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1 Introduction

In this paper, we introduce for the construction of hardening model and the results related
to the hardening problem. At the first, we introduce the plastic deformation of the
materials in working process. We consider a metal rod that is subjected to a traction
force \sigma and that in consequence undergoes a relative elongation  \varepsilon . In the figure 1, we
consider first that, starting with a point  M of the open segment OS, we let  \varepsilon undergo small
changes of arbitrary sign. We observe that the point moves in neighborhood of  M while
staying on the segment OS. It represents a region where the behavior of material is linear
and reversible, that is to say elastic. Now, we place at a point  P of the line SZ and let
 \varepsilon decrease. Then, we observe that the point  (\varepsilon, \sigma) describes a line segment starting from
 P, parallel to OS, say PQ. At the point  P , the behavior of the material is then no longer
reversible; the line SZ represents a plastic region. If we continue the segment PQ to  Q_{1},
we again find an open segment  PQ_{1} on which the behavior of the material is reversible.
Furthermore,  PQ_{1}>OS as long as the line SZ is not a half‐line parallel to  O\varepsilon . This is the
phenomenon of work hardening. As we know, in order to describe the hardening process
the slope of line SZ is very important.

2 Hardening model in the working process

2.1 The strain for plasiticity

As we have mentioned above section, we recall the mathematical model of the plasticity.
If the stress  \sigma is a very small, the stain  \varepsilon is linear by  \sigma . Namely, if  \sigma is smaller than the
threshold value and  \sigma goes to  0 , then  \varepsilon goes to  0, too. It is to say elastic. However, if
 \sigma is beyond the threshold value and  \sigma goes to  0 , the elastic strain  \varepsilon_{e} goes to  0 but the
plastic strain  \varepsilon_{p} is remained. This effect is said “Hysteresis” that is the dependence of
the state of a system on its history. In the mathematical formulations, since the relations
of parameters is not one‐to‐one, the hysteresis is very difficult. To get the mathematical
formulation of the constitutive law by the plasticity, we have to get the date  \{\sigma(s)\}_{s\in[0,t]}
that it is only the initial date  \sigma(0) but also the all time date.
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Figure 1: The relation of stress and strain

We define the yield function  F that determines whether the stress is yielding situation,
by

 F(\sigma)<g  \Rightarrow only elastic, (2.ı)
 F(\sigma)=g  \Rightarrow yielding situation, (2.2)

where,  g is a non‐negative function that is called the threshold function. For example,

 F( \sigma)=\frac{1}{2}|\tau^{D}|^{2}
where,  \tau_{ij}^{D}  := \tau_{ij}-(1/3)\sum_{k=1}^{3}\tau_{kk}\delta_{ij} for  i,j=1,2,3 and  |\tau|^{2}  := \sum_{i,j=1}^{3}\tau_{ij}\tau_{ij} for all

 \tau\in \mathbb{R}_{sym}^{3\cross 3} , the symbol  \delta_{ij} is the Kronecker delta.
We call the perfect plasticity model, if The threshold function is independent in  \varepsilon

(Figure 2). In this case, the relation  \{(2.1),(2.2)\} is presented by the following formulation;

.;

Figure 2: The relation of stress and strain for the perfect plasticity
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 \{\begin{array}{ll}
F(\sigma)<g   \Rightarrow\frac{\partial\varepsilon_{p}}{\partial t}=0,
F(\sigma)=g and \frac{\partial\sigma}{\partial t}=0   
\Rightarrow\frac{\partial\varepsilon_{p}}{\partial t}\geq 0.
\end{array}
Namely, we get the following the Moreau sweeping process form

  \frac{\partial\varepsilon_{p}}{\partial t}\in\partial I_{Z}(\sigma) , (2.3)

where,  Z is a time‐dependent closed convex set defined by  Z  :=\{\tau\in \mathbb{R}_{sym}^{3\cross 3} :  (1/2)|\tau^{D}|^{2}\leq
 g\} . Moreover,  I_{Z} is the indicator function of  Z,  \partial I_{Z} is the subdifferential of  I_{Z}.

