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Construction of wave operators for Hartree equations
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1. Introduction

In this article we consider the following Hartree equations with a Hardy potential:

ca (—A+L>u+u(K*[u|2) inR x RV,

(HE), "ot~ EE
’U,(O) = Uy,
where 7 = +/—1, N > 3 and ,
a>a(N):= —(L:—?)—.

K x |ul? is the usual convolution
(@)= [ Ko = y)lut)dy.

We suppose some conditions for K for analyzing (HE),:

(K1) K is real and even function, that is, K(—z) = K(z) € R a.a. z € RY;

(K2) K € L®(RY) + LYR") with ¢ > N/4 and ¢ > 1;

(K2a) K € L%(RN) + L2(RY) with ¢ > 1 and N/4 < q; < go < N/2;

(K3) K_ := max{—K,0} € L®°(R") + LY(R") with ¢ > N/2.

(K3a) K >0and K :=2K +z-VK <0;

(K4) K € L*(RY) + LI(RY) with § > N/4 and § > 1;

(K4a) K € L%(RN) + L2(RY) with §, > 1 and N/4 < § < & < N/2.

Note that (K2a), (K3a), and (K4a) imply (K2), (K3), and (K4), respectively.

In general, semilinear (or nonlinear) Schrodinger equations is described strongly dis-
persive effects of waves, for example, propagation of signals in optical fibers. Especially,
(HE), (without a linear potential term a|z|~?u) represents nonlocal interaction, for exam-
ple, Hartree-Fock theory and WKB approximation for multi-body Schrodinger equation.
On the other hand, the linear operator P, := —A + a|z|~? arises from both physics and
mathematics. In physical sides, P, is concerned with quantum mechanics (Calogero-Moser
System), wave propagation on conic manifolds, and combustion theory. On the one hand,
in mathematical sides, P, is concerned with scaling symmetry and the presense of thresh-
old for the nonnegativity and selfadjointness. Since P,[u(Az)] = A?(P,u)(Az), we see that
(HE), can not be reduced to the case with |a| and ||ug||z: small enough. This implies that
the term a|z|™2 represents non-negligible effect. Moreover, the restriction of a is affected
by the Hardy inequality

(V=2 [ |u()? 2
1 /IRN P dz < /}RN |Vu(z)|* dz.



Here the coefficient (N — 2)2/4 is optimal.
Here one of keys for analyzing (HE), is the energy class D := D((1 + P,)/?). If
a > a(N), then D is just equal to the usual Sobolev space H*(RY). If a = a(N), then D
is a wider space than H*(R"). Thus we denote X!(RY) as D with a = a(N). Note that
HY(RM) ¢ XY(RM) ¢ H*(RY) (s < 1). In fact,
(N+2S/4) (1 ) s/2
=~ ” a(N)f”LZa
F(V—29/A) T(15)/2)
where I' denotes the gamma functions (see Suzuki {11 Theorem 3.2]). We also denote D*
as the conjugate space of D. Thus H}(RV)* = H~}(RY) and X}(RV)* = X ~}(RV).
Local and global well-posedness for (HE), is proved in [9] for a > a(N) and [11] for
a=a(N).
Proposition 1.1. Let a > a(N). Assume (K1) and (K2). Then for any uy € D there
uniquely exists a local weak solution v € C([-T,T); D)NC*([-T, T); D*) to (HE),. More-
over, u satisfies conservation laws:

(L.1) lu@®llze = lluollzz, E(u(t)) = E(w) Vte[-T,T],
where

E(g) = 3P0l + 1GIK](y)
1

=3 fRN['Wl?ﬂ St a1 ([ K-l dsdy

Furthermore, (K3) yields that the local weak solution of (HE), can be extended to the
global weak solution u € C(R; D) N C*(R; D*).

If up € D belongs also to D(|z]), that is, |z|ug € L*(RY), then the local weak solution
u € C([-T,T); D) N C([-T,T]; D*) to (HE), also belongs to C([-T,T]; D(|z|)). In fact,
we see by a simple calculation that

I=2)" ]l <

%qu(t)”%g = 4Im/ zu(t,z) - Vu(t,z) dz.
RN

Here the evaluation of ||zu(t)||z2 is available by assuming further (K4). Actually, we call
the identity about ||zu(t)||zz the virial identity. The identity plays important roles in
global analysis for (HE),:

12 Lleu®l = sIP
- 2//RN(36 —vy) - VK(z — y)|u(t, $)|2|u(t, y)|2 dedy

(see [10, Section 3] for a > a(N) and [13, Section 3] for a = a(N)). Applying (1.1) we
obtain

(1.3) %IIM(t)IIZLz = 16 E(uo) — 2//sz K(z — y)lut,@)u(t, y)|* dedy.

We can prove the finite time blowing up for (HE), via the virial identity (see [10,
Theorem 1.2] for a > a(N) and [13, Theorem 4.1] for a = a(N)).



Proposition 1.2. Let a > a(N). Assume (K1), (K2), (K4), and K > 0. Then for
any uo € X := DN D(|z|) with E(uy) < 0 the local weak solution u € C([-T,T];X) N
CY([-T,T); D*) to (HE), cannot be extended globally in time t € R. More precisely, there
exist T, Ty > 0 such that

¢ 1/2 — : 1/2 —
Jim IRl = o0, lim P u(t)lzs = co.

We are interested in the asymptotic behavior of the global solutions to (HE),. Note
that the solutions are oscillating owing to the presence of % in the evolution equation (HE),
and the conservation laws (1.1). Thus we consider the existence of the following limits

Uy = tlzrinoo exp(itP,)u(t).

