2.8 Let n > 2. Then (1)—(3) follow. (1) Let A < A.. Then p(A;z) # 0 for any
7€ (—,0). (2) Let A = A.. Then p(A;0) =0. (3) Let A > A.. Then there exists unique
Z € (—o0,0) such that p(A;z) = 0 with multiplicity one.

Proof: Since ¢(z) —d(z) > 0 is strictly monotone increasing in (—oo,0), we get
P(A;z) < p(Ae;z) <p(Ae;0) =0, if 0<A <A,
p(A;z)=—1, if A =0,

which prove (1) and (2). Since p(1;0) > p(A,;0) =0 and lim,, . p(A;z) = —1 there exists
7 € (—o0,0) such that p(4;z) = 0. By the monotonicity of p(4;-) this zero is a unique and
has multiplicity one. Hence (3) is proven. qed

We immediately Have a lemma.

Lemma 2.9 Let n > 2. Then (1)—(3) follow.

(1) Forany A < Ac, 8:(A;-) has no zero in (—oo,0).

(2) Let A = A. Then 8.(A;0) = 0, and z = 0 has multiplicity n— 1.

(3) Forany A > A, 8:(A;-) has a unique zero in (—oo,0) with multiplicity n— 1.
Next we show the eigenfunction corresponding to zeros of 8¢(A;-).
Lemma 2.10 Letn>2, z € (—,0) and Sc(l;z) =0.le, A= c(z)i—d(z)' Then the solutions

j+2

j
of G+(2)Z = Z are given by Z; = (0,1,0,---,—1,--- ,0)T, j=1,....n—1, and hence the
corresponding eigenfunctions, H ; u87 =128, are

A 1 1 .
gi(p) = ﬁwm_—z(cosm —cospjr1), j=1,...,n—1. (2.23)

In particular the multiplicity of eigenvalue z is at least n — 1.
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Now we study the spectrum located on the left edge of the essential spectrum [0,27], i.e.,
z=0. Suppose that (A, ) € Ho. Then it is possibly &,(1,u;0) = 0 or 5c(A,1;0) = 0. We
study zeros of &,(A,i;0) for n > 3. We set a(0) = a and b(0) = b, and both a and b are finite
forn > 3.

Lemma 2.11 Letn>3 (I)Letl #0and §,(A,1;0)=0. Then1—pa+0and G (0)Z=Z

has the solution Z = ( AT “a, 1,---,1)T and the corresponding equation H} Ny f 0 has the
solution:
nb u
-I— cosp;). 2.24

(2) Let A = 0 and 6,(0,u;0) =0. Then 1 — pa =0 and G(0)Z = Z has the solution:
Z=(1,0,---,0)T and the corresponding equation H. ; u f =0 has the solution:

u 1
= 2.25
Proof: The proof is the same as that of Lemma 2.7. qed

Next we show the solution corresponding to zeros of 8(A;-). Similar to the case of
8,(A,1;z) = 0, we have the lemma below.

Lemma 2.12 Let n > 2 and 8.(4;0) =0, i.e., A = A.. Then the solutions of G+ (0)Z =Z

j+2
are given by Z; = (0,1,0,---,—1,---,0)7, j=1,....,n— 1, and hence the corresponding
equation H;, ,8; = 0 has the solutions
Ae ! ‘ j=1 1 2.26
8j(p) = V3 0 R E(p )(COSP1 cospj+1), Jj=1,...,n—1 (2.26)
Proof: The proof is the same as that of Lemma 2.10. qed

As was seen above the problem for n > 3 can be reduced to study the spectrum of G
by the Birman-Schwinger principle, the problem for n = 1,2 should be howeéver directly
investigated.

As was seen above the problem for n > 3 can be reduced to study the spectrum of G,
by the Birman-Schwinger principle, the problem for n = 1,2 should be however directly
investigated.

Let f be a solution of H;“f =0(resp. H, f=0)(DIf fe L%r (resp. f € L), we say
that 0 is a threshold eigenvalue of HI u (resp. Hy). Q) If f € LAIF \L%L (resp. f € L1\ L%), we
say that 0 is a threshold resonance of H; u (Tesp. Hy'). (3) If feLE\LL (resp. f€LE\LL)
for any 0 < € < 1, we say that 0 is a super-threshold resonance of Hf " (resp. H)).

Lemma 2.13 Letn=1.

(1) Suppose that f € L'(T) and Hj u f=0. Then f =0. In particular Hj u has no threshold
resonance.



(2) There is no non-zero f suchthat f € LE(T?)\ L' (T?) for some 0 < € < 1 and Hy, f=0.
In particular Hj u has no super-threshold resonance.