Moreover, we consider the two conditions for the strain. The first condition is the ad‐
ditive decomposition of strains, namely, the strain can be expressed by the decomposition
of elastic and plastic parts;

 \varepsilon(u)=\varepsilon_{e}+\varepsilon_{p} . (2.4)

The second condition is that the elastic strain is linear with respect to stress;

 \varepsilon_{e}=L\sigma , (2.5)

where,  L is the  3\cross 3 matrix. Hence, we combine three conditions (2.3), (2.4) and (2.5),
after that we can get the equation of  \sigma . Indeed, taking the time derivative of first equation
using the second equation, and then the third equation becomes the following inclusion;

 L \frac{\partial\sigma}{\partial t}+\partial I_{Z}(\sigma)\ni\varepsilon(\frac{
\partial u}{\partial t}) . (2.6)

2.2 Hardening

Next, we recall the hardening problem in one dimensional space, which is derived by
Visintin [5]. His idea is the characteristic of yielding situation. We put  a and  b are slopes
of strain for stress, respectively with  0\leq a<b . When the strain consists of only the
elastic strain that is on the elastic region, the slope is equal to  b . When the strain consists
of the elastic strain and the plastic strain that is on the plastic region, the slope is equal
to  a (Figure 3). In this case, the threshold value is equal to   g+a\varepsilon . Therefore, we can get
the following new expression of the plastic strain

  \frac{\partial\varepsilon_{p}}{\partial t}\in\partial I_{Z}(\sigma-
a\varepsilon) , (2.7)

indeed, these conditions are equivalent,

 \sigma-a\varepsilon\in Z \Leftrightarrow \sigma\in Z+a\varepsilon.

Hence, we combine three conditions (2.7), (2.4) and (2.5), we get the new equation of  \sigma ;

  \frac{\partial\sigma}{\partial t}+\partial I_{Z}(\sigma-a\varepsilon(u))\ni 
b\varepsilon(\frac{\partial u}{\partial t}) . (2.8)

As the remark, in 1D case, on the previous perfect plasticity model (3.2), we take  a=0

and  b=1/L.
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Figure 3: The relation of stress and strain in hardening process

3 The Known result of the perfect plasticity case

In this section, we introduce the existence theorem for the perfect plasticity problems
of some type. For each theorem, we used by the method of variational inequality. The
constraint is described by the Moreau sweeping process form which is well‐known in the
abstract evolution equations (c.f.[4]).

3.1 The classical problem by Duvaut‐Lions

In this section, we recall the problem of perfect plasticity is derived by Duvaut and
Lions [1]. The domain  \Omega is the bounded set in  \mathbb{R}^{3} with the smooth boundary  \Gamma=\partial\Omega

which consists of  \Gamma=\Gamma_{D}\cup\Gamma_{N} , and  \Gamma_{D}\cap\Gamma_{N}=\emptyset with  |\Gamma_{D}|>0 and  |\Gamma_{N}|>0.  \nu

denotes the unit normal vector outward from  \Gamma . The unknown functions  u=(u_{1}, u_{2}, u_{3}) ,

 \sigma=\{\sigma_{ij}\}_{i,j=1,2,3} , describe the displacement and the stress tensor, respectively. The strain
 \varepsilon(u)=\{\varepsilon_{i,j}\}_{i,j=1,2,3} depending by displacement  u , is defined by

  \varepsilon_{i,j}=\frac{1}{2}(\frac{\partial u_{i}}{\partial x_{j}}+
\frac{\partial u_{j}}{\partial x_{i}}) ,

for  i,j=1,2,3.
We consider the model of perfect plasticity. To find  v  :=\partial u/\partial t and  \sigma satisfying

  \frac{\partial v}{\partial t}=div\sigma+f in   Q:=(0,T)\cross\Omega , (3.9)