We say that (HE), is asymptotically free in X if the limits exist for any solution to (HE),
with initial data belonging to ¥. The inverse mappings Wy : uy — wug may be also
considered. The maps Wy are called the wave operators for (HE),. To construct Wy we
need to solve the following final value problems associated to (HE),:

(FVP) {Wt = Pau+u(K *[u?) in (0,00),

lim exp (itP,)u(t) = uy  strongly in 3.
t—o0
In a way similar to Hayashi-Tsutsumi[4] we can apply the pseudo-conformal transform
also to (HE), and (FVP):
. 2 IRE—— e
- — (i)~ (d{vl_) (3.9
u(t, z) := (Cv)(t, z) = (it) expl )3 3)
By simple calculations we see that
exp(—itP,)D, = D, exp(—v*tP,) YteR,v >0,
it
exp(—itPy) My = My/(145t)D1/(145t) €XD (vﬁPa) VteR,beRwith1+ bt >0,
where (D,u)(z) := v™?u(vz) and (Myu)(z) := exp(ib|z|?/4)u(z). Thus we can rewrite

(Cv)(t,z) = iN2My ;D1 v(t1, 7). Note that we need to set ¥ not as D but as DN D(|z|)
(weighted energy space) so that the transform C works well. In fact,

IVu@ll =) (5 +59)o™) 0 Nlelut@ll, = 1 lalvt ) ,n teR

By applying D, and M,, we have

exp(—i(1 — t)Py)u(t,z) = i"N/2D1M1eXp(—i(1 —t Y P,)v(t1, z).
Letting t — oo we see

(1.4) exp(—iP,)uy = i~ N2 Mexp(—iP,)v(0, z).



Thus (FVP) is converted into the following initial value problems:

. . _2 2 .

(IVP) tvy = Pov+ t. v (Dl/t].{ * |v| )2, . in (0, c0),
v(0) = vy =i N2 exp(iP,)e!**/* exp(iP,)uy in X.

If we solve (IVP), we can also solve (FVP). Thus we can construct the wave operators
for (HE),. Suzuki[12] proved the scattering problems for (HE), with the specified case
by applying the contraction methods.

Proposition 1.3. Let K(z) := |z|™.

(i) Assume that a > a(N) and 1 < v < min{N,4}. Then for every global solution
u € C(R;Z)NCY(R; D*) to (HE), there ezists uy € L*(RN) such that exp(itP,)u(t) — u
(t = o0) strongly in L*(RN);

(ii) Assume either a > a(N) and 1 < v < 2, ora > (y—2)%/4+a(N) and 2 < v <
min{N,4}. Then for every uy € T there ezists a global solution u € C(R;X) N C*(R; D*
to (HE), such that exp(itP,)u(t) — uy (t = 00) strongly in 3.

In this article we prove the scattering problems for (HE), under more generalized cases
via the energy methods.

Theorem 1.4. Let a > a(N). Assume (K1), (K2a), (K3), and (K4a). Then for any
uy € X there uniquely exists a solution u € C(R; X)NCY(R; D*) to (FVP). Thus the wave
operator W, : uy — u(0) is well-defined in Z.

On the contrary, we can show the asymptotic free in ¥ of (HE), in an almost similar
way to Theorem 1.4.

Theorem 1.5. Let a > a(N). Assume that (K1), (K2a), (K3a), and (K4a). Then for
any global solution u € C(R;X) N CY(R; D*) to (HE), there exist the following limits

lim exp(itP,)u(t) = uy strongly in X.
t—+oo

Thus Theorems 1.4 and 1.5 imply that (HE), is asymptotically complete in X, that is,
W, are bijective in ¥ and the scattering operator S := W;l o W_ is well-defined.

This article is divided into 4 sections. In Section 2, we give the abstract theory related
to (IVP). In Section 3, we show Theorems 1.4 and 1.5 via the energy methods proposed in
Section 2. In Section 4, we remark some comments about scattering problems for (HE),.

2. Abstract theory for nonlinear Schrodinger equations

Let S be a nonnegative selfadjoint operator in a complex Hilbert space X. Put Xg :=
D((1+ S)'/2). Then we have the usual triplet: X5 C X = X* C X%. Under this setting
S can be extended to a nonnegative selfadjoint operator in X§ with domain Xg. Now we
consider the abstract nonautonomous semilinear Schrodinger equations:

du
(ACP) == Su+g(t,u) te(-T,T),

u(O) =ug € Xg.



g(t,u) is a nonlinearity mapping from [—T,T] x Xs to X% under the following conditions.
For simple notation we denote By := {u € Xg;||ul|xs < M}. Moreover, ¢ € LP(-T,T)
(p > 1) is a nonnegative function.

(A1) Existence of energy functional of g: for all ¢t € [-T,T], u € Xg, and € > 0 there
exists 0 = 6(u,e) > 0 such that

|G(t,u+v) — G(t,v) — Re (9@t u), v)xz.x5] < €llvllxs Vv € Bs;
(A2) Local Lipschitz continuity of u-variable:
lg(t,w) = g(t,0)llxz < C(M)lu—vllxs Vte[-T,T], Vu, v € Buy;

(A3) Holder continuity of ¢-variable:

llg(t,u) — g(s,u)[lx; < C(M) / <P(<7)d0' Vt,s€[-T,T], YV u€ By

(A4) Holder-like continuity of energy functional:
IG(t,u) —G(t,v)| <+ Cs(M)||lu—v||x VI>0,Vte[-T,T], Vu, v € By;

(A5) Partial differentiability of energy functional and Holder-like continuity of
u~variable:

|Ge(t,u) — Gi(t,v)| < @(t) [0 + Cs(M)||u —v||x] a.a.te(=T,T), Vu, v € By
(A6) Gauge type condition for the conservation of charge:
Re <g(t, u),iu>xg,xs =0 Vte [—T, T], Vue Xg;

(A7) Weak closedness condition: let I C (=7,T) be an open interval and {w,}, C
L*°(I; Xs). Then

Wy (t) = w(t) (n = o0) weakly in Xg a.a.t €I,
g(t,wn(t)) = f(t) (n = 00) weakly* in L=(I; X%)

21) = /I Re (£(0), i) xzx, dt = Jim. [ Re (g(tun(t), 1O x, .