Proof: (1) Hiuf =0 gives f = @/E and @(p) = pug+ Auy cos p by (2.2). From f € L'(T)
it follows that ¢(0) = pug + Auy = 0. Hence

f(p) = E’(L‘)“ — cos p) o = uip.

We get u; = #”021_7, Jpcostdt =0, which gives pug =0 and f = 0.
(2) Since f ¢ L'(T). It must be that u = 0 and f = ¢@/E with ¢(p) = Au; cos p. Hence

A uicos?p
(2m)*> Jr E(p)

uy =

Then u; = 0, since [} -2 E( ydp = o. Then f = 0 follows.
Next we discuss the spectrum of Hj u for n = 2 at the threshold

Lemma 2.14 Letn=2.
(1) Suppose that f € L'(T?) and Hzﬂf =0. Then A = A; and

COS p1 —COS P2

f(p)= an—. (2.27)

In particular f € L*(T?) and Hj u has no threshold resonance.

(2) There is no non-zero f such that f € L¥(T2)\ L'(T?) for some 0 < € < 1 and Hy , f=0.
In particular Hj u has no super-threshold resonance.

Proof: (1) Considet H,f =0 in L'(T?). We can take f = @/E and @(p) = pug +
Aujcos p1 + Auycos py. Since f € L1(T?), we get ©(0) = pup+ A(u; +up) = 0 and so

f(p) = % (—u1(1 — cos pr) — us(1 — cos pa))

We obtain
A cospy(1 Acospl / cospi(1—cosps) >
= dp dp),
Ny ( [T o Ep 7
A cos pa(1—cospy) cos pa(1 —cospy) )
= — d d .
T Ty (“1 o=y e [ SR

Since fp2 M‘de =—fp %{Mdp, we get

A cospi(1—cospy)
ul—W(uz——ul) (/’]1‘2 1E(p) 1 dp),

uz:(2_%5(“1_“2)(frzcospz(;(;)cospz)dp>
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and hence u; = —u. Consequently, fug = 0, and the solution of H} u f =0is of the form

Cospy —COSp2 _ 1 2/m2
f(p) = Aug —2PL—Z0P2 22y, (2.28)
») o (1)
. .. .. 2 cos p (cos p1—cos pp) _
Inserting this into the definition of u;, we have Gre Jpe =2 E(ppl) Zdp =1 and thus

taking A = A, we can see that (2.27) is the solution of Hj u f = 0. Notice that uy = 0 follows
from (2.28).

(2) Since f ¢ L'(T?). It must be that 4 = 0 and f = @/E with @(p) = Aujcosp; +
Auycos py. Hence

= A / ug cos? py 4 up cos py cospzdp
(27m)? J12 E(p) ’
A u1 cos p cos p1 + uy cos® py
(2m)? Jr2 E(p)

Then u; = —up and 1 = (2}1)2 Jp2 28 ’(COE{;)JFCOSP 2) dp. Thus A = A.. Then f is given by
(2.28), but f € L2(T?). This contradicts with f ¢ L!(T2).

Lemma 2.15 (1)-(5) follow:

(1) Let n = 1. Then 0 is none of a threshold eigenvalue, a threshold resonance and a
super-threshold resonance.

(2) Let n=2. Then 0 is a threshold eigenvalue with (2.26) for (A, 1) = (A, i) and its
multiplicity is one.

(3) Let n =3,4. Suppose (A,u) € Hy. Then O is a threshold resonance with eigenvector
(2.24) for A # 0, and (2.25) for A =0, i.e., (A, 1) = (0,1/a).

(4) Let n=3,4. Suppose (A,u) € Hy. Then 0 is a threshold eigenvalue with (2.26) for
A = A and its with multiplicity is n — 1.

(5) Let n > 5. Suppose (A,u) € Hy. Then O is a threshold eigenvalue with eigenvector
(2.24) for A, # A # 0 and multiplicity one, (2.24) and (2.26) for A = A, and multiplicity
n, and (2.25) for A =0, i.e, (A, 1) = (0,1/a), and multiplicity one.

Proof: (1) follows from Lemma 2.13. The solution of H. 71” i f=0is given by (2.24), (2.25) and
(2.26). We note that [}, E—zl(p—)dp =coforn=2,3,4 forany € >0, and [, ., E+(mdp <o

for n > 5 for any € > 0. Since (A, 1) € Ho, n # p, and we can see that

l—p(a—b)\ _ n—p
1—pa T 1—pa

nbu
1—pua

nbit £0.

n
+ cost———+n=:n<
jZZ'I 1—-ua

Hence, using Lemma 2.2, we obtain (2.24),(2.25) € L? forn > 5, (2.24),(2.25) € L'\ L? for
n=13,4 and (2.26) € L? for n > 2. (2) follows from Lemmas 2.14 and 2.12. (3) and (5)
follow from Lemmas 2.12 and 2.11. (4) follows from Lemma 2.12. qed



3 Spectrum of odd part H,

In the previous sections, we study the spectrum of H. ; u by using the Birman-Schwinger
principle for n > 3, and by directly solving H ;r 4 S =0forn=1,2. In the case of H, we can
proceed in a similar way to the the case of H f i and rather easier than that of H ; 38 is seen
below. Let z € C\ [0,2n]. Let N,, be the linear hull of {sy,---,s,}. As is done for ny, we
can see that (Hy — z)_lVA_ = 515,. Here $; and S, are defined by

Ao
S1:C*> (wy,- -+, W) — (H()—Z)_IE ZWij GLZ_,
jas|

Sp: L% 39+ ((9,51),-,(@,s,)) € C".
We set G__(z) = $281 : C* — C”. The following assertion is proved as Lemma 2.1.
Lemma 3.1 (Birman-Schwinger principle for z € C)\ [0,2r))
(1) z € C\[0,2n] is an eigenvalue of H, if and only if 1 € 6(G_(2)).
(2) Letz€ C\[0,2n) and Z = (wy, ..., w,)T € C" be such that G_(z)Z =Z. Then f = S, Z,
1 1 A
f(p)= R E() —z (%j:]wj SiﬂPj)
is an eigenfunction of Hy , i.e., H, f =zf.

We see that G_(z) = As(z)I. Consequently we have for n > 1, §;(A;z) = det(G_(z) —I) =
(As(z) —1)". Since G_(z) is diagonal, it is very easy to find solution of G_(z)Z = Z. It has n

J
independent solutions: Z; = (0,---,1,---0)7. The corresponding eigenvector, H. 2 fi=z2fj
is given by

1 1 A

fj(P)ZmWESij, Jj=1,...,n, (3.1)

where A = 1/s(z). In particular the multiplicity of z is n. We can extend the Bitman-
Schwinger principle for z = 0. We extend the eigenvalue equation H. 2 f=0in L? to that in

L' . We consider the equation
A= :
E(p)/(p) ~ (i X Sinp; [ sinpsf(p)dp =0 62
j=1

in L. We also describe (3.2) as H, f =0. We can see that sinp;/E(p) ~ 1/|p| in the
neighborhood of p = 0, and then sinp;/E(p) € L' for n > 2. By (5) of Lemma 2.2 and
V, f € C we can see that
L5 fHy'V fel?, n>3, (3.3)
L'>f—H'V feLl, n>2. (3.4)
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Thus for n > 2 we can extend operators S; and S. Letn > 2 and Z = (wy,--- ,w,,)T. St
C" — LL is defined by

- 1 A1 &
S1Z=——%—F7=-— ) w;isinp;
(271')"/2\/§E(p)]; J5P;
and S, : L' — C" by

S:Lt390 ([ 0@ @)dp,.... [ o@s(p)ap) e

Then §1S,: L1 — L!. Consequently G_(0) = 5,5, : C" — C" is described as an 1 x n matrix.
Let n > 2. We have (1) lim,_,0 G_(z) = G_(0), and (2) O'(H()*lV[) \ {0} = 0(G_(0))\ {0}.
Hence forn > 2,

G-(0) = As(0)1 (3.5)
and &;(A;z) is defined by

O(A;2) 7 € (—,0),

SS(A;Z) :{ (ls(o)_l)n z=0. (3.6)

Lemma 3.2 (Birman-Schwinger principle for z =0) Lét n > 2. Then (1) and (2) follow.
(1) Equation H, f = 0 has a solution in LY if and only if 1 € 6(G—(0)). (2) Let Z =
(Wi,...,wn)T € C" be the solution of G_(0)Z = Z if and only if f = $,Z, i.e.,

1 1 A ¢ .
f(p) = (2717)” m%;szmpj

is a solution of H;_ f = 0, where wj = @‘tz)%gfwf(p)sinpjdp, j=1...,n

Proof: The proof is the same as that of Lemma 2.3. ged
Set A, = %ﬁ‘
Lemma 3.3 Let n > 1. Then (1)-(3) follow:
(1) Let A < As. Then 8,(A;-) has no zero in (—oo,0).
(2) Let A = A;. Then SS(M;O) = 0 and z = 0 has multiplicity n.
(3) Let A > As. Then 8,(A;-) has a unique zero in (—oo,0) with multiplicity n.