Moreover, if w,(t) = w(t) (n — oo) strongly in X a.a.t € I, then f(t) = g(t, w(t));
(A8) Boundedness from below of G: there exists £ > 0 such that
G(t,u) 2 —[(1 —&)/2 15" ?ul% ~ C(lullx) Vte€[-T,T], Vue Xs;

(A9) Boundedness from below of G;: there exists ¢ € L*(=T,T) with 9(¢) > 0 such
that

sgn(t) Gu(t,u) < YOS ul% + C(llullx)] aa.te (-T,T), Vue Xs.
If g maps unilaterally, from [0, T] x Xg to X%, then we consider the even extension:

g(t,u) :=g(|t|,u), Gt,u):=G(|t|,u) Vte[-T,T).



Theorem 2.1 (Energy methods). Assume (A1)-(A7). Then for any uy € Xs there
ezists a local solution u € Cy([—To, Tol; Xs) N Wh*(=Ty, Ty; X&) to (ACP) with the
following conservation laws

lu(@®llx = lluollx,  E(t u(t)) = E(0,u0) < /Ot Gi(s,u(s))ds Vit e [-To, To,

where E(t,u) := (1/2) |SY?ul% + G(t,u(t)). Moreover, assume further (A8) and (A9).
Then the solution u can be extended globally in time t € [T, T).

Remark 2.1. We need to prove uniqueness for (ACP) by another method. In fact, we
verify the uniqueness for (HE), and (IVP) by applying the Strichartz estimates (see
Lemma 3.2). Here the uniqueness yields that the energy inequality of E is just an equality.
Hence the solution w is strongly continuous: u € C([—Ty, To}; Xs) N C*([—To, To); X3§)-

One of the keys for proving of Theorem 2.1 is the theory of nonautonomous semilinear
evolution equation. Let X be a (complex-valued) Hilbert Banach space and A be a linear
maximal monotone operator in X, that is, R(1+ A) = X and Re (Au,u)x > 0. Then —A
generates contraction Cy-semigroups {e7*4;¢ > 0} C B(X), the family of bounded linear
operators on X. Now we consider

du .
(2.2) i Au+go(t,u) =0 in[0,7] x X,

Assume that go satisfies

(H1) Lipschitz continuity of gy in u: for all ¢ € [0,7], and for any u, v € X with
lullx < M and [jv]x < M

90(t, 1) = go(t, v)l[x < C(M)]lu—vl|x;

(H2) Holder-like continuity of go in ¢: there exists ¢ € LP(0,T) (p > 1) with ¢(t) > 0
such that for all ¢, s € [0,7] and for any u € X with |lullx <M

/st go(a)dol.

In a way similar to Cazenave-Haraux [3, Propositions 4.3.2 and 4.3.9] we can show the
unique existence of solution to (2.2):

ll90(t, u) = go(s, u)l|x < C(M)

Lemma 2.2. Assume (H1) and (H2). Let ug € D(A). Then there uniquely exists u €
C([0,To]; D(A)) N CY([0,To); X) such that u is the local solution to (2.2). Here Ty € (0,T]
is determined by ||uo||x-

Proof. Unique existence of local solutions u € C([0, To); X) to (2.2) are followed by (H1)
with a standard contraction argument for the integral equation related to (2.2):

u(t) = ®u(t) = e uo + / t e~ =49, (s,u(s)) ds.
0



It remains to show that the regularity of solution. Thus let uy € D(A) and u € C([0, Tp]; X)
be a local unique solution to the above integral equation. Set h > 0 sufficiently small and
t € 0,7 — h). We divide u(t + h) — u(t) = @[u](¢t + h) — @[u](t) into Iy, 1, I, and I3 as
follows:

Ty i= e~ @Ay _ omtdy
t
L= / e gt + h—s,u(t +h—s)) —g(t+h —s,u(t — 5))] ds,
0
1
L= [ e Aot hs,ult =) - g(t - s,ult - )] ds,
0

h
I3 = / e~ tHh=945(5 u(s))ds.
0
First we see for I as a standard evaluation:
e~ WAy — et ug||x < Al Aug||x.
We can evaluate the norm of I; by applying (H1):
1
IL]lx < / lgtt+h—s,ult+h—3s))—glt+h—sut—s)|xds
0
t t
< / CM)||lu(t+h—s) —u(t—s)||xds= C(M)/ lu(s + h) —u(s)| x ds.
0 0
Next we consider I,. Applying (H2) we have
t
ol < [ llgfe+h—s,u(t = 5)) = gft = s,u(t = 5)) s
0

£ /: C(M) [/tﬂ*h—s v(0) do] ds.

8

Here the last integral is estimated by changing the order of integration (see Figure 1).

/Ot [/t:rh—s (o) da] ds
= /oh [/t; (o) ds] do + /ht [/t:o+h v(0) ds] do + /tHh [/Ot—o+h (o) ds] do

= /Oh op(o) do + /ht hy(o) do + /tt+h(t — o+ h)p(o)do

< /Oh hop(o) do + /ht ho(o) do + /:Jrh hp(o)do < h/o (o) do.