Proof: The proof is similar to that of Lemma 2.9, and hence we omit it. qed

Threshold resonances and threshold eigenvalues for /7, can be discussed by the Birman-
Schwinger principle for n > 2.

Lemma 3.4 Let n > 2. Then the solutions of equation H, f = 0 are given by

_ 1 A sinp;
IP) = Gy 5 E )

j=1,...,n. 3.7



Proof: By 8(As,0) = 0 and Lemma 3.2 the lemma follows. qed

For n =1 we can directly see that H, f = 0 has no solution in L', but H , has a super-
threshold resonance.

Proposition 3.5 (Super-threshold resonance) Let n= 1. Then H, f = 0 has solution f €
Lf \L1 forany 0 <€ <1. Le., O is a super-threshold resonance of H, .

Proof: H) f = 0 yields that

As

f(p)= ME() sinpf(p)dp.

Note that however sinp/E(p) ¢ L', but we can see that sinp/E(p) € L€ for any 0 < & < 1
since sinp/E(p) ~ 1/pnear p =0 and J3 p ¢dp < oo. ged

Lemma 3.6 (1) Let n= 1. Then 0 is neither a threshold resonance and a threshold eigen-
value, but for (A, ) with A # 0, 0 is a super-threshold resonance.
(2) Let n="2. Then 0 is a threshold resonance at A = Aj.

(3) Let n> 3. Then 0 is a threshold eigenvalue at A = As and its multiplicity is n.

Proof: (1) follows from Proposition 3.5. Let n > 2. Then the solution of H [ =01s given

by (3.7). Since 4 € L1\ L? for n =2 and 4 € L? for n > 3, we have f € L'\ L2 for

n=2,and f € L? for n > 3. Then (2) and (3) follow. qed

4 Main theorems

4.1 Caseofn>?2

In order to describe the main results we have to separate (A, i1)-plane into several regions.
Lemma 4.1 Let n > 2. Then Aw(z) < As(z) < Ac(2) for z € (—e0,0].

Proof: Tt follows that 2 (2) = g > As(2) = iy > Aw(z) = 53 for z < 0. By a limiting
argument the lemma follows. qed

Introduce four half planes:
C={(A,1) eRYA <A}, €r={(A,n)cR}A > A}
- ={(A,p) eRIA <A}, 6,={(A,n)eR2A >4},

and two vertical lines: B, = {(A, 1) € R*|A = A} and B; = {(A, 1) € R?|A = A,}. Note that
&_ C¢_and €, C &, and we define open sets by

Dy=Gyg, Di=G NS, D=G,NG_, Dn+1=Glﬂ(6+ﬂ€_),
Dpi2 =GN (G4:NE), Dyp=GiNEy, Dopy1=GyNE,.
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Do | D1 | Dy | Dny1 | Dpy2 | Do Dayi1
E.vin (—o0,0) [ O 1 2 n+1 | n+2 |2n 2n+1
By | Sk C Point A Point B
E.v.(—,0) k ko k 1 n+1
n=2 “ =2 2 n=2 2 |n=2 —
0 res. n=34 1 n>2 — |n=34 1 |n=34 1
n>S5 - P - n>5 — |n>5 —
n=2 =2 N n=2 — |n=2 1
0.e.v. n=34 - n>2 n—1|n=34 n |n=34 n-—1

nxs 1|23 0 n>5 a+l|n>5  n

Table 1: Spectrum of Hj , for (A, 1) on Dy and the edges of Dy, for n > 2

Sh C;Lz S CJ-#Z

Dn+2 Dﬂ'}'g
A P+l

B

D, H D, Hy
| 0 S
e Lol
Dy D, D1 Dy,
As A A Ac
n>3 n=2

Figure 5: Hyperbola for n > 2

The boundaries of these sets define disjoint eight curves:
By = Bla By = ﬂrh6_, Bn-{-l = ,Brm (6+ n €-)r By, = Brm Q:-I—’
S1= ﬁSﬂGIa S = ﬁSmGZ, Crt1 = ﬁanl’ Cri2= chGZa

and two one point sets given by A = 8, N f; and B = B, N ..
We are now in the position to state the main theorem for n > 2.

Theorem 4.2 Letn > 2.

(1) Assume that (A, 1) € Dy, k € {0,1,2,n+1,n+2,2n,2n+ 1}, then Hy, has k eigen-
values in (—0,0). In addition Hy,, has neither a threshold eigenvalue nor a threshold
resonance.