Thus we obtain -
fallx < CODA [ (o) do
0



] S
| ht—htt+h

Figure 1: integration on I,

Next we evaluate I3 as follows:

h
23]l x < /0 [lgo(s, u(s)) = go(s, 0)llx + [lgo(s, 0) | x] ds
< R[C(M)M + |g(-,0)llco,ryx)]-
Combining the evaluation for I; (j =0,1,2,3), we obtain
1
-+ ) = )l < Ok +C(M) [ fuls + 1) = u(s)lx ds,
0
where 5
C(M) = COM + (- Olewomioo + [ (o) do
The Gronwall lemma implies
lu(t + B) — u(t)||x < C"(M)heC™X,

Since u is globally Lipschitz continuous in [0, 7o), u € W*°(0, Tp; X).
Next we show u € C([0, Tp); D(A)) N C*([0, Tp]; X ). To derive this, it sufficient to show
that the nonlinear term g(¢,u(t)) belongs to WP(0,T; X) (p > 1):

(
llg(t + R, u(t + ) — (¢, u(®))llx
< lg(t + hyut +h)) = g(t + hyu®)llx + llg(t + b, u(t)) — g(t, u(®))llx

<o [ plo) do| + CODe+ b) - u(t)lx

< /Hh[C(M)sD(G) +C(M)C'(M)e“)do .

By virtue of Cazenave-Haraux [3, Proposition 4.1.6], we have proved the regularity of
(local) weak solution to (2.2): u € C([0,T7]; D(A)) N C*([0,T]; X).

Note that semilinear Schrédinger evolution equations can be solved backward and for-
ward. Now we consider

(2.3) ((iit = Su+go(t,u) in[-T,T]x X,
u(0) = ug



Assume that g, satisfies (H1), (H2) (with replacing [0, 7] by [~T',T1]), and

(H3) Existence of energy functional: there exists Gy € C([-T,T] x X;R) such that
forallt € [-T,T], u € X, and & > 0 there exists § = 6(u,&) > 0 such that

|Go(t, v+ v) — Go(t,u) — Re(go(t,u), v)x| < ellv]lx Vve X with |Jv||x < 6;

(H4) Holder-like continuity of Go: Go(t,u) is partially differentiable in ¢ for any
u € X. Moreover, for any u € X with ||ul|x < M

|Goe(t, u) — Gou(t,v)] < (t)[0 + Cs(M)||u —v||x] a.a.te (=T,T);
(H5) Gauge type condition:
Re{(go(t,u),iuyx =0 Vte [-T,T], Vue X.

Apply Lemma 2.2 with letting A := +iS and replacing go(t, u) by =+ go(&¢, u) (double-
sign corresponds). Thus (H1) and (H2) yield the unique existence of local solution u €
C([-To, To); D(S)) N CH([~To, To); X) to (2.3). (H3)-(H5) imply the conservation laws:

(2.4) [u(@®)llx = lluollx,  Eo(t,u(t)) = Eo(0,uo) +/0 Goi(s, u(s)) ds,

where Fy(t,u) := (1/2)||S*?u||% + Go(t,u). More precisely, (H5) implies the charge
conservation (the former of (2.4)); (H3) and (H4) imply the energy conservation (the
latter of (2.4)); By virtue of the conservation laws (2.4), the local solution can be extended
globally in time ¢: u € C([-T,T]; D(S))NC*([-T,T); X). Finally, arguments of denseness
(see [2, Theorem 3.3.1]) follow the assertion.

Lemma 2.3. Assume (H1)-(H5). Then for any uy € Xg there uniquely exists the global
solution of (2.3) u € C([-T,T]; Xs) N C*([-T,T]; X%). Moreover, u satisfies the conser-
vation laws (2.4).

2.1. Outline of proof Theorem 2.1

Theorem 2.1 is proved in [14]. Now we give the outline of proof. In a way similar to
[7] we divide into 5 steps as follows:

Step 1. Construct a global and approximated solution of (ACP):

(ACP), dt

due
e Stue + ge(t,u.) te (-T,T),
U(O) = ug € Xg,

where g.(t,u) = (1 +¢&S)g(t, (1 + eS)~'u). Since g. maps from [-T,7] x X to X,
we can apply Lemma 2.3. (H1)-(HS5) are verified by (A2), (A3), (A1), (A5) and
(A®), respectively. Here u. € C([-T,T]; Xs) N C*([-T,T]; X%) satisfies the following
conservation laws:

lee®llx = luollx,  Eelt,ue(t)) = Ee(0, ug) + / BuG (s, ue(s)) ds,



10

where G(t,u) := G(t, (1 +¢&S)~'u) and
1
E(t,u) = 5”(1 + S)l/?,u“%{ + Ge(t, u).
Step 2. Evaluate ||(1+5)Y?u.(t)||x uniformly in ¢ € [~Tys, Tas] and in € > 0. This is the

same way to [7]. To end this, we need to assume further (A4).

Step 3. Confirm the weak convergence of (ACP). to (ACP). By virtue of Step 2, there
exists the limit function u of u., which satisfies

zd—? =Su+ f(t) te€(=Tm,Tu),
U(O) =uy € Xg.
Here f(t) is the weak* limit. of g, (¢, uc(¢)) in L®(—=Tnr, Tar; X3).

Step 4. Check the charge conservation and make a solution. By virtue of former half of
(A7), we obtain that

Re / " (F@), i) xpxe dt = 0

_TM
This yields the charge conservation ||u(t)||x = ||uollx. Next, the charge conservation
implies the strong convergence of u. in X. By virtue of latter half of (A7), we see f(t) =
g(t,u(t)). Hence we can show that the limit function u(t) is a just solution to (ACP).

Step 5. Verify the energy pseudo-conservation. Weak convergence of u.(t) to u(t) in Xg
and strong convergence of u(t) to u(t) in X yield the energy pseudo-conservation.

3. Verifications of asymptotic completeness

3.1. Proof of Theorem 1.4 (exisitence of wave operators)

To show Theorem 1.4, we prove the following assertion.

Proposition 3.1. Let a > a(N). Assume (K1), (K2a), and (K4a). Then for any
vy € D there uniquely ezists a local weak solution v € C([—T,T); D) N CY([-T,T); D*) to
(IVP). Moreover, v satisfies

lo@®llze = llo4 2,

Bleu®) = O - [ ([ R(ETE)eto, ot ) dods] ds,

where

_ Lupi2 2
Blt,u) = 7PV ulls + 3 [ / v K@) Pluto dedy.
Furthermore, if vy € & =D N D(|z|), then v belongs also to C([-T,T]; ).

To confirm Proposition 3.1 we check the uniqueness and the conditions (A1)-(A7)
and apply Theorem 2.1. We define X := L%(R"), S := P,, X5 := D,
z—

3L g(t,v) = 20 (DyyK * o) =t /R i . )[v( |2 dy,

(32 Gtv) = G DyKI0) = o [ K(EL) @) Plo(y) dedy.
4 4t RN+N |tl




D is the energy space related to P,:

lullp :== [/RN (|ul2 + |Vul> + z 12|u| ) ] /2’ D= {ilgﬁN; Zz 2287

The Sobolev type embeddings are available: D C L™(RY) (2 < r < 2N/(N — 2)), more
precisely,

(3:3) lullzr < e lullzz’lullp < c(r)llulp Vue L (RY),

where 9
~——,0<9<1

1 1
T2
(see Suzuki [11, Section 4] for a = a(N)). Here we denote

/Iu Ipd:r: " 1<p< oo,
l[ull o) =
ess. sup |u(z)| P = 00.

If @ = RY, then we omit to denote RY: |lul|ze := |lu||Lory). Moreover, if @ C R¥ is
a bounded open set with smooth boundary, then D C L"(R2) (2 < r < 2N/(N —2)) is
compact (The Rellich compactness lemma). On the oner hand, since

(fiu)pep = /RN (z)u(z) dz
we see that

(3.4) lullor < e(r)llullr, Vue LT (RY),

where r’ is a Holder conjugate of r € [2,2N/(N —2)): ' =r/(r — 1).
Also we see that

[t D1 K llzo = 1179 Kl1a, [t *D1ygK] = —t~* Dy K.
We divide K and K into K; + K; and K; + K, so that K; € L%(RM) and K, € L% (R")

(j = 1, 2). Note that (K2a) implies N/4 < ¢; < g2 < N/2 and (K4a) implies N/4 <
G1 < ga < N/2. The Young and the Holder inequalities imply that
65w [ Ke-yu@u@d],, < 1Kl e

(3.6) ‘/ - K(z — y)uy (2)ua(z)us(y)ua(y) dxdy,

SN Ko llunll e llwal e lus || - llual -,

where r = 4q/(2¢ — 1) and ' = 4q/(2¢ + 1).
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Verification of (A1). Let u, v € D. Then we see from (K1) that
(3.7) G(t u+v) — G( ) Re(g(t,u),v)p. p

4tz / /RM |t| [I (u+0)(@)[?|(u+0) )2 = [u(@)?|u(y)|?] dedy
T A / /RM (v(z)u(@))|u@)® + 2 Re (v(y)u®))|u(z)|?] dzdy.

Now let a, B, £, n € C. Then we see that

(38) loe + &21B + nl* = |of?|B]” — 2 |B]*Re (a€) — 2 |o|*Re (Bn)
= 4Re (@)Re (Bn) + [¢P[IBI” + 2Re (Bn)] + In|*[|af* + 2Re (@€)] + |€]*|n]”.
Put o = u(z), f:=u(y), £ :=v(z), n := v(y) in (3.8). It follows from (3.7) that

(3.9) G(t,u+v) — G(t, u) — Re g(t,w), v)pep = I + Lo + I,

where
-z [ .K m )Re (u(@Yo(a)) Re (a)o(y) dods,
RN+N
25?// T W@ I + 2Re Glo(s))] dody,
I3 := 4—12//RN+N [t| ) ) *lv(y)|? dzdy.
We see from (3.6) and (3.3) that
(310) |n]< Zit2 J Lo B (S e (@00t Re o (s) dy

2
< Zt PN || Kl s Nl s o3y <D e(rg) 29 || s Nl B [0,
j=1 j=1

where 7; = 4¢;/(2¢; — 1). Note that 2 < 2N/(N — 1) <7y <r; < 2N/(N —2) by (K2a).
In a way similar to I;, we obtain

(3.11) |L2| < dre(2) [lvll3 [l + 2]lullpllv]lo],
(3.12) |Is| < dke () vl
where

2
dic(t) = D elr) 1H=% 1Kl
j=1
Since —2 4+ N/q1 > =2+ N/q; > 0 by (K2a), we see dk(t) < dg(T) for t € [-T,T].
(3.10), (3.11), and (3.12) imply that

|G(t,u+v) — G(t,u) — Re (g(t,u),v)p. p]
< di(T) vl Bllulp + 4llullollvllo + 03] Vte[-T,T), Vu,veD.



Let M > 0 and € > 0. Then we see that

(Gt u+v) = G(t,4) — Re (glt,u), 00 o] < dic(T) (62 + 431 + 1) ol
Vte[-T,T], Vu,veDwith ||lullp <M, |Jv||lp < 1.

Hence by setting § > 0 as

E
(T) (6M? 4+ 4M + 1)’

0="0(u,e) =1A I
we conclude (A1):
IG(t,u +v) — G(t,u) — Re(g(t,u), V)p. p| < €llvflp Vv € D with ||v]lp < 6.