(2) 0is not a super-threshold resonance of Hy,, for any (A,j1) € R2.
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(3) Assume that (A, L) in By, S, Cy and A, B results in Table 4.1 are true:

Proof: (1) follows from Lemmas 2.6, 2.9 and 3.3. (2) follows from Lemmas 2.13 3.4 and 3.6.
(3) follows from Lemmas 2.15 and 3.6. qed

As is drawn in Figures 5 and 9, hyperbolas for » = 1,2 include the origin (0,0), which
is different from those for n > 3. It actually describes that the Hamiltonian H, , with A =0
has a negative eigenvalue for any pt > 0. This is clarified in e.g.,[3] and is also hold for one
or two dimensional Schrodinger operator of the form —(1/2)A+ V- We refer to see e.g., [6]
and reference therein. Moreover for any (4,1) € (0,%0) x (0,0), H; ,, always has negative
eigenvalue and dose not have threshold resonance nor threshold eigenvalue for n = 1,2.

By a Rellich type theorem for the discrete Schodinger operator, embedded eigenvalues
may be absent in the interval (0,2r). Under some assumptions this is proven in [4]. We are
however interested in constructing a2 Hamiltonian Hj, which has two eigenvalues on both
edges of the spectrum [0, 2. See Figure 6 below:

0 2n
[ o

Figure 6: Two embedded eigenvalues or resonances of Hj ,,

By the discussion stated in the previous sections we can construct an example of discrete
Schrodinger operators which has two embedded eigenvalues. Let n > 3. Points (A, 1) on
the blue curve in the upper left construct Schrédinger operators Hj , which has resonance or
eigenvalue at 0. On the other hand points (A, it) on the red curve in the upper right construct
Schrodinger operators Hj ;, which has resonance or eigenvalue at 2n. See Figure 7.

LA

B =<

N
> R et >>=,(21)

L/

[
/i

Hyperbola H Hyperbola F,
Figure 7: Resonance and eigenvalue oh edges

‘We have the theorem.

Theorem 4.3 (1) Let n = 3,4. Then there exists two pints (A1, 1) and (A2, 12) in (A, 1)-
plane such that both 0 and 2n of the spectrum o (H A uj) are simultaneously resonances. (2)
Let n > 5. Then there exists two pints (A1, 1) and (A3, 1) in (A, l)-plane such that both O
and 2n of the spectrum o (H, A ”j) are simultaneously eigenvalues.

Proof: Two brunches 3,(2n) and B; cross at just two points (A, it;) and (A, ) for n > 3,
where A1, 43 < 0 and Ay, ity > 0. Refer to see Figure 8. In the case of n = 3,4, two points
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0 and 2n are resonances and in the case of n > 5 these are eigenvalues. Then the proof is
completed. qed

i
B
(A1, 1

L S

B:(2n)

(A2, u2)
Figure 8: Crossing points of hyperbolas

42 Caseofn=1

Let n = 1. In this case, the asymptote of g is (Aw(0), tteo(0)) = (1,1), and A, is not defined.
We also see that A; = 1 = A(0). Then we have 4 sets Dy = Go,D; = G1NGS_, D, = G1NA;
and D3 = G,. The boundaries of these sets define disjoint three curves:By = f3;, B = 3, and

Ay = Bs.
By Ay
Dy Dy D, D3 E.v.in (—e0,0) k 1
E.v.in (—o0,0) 0 1 2 3 O res. — -
' 0.e.v. - -

Table 2: Spectrum of Hj,, for (4, u) on Dy and the edges of Dy forn =1
n

Now we formulate next result for n = 1.
Theorem 4.4 Letn=1.

(1) Assume (A,1) € Dy, k € {0,1,2,3}. Then Hy, has k eigenvalues in (=,0). In addition
0 is neither a threshold resonance and a threshold eigenvalue.

(2) Assume that (A, ) with A = Ag = 1. Then 0 is a super-threshold resonance.

(3) Assume that (A, 1) in By or Ay. Then results in Table 4.2 are true: In particular Hy,,
has neither a threshold resonance nor a threshold eigenvalue.

Proof: The theorem follows from Lemmas 2.6, 2.9, 3.3. 2.15 and 3.6. qed

Acknowledgements This work is financially supported by Grant-in-Aid for Science Re-
search (B)16H03942 from JSPS. We thank kind hospitality of Euler International Mathemat-
ical Institute, St. Petersburg, Russia, and E.Korotyaev for organizing "2nd Summer School:
Various aspects of mathematical physics" held in July 8-11, 2017, where this work is partial
done. We also thank J. Mgller, Y. Nomura and H. Morioka to send us attention of Theo-
rem 4.3. Finally we thank Tomoko Eto for drawing beautiful Figures 1-8.



165

)
+

As

Figure 9: Hyperbola for n =1
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