Verification of (A2). First we define

sty =17 [ 1 (T Gy

for j =1,2. Note that g(¢,u) = g1(¢,u) + g2(¢,u). Let u, v € D. Then we see that
9i(t,u) — g;(t,v) = u(t* D1y K) * [Jul® — |v|*] + (u = v) (72 D1ye ;) * o],

Applying (3.5), we can calculate

(313) los(t,w) - g3t
<l (72 Dujeks) * [Jul? = [oP)ll g + | (w = v) (¢72Dyse ;) * 0|l -
< [N K| s el s Nl + ol s = o]z
+ [t Ko lw =l s [lollZe,
< NG s [l + Bullers ol + Toll3es] llw = ollz.
Thus (3.3) and (3.4) yield that

2

pr < Z C(rj) “gj (t,u) — gj(tv 'U)HLT}

Jj=1

(3.14) llg(t,u) — (¢, v)|

2
< S elr) [0 K s (ullZes + Wellzs ol s + 1ol12e] e = o]l
Jj=1

< dge(t) [Ilul3 + llullpllvllo + [[vl3] u — vll.
This implies (A2).
Verification of (A3). We see
g(t,u) — g(s,u) = w[t 2Dy K — s72Dy g K] * |ul®

t a 3 t 3 -
=u [/s 5;(0 2D1/10|K) dcr] * ]ul2 = [/s —0 3D1/|01Kd0] * |ul?

2
= zu [/t 0“3D1/;01Rj da] * |u|2
=1 Js

13
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By virtue of (3.5) and (3.3), we obtain
o [/ oDy do « uf| . < ‘/ o™ Do ;1 5 ol

t
[ R 5 ol < eGPl | [ 10174 ao
S s

where 7; 1= 4g;/(2¢; — 1) € (2,2N/(N — 2)) by (K4a) and 7} := 4g;/(2g; + 1). Thus we
see from (3.4) that
¢
/ o] =3+ % da).

Since (K4a) implies —3 + N/q; > —3 + N/g, > —1, the integrands belong to LP(—T,T)
for some p > 1. This concludes (A3).

Verification of (A4). First we define

it w) 4t2//R~+N |t| IU( Plu(y)|? dedy  (j = 1,2).

Let u, v € D. Then we see from (K1) that

<

2

lg(t,u) — g(s,w)llp < llullp Y @) 1Kl 5

j=1

Go(t) = Gstt0) = gz [ K (o) )P =~ P @) + o(o)) dady.

Applying (3.6) we have
|Gt u) = G;(t,v)| < ¢ Kll g llullZes + ollZ-llullers + ollzrs]lle — ol .
(3.3) yields for any t € [T, T] and for all u,v € D with |ju|]lp < M, |jv|lp < M
|G;(t,u) — G;(t, v)|

< e(r) e | Kl s (Il + TolBlllullo + o llo]lle = ol u — ol 2
< ey T2 | K| 0y 22¥0 M3 [lu — 0 137,

1-6,

where 6; = N(27! —r} ) = N/(4g;) € (0,1) by (K2a). Applying the Young inequality

1~ 6’) (1-0)/0

1—(9<€ 9(
y U Se+ B

Y

we see

1
|Gj(t,u) = G;(t,v)| < 50+ Cjs(M)llu — vl 2,

where Cjs(M) = 6;[671(1 — 6;)(2M )30 TN s5¢(r;)4|| K;|| o; |1 =9/% . Since G(t,u) =
Gi(t,u) + Ga(t, u), we have confirmed (A4).

Verification of (A5). By a standard argument of weak derivatives, we see that

Gt =gz [ R(TE) @ Pl dod.
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Define
ibw) =1 //RMN |t| iu( Wluy)Pdedy (5 =1,2).

In a way similar to (A4) we see that for all u,v € D with ||lu|lp < M, |Jv|]lp < M

1G5t w) — G(t,0)] < o)t VB | K| 1 20 MO u — w] 157,
< [H708 [25 4 (M) s — wls],
where 8; = N/(43;) and Cj5(M) = G507 (1 — ;) (2M)* (7)1 K| 5 1-%/%. Since

-3+ N/gi > =3+ N/@ > —1 by (K4a) and Gy(t,u) = —G1(t, u) — Ga(t, u), we obtain
(A5).

Verification of (A6). (K1) implies (A6) by a simple calculation:

Re (g(t,u),u)p. p = Re / [/ _ZK( y)lu(y)]%—@jzu(:r) dy] dx

|t|
-Rez// 2K )]u Y)|*|u(y)|? dzdy = 0.
RN+N

Verification of (A7). Let I C R be an open and bounded interval and assume that
{wn}n is a sequence in L*°(I; D) satisfying

wa(t) = w(t) (n — o) weakly in D a.a.t€l,
9(t,wn(t)) = f(t) (n — 00) weakly* in L°(I; D).

Since {g1(wn)}, and {g2(wy)}, are bounded in L*(I; D*) and the Sobolev embeddings,
there exist a subsequence {wn(j)}; of {wn}, and f1, fo € L*(I;D*) such that

(3.15) 9i(t, Waemy(t)) = f3(t) (m — 00)  weakly* in L®(I; L (RY)) (j = 1, 2).

To confirm (2.1) let @ C RY be an arbitrary bounded open subset with C' boundary.
Then

(316) (500 15 0y iy = ) — 5 Um0 50 e
+ (9 (¢, Wn(m) (), w(t) — Wnemy (t )> )
o+ (95 W) (8)), Wam) (D) 15 0 1os
=:Jp(t) + Jp(t) + Jis(t) (G=1,2).
The weak convergence (3.15) asserts that
(3.17) /Ile(t) dt—-0(m—00), j=1,2.

Next we consider Jj. The Rellich compactness lemma implies that wn(m(t) — w(t)
(m — oco) strongly in L' (Q) a.a. t € I. It follows from the boundedness of {g; (Wy(m)(t))}m
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in L'3(2) a.a.t € I that I15(t) = 0 (m — oo) for a.a.t € I. We see the boundedness
of {Wn(my}m in L®(=T,T;L"(2)) and {g;j(Wnim))}m in L°(I;L3(2)). The dominated
convergence lemma yields that

(K1) implies that Im Jy3(¢) = 0 a.a. t € I (j = 1, 2). Integrating (3.16) over I and using
(3.17) and (3.18), we obtain

Re/ ), iw(t)) v dt=0.
[< ]() ()>L ](Q),L J(Q)

Since  is arbitrary and f = f1 + fa, (A6) implies (2.1):

Re/l(f(t),iw(t))p*p dt =0 = lim Re/(g(t, Wi (1)), i wn(t))p- p dt.

n—00 I

Next we show that f(t) = g(¢, w(t)) by assuming further that w,(t) — w(t) (n — oo)
in L*(RN) a.a. t € I. Let M := sup,, ||wy||zer;p). It follows from (3.13), (3.3), and (3.4)
that

lot, wn(®) = gt 0l < 3 elrs) OM* 5[5 s lun(6) — w(t) 13

=0 (n—o0) aatel.
Thus we see that g(¢t,w,(t)) — g(t,w(t)) (n — o0) strongly in L*°(I;D*) and (A7) is
verified.
To show the uniqueness we apply the Strichartz estimates for {e~#F=} established by
Burq, Planchon, Stalker and Tahvildar-Zadeh [1] (see also [6, Theorems 2.3 and 2.5]).
Definition 3.1. The pair (7, p) is called a Schrodinger admissible pair if

2 N N

S > 2.

- + p 5 T >2,p2>
Lemma 3.2, Let N > 3, a > a(N) and (7,p) be a Schrodinger admissible pair. Then the
following inequality holds:
(3.19) lexp(—itPa)¢llzrrize) < Crllollze Vo € L*(RY).

Moreover, let (1j,p;) (7 = 1,2) be Schridinger admissible pairs. Then for all ® €
L7i(R; LA (RY))

< 071772 ”¢”LT{(R;LP11)‘

¢
(3.20) H/o exp(—i(t — 5)Pa) (s, z) ds L72(R;LP2) —

We exclude the endpoint (7, p) = (2,2N/(N —2)) from the Schrodinger admissible pair.
Let a > a(N). Burg, Planchon, Stalker, and Tahvildar-Zadeh [1, Theorem 3] confirmed
(3.19) for the endpoint; Pierfelice [8, Theorem 2 in Section 3] confirmed (3.20) for the
endpoint. On the other hand, Mizutani [5] showed that (3.19) and (3.20) for the endpoint
are broken down for a = a(N).



Lemma 3.3. Let u; (j = 1, 2) be local weak solutions to (IVP) on I = (-T1,Ty) C R
with initial values u;(0) = ug € D. Then uy(t) = ua(t) ont € I.

Proof. Let u; € L*(I;D) (j = 1, 2) be local weak solutions to (IVP) on I with initial
values u;(0) = ug. Then u; (j = 1, 2) satisfy the following integral equations:

u;j(t) = exp(—itP,)ug — i/o exp(—i(t — s)P,)g(s, u;(s)) ds

Therefore we see that v(t) := u(t) — ug(t) satisfies

u(t) = —i/o exp(—i(t -~ s)Pa) [9(s,u1(s)) — g(s, ua(s))] ds.

Here (8¢;/N,r;) (j = 1,2) are Schrodinger admissible pairs. Applying (3.13) and the
Strichartz estimates (3.20), we see that for every Schrédinger admissible pair (7, p),

(3:21) |/ exp(—it  )P2) gy (5)) - g ua(5))] ds

< Csgy/n,rllgs(wa) — gj(uQ)”L(Sq]/N)’(I;LT;)

< Cag, N It72 D1 K|

L7 (I;Lr)

1,(49;/NY (I;L9%)

X (uallZgorrs + luallpgorrs lluallge s + ||U2“%g°LT:‘]||UHL8qJ/N(1;LTj)v

where || - ||z = || - |zeo(z;zr)- Putting (7, p) := (8¢;/N,7;) (j = 1,2) in (3.21), we see
that
(3:22) ||””L8<n/N(I;Lr1) + “U“quz/f"(l;m)

< 3(Csqi/N,8a1/N + Csqr/N 8as/N + Csan/N,3q /N + Csaa/Ngan/v) M2

X “lt_2+N/q1||L<4q1/N>’(1)”K1“L41 3 Ht—zﬂwa||L<4q2/N>’(1)”K2||Lq2]

X [”’U”LS‘H/N(I;L’I) + HUHLS%/N(I;LTZ)]’
where

M = maxf[lujll Loo(rizrny, sl Lo(rizra)}-
Since —2 + N/q1 > —2+4 N/gy > 0 by (K2a), (3.22) yields
[oll reng;zray + [0llzoo(rizrey <0

for the interval I sufficiently small. Extending the interval step by step, we conclude the

uniqueness on any interval I. |

Since (A1)—(AT) are verified and the uniqueness of local weak solutions for (IVP)
is proved, Theorem 2.1 yields the unique existence of local weak solutions to (IVP).
Moreover, in a way similar to (1.3) (for self-excited system (HE),), the virial identity for
(IVP) can be constructed owing to (K4a):

(3.23) i”zv(t)l]%z = 4Im/ zv(t,z) - Vou(t, z) dz,

(3.24) dt2|l:cv(t)||L2 = 16 5, 0(0)) ~ = / / V) u(t, ) Pfu(t, ) dady.

17
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Note that we do not differentiate the nonlinear term g(t,u) = u (¢ 72D; ;K * |u|?) by t to
deriving the virial identity. Thus Proposition 3.1 is fully proved.

To end this section, it remains to show the well-definedness of W, . We have constructed
the local solution v € C([-T,T];X) N C([-T,T); D*) to (IVP). Applying the pseudo-
conformal transform C we can define

uyr = (Cv)(1/T, z) = (—iT)N2eT1* /14y (T, Tz) € %.
Proposition 1.1 implies that (K1), (K2), and (K3) admit a unique global weak solution
u € C(R; ) N CY(R; D*) to
iug = Pou+u(K*|u?) inRxRY,
u(1/T) = uyr € X.

The uniqueness of (IVP) implies that u(t,z) = (Cv)(¢,z) on (1/T,00). Thus there exists
a unique global weak solution u € C(R; )N C*(R; D*) to (FVP). Hence Theorem 1.4 has
been fully proved.

3.2. Proof of Theorem 1.5 (asymptotic free)

Now we show the asymptotic free of (HE),. To end this, first we consider the global
weak solution. Assume (K1), (K2), and (K3). Let ug € ¥. Then Proposition 1.1 implies
that there uniquely exists a global weak solution u € C(R; ) NC*(R; D*) to (HE),. Thus
v = C~u belongs to C((0,00); £) N C((0,00); D*) and satisfies

z% = P +t"2v(Dy;K * [v]*) on (0, 00).

To prove Theorem 1.5, In a view of 1.4, it is sufficient to show that v can be continuously
extended to ¢ = 0. Now we show the uniform boundedness of || P, pi? v(t)||zz in t € (0,1).
The energy conservation laws yields that

1+ Po)2o(®)]172

¢
=1+ Pa)l/z’l)(l)”%z +2G(1,v(1)) — 2G(t,v(¢t)) + 2/ Gy(s,v(s))ds
1
Here K > 0 by (K3a) implies that

2
>
t u 4t2 [/RN+N Itl I’LL( I lu( )l d:cdy 0.

Moreover, K < 0 by (K3a) implies that

Gt =~z [ B @ Pl dedy > o

Thus we see the uniform boundedness:

1L+ Py 2o@)|Z2 < L+ Po)?0(1) 122 +2G(L,0(1) te€ (0,1).




On the other hand, [13, Lemma 3.1] implies
}Im / zu-Vu dz‘ < || 2| (1 + Po)Yul| 2.
RN

(3.23) ensures
< 2|1 + Pa) v (®) -

d
| Zllav(®)lz»

The uniform boundedness of ||(1+4 P,)/?v(t)|| > implies that there exists vy € & such that
v(t) = vo (t = +0) weakly in ¥. Here (K1), (K2a), (K3) and (K4a) yield the unique
solution ¥ € C([0, 00); ) N C*([0, 00); D*) to

z%% = P,o+t27 (D1 K * [0]?) inR xRV,
17(0) =1y € 2.

The uniqueness on (1, 00) implies that v(t) = 9(t). Since ¥ is continuous in X at ¢t =0, v
can be continuousely extended to t = 0.

Remark 3.1. Since g(t,u) = t~2u Dy K * |u|? satisfies g(¢, u) = g(¢, @), the wave operator
W_ and the asymptotic free for ¢ - —oo can be considered by comming down to W, and
t — oo, respectively. In fact, W_u_ = W, u_ and

tgr_noo exp(itP,)u(t) = tlgrnoo exp(it P, )u(—t).
Note that if v is a unique solution to
ivy = Pu+g(t,v) inR xRN,
v(0) = vy € &,
then w(t) := v(—t) satisfies

iw; = Pw+g(t,w) inR xRN,
w(0) =7 € ¥.
4. Concluding remarks
4.1. Conditions for K
Conditions for the integrability of K can be relaxed. L% (RY) can be replaced into the

Lorentz space (or weak-L? space) L& (RN):
| K| Loce = sup z p({z € RY; |K(z)| > z})l/p < 00,
2>0
where p is the Lebesgue measure. For example, the usulal Hartree kernel ||~ € LN/ (RY)

(0 <4 < N) and the Yukawa-type kernel e~2l|z|=7 € LN/7»°(RN) (0 <y < N, A >0) .
Thus the scattering problems for usual Hartree equations can be solved.
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Corollary 4.1. Let a > a(N) and K(z) := e Ml|z|~7 (2 < v < min{N, 4}, A > 0). Note
that K = (—\z| +2 — 7)K.

(i) For any uy € ¥ there uniquely ezists a solution u € C(R; )NCY(R; D*) to (FVP).
Thus the wave operators Wy : uy — u(0) is well-defined in .

(ii) For any global solution u € C(R; £)NC*(R; D*) to (HE), with initial value uy € &
there exist the following limits

lim exp(itP,)u(t) =uy strongly in X.

t—+o0

On the other hand, nonnegativity of K can be also relaxed:

/]RN+N K(x - y)@(l‘)cp(y) dxdy >0

for any measurable and nonnegative function ¢. For example, FK(¢) > 0 a.e.on RY,
where F is the Fourier transform. In fact, it follows from the Plancherel lemma and the
Parseval identities that

J[ K@= vpte dody = [ (K +o)@ip@da

= | FExp)€)Fp)de= [ (2m)N>FK(&)Fp(&)Fp(€)de

RN RN

N /RN@”)”/ 2FK ()| Fe(€)? dé > 0.

4.2. Abstract theory

Lemma 2.3 can be generalized for applying the systems of nonautonomous semilinear
Schrodinger evolution equations. Let B : X — X be a bounded linear operator with the
following conditions:

e BSu = SBu for u € Xg;
e B is bounded and symmetric operator in X;
e B is coercive in X: there exists € > 0 such that Re(Bu, u)x > ¢||u|%.

By using B, (H5) is replaced with (H5a):
Re(go(t,u),iBu)x =0 Vte [-T,T],Vue X.

Lemma 4.2. Assume (H1)-(H4) and (H5a). Then for any ug € Xg there uniquely exists
the global solution of (2.3) u € C([-T,T]; Xs)NC ([T, T]; X%). Moreover, u satisfies the
conservation laws

Re(Bu(t),u(t))X = Re(BUQ,UQ>X, Eo(t,u(t)) = EQ(O, Uo) + /Ot th(s,u(s)) ds.

Also, we can generalize Theorem 2.1 in a way similar to Section 2.1.
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