  \frac{\partial\sigma}{\partial t}+\partial I_{Z}(\sigma+\sigma_{*})
\ni\varepsilon(v)+h in  Q , (3.10)

where  f :  Qarrow \mathbb{R}^{3},  h :  Qarrow \mathbb{R}_{sym}^{3\cross 3} , and  \sigma_{*} :  Qarrow \mathbb{R}_{sym}^{3\cross 3} are given functions in  Q,  \mathbb{R}_{sym}^{3\cross 3}
stands for the  3\cross 3 symmetric matrix. With the help of  h and  \sigma_{*} , we can translate
the problem to the homogeneous boundary value problem. The operator  div is defined
by  div\tau  :=(div\tau_{1}., div\tau_{2}., div\tau_{3}.) for all  \tau\in \mathbb{R}_{sym}^{3\cross 3} , where  div\tau_{i}.  := \sum_{j=1}^{3}\partial\tau_{ij}/\partial x_{j} for
 i=1,2,3 . The first equation (3.9) is derived by the conservation law of momentum. The
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second equation (3.10) ensures the property of perfect plasticity, where we assume the
additive decomposition of strain as Section 2.1.

We use the following notation:  H  :=L^{2}(\Omega)^{3},  V  := {  z\in H^{1}(\Omega)^{3}:z=0 a.e. on  \Gamma_{D} },
with their inner products  (\cdot, \cdot)_{H},  (\cdot, \cdot)_{V} , and the norm  |\cdot|_{H} , where  |\cdot|_{V} is defined by

 |z|_{V}  := \{\sum_{i,j=1}^{3}\int_{\Omega}|\frac{\partial z_{i}}{\partial x_{j}}|^{2}dx
\}^{\frac{1}{2}} for all  z\in V.

Denote the dual space of  V by  V^{*} with the duality pair  \{\cdot,  \cdot\rangle_{V^{*},V} . Moreover, we define
the following bilinear form:  ((\cdot, \cdot)) :  V\cross Varrow \mathbb{R}

 ((z, \tilde{z})):=\sum_{i,j=1}^{3}\int_{\Omega}\frac{\partial z_{i}}{\partial 
x_{j}}\frac{\partial\tilde{z}_{i}}{\partial x_{j}}dx for all  z,\tilde{z}\in V.

We also define  \mathbb{H}:=\{\tau :=\{\tau_{ij}\} : \tau_{ij}\in L^{2}(\Omega), \tau_{ij}=
\tau_{ji}\},  V  :=\{\tau\in \mathbb{H} :  div\tau\in H,  \tau_{i}.\cdot v=

 0 a.e. on  \Gamma_{N}\} with their inner products

 (\tau,\tilde{\tau})_{\mathbb{H}}  := \sum_{i,j=1}^{3}\int_{\Omega}\tau_{ij}\tilde{\tau}_{ij}dx for all  \tau,\tilde{\tau}\in \mathbb{H},

 (\tau,\tilde{\tau})_{V}  :=( \tau,\tilde{\tau})_{\mathbb{H}}+(div\tau, div\tilde{\tau})_{H}=(\tau,\tilde
{\tau})_{\mathbb{H}}+\sum_{i,j=1}^{3}\int_{\Omega}\frac{\partial\tau_{ij}}
{\partial x_{j}}\frac{\partial\tilde{\tau}_{ij}}{\partial x_{j}}dx for all  \tau,\tilde{\tau}\in V.

The following convex constraint plays an important role in this paper. For each  t\in[0, T],

 \tilde{K}(t)  := {  \tau\in \mathbb{H} :   \frac{1}{2}|\tau^{D}(x)|^{2}\leq g(t, x) for  a.a.   x\in\Omega } ,  K(t)  :=\tilde{K}(t)-\sigma_{*}(t) .
Finally, we recall an important relation. For each  z\in V,  \tau\in V , the following relation

holds:

 (\varepsilon(z), \tau)_{\mathbb{H}}+(div\tau, z)_{H}=0 . (3.11)

This is called the Gauss‐Green relation.

In the paper [1], the threshold function  g is a constant function. Duvaut and Lions
showed the existence of solutions for the perfect plasticity model.

Proposition 3.1. We assume that the following conditions hold;

 f\in W^{1,2}(0, T;H) ,

 h\in W^{1,2}(0, T;\mathbb{H}) ,

and  \sigma_{*} is independent of time  t . Then there exists an unique pair of functions  (v, \sigma) such
that

 v, v'\in L^{\infty}(0, T;H) ,

 \sigma, \sigma'\in L^{\infty}(0, T;\mathbb{H}) ,
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 v_{i}\in L^{\infty}(0, T;L^{2}(\Omega)) ,

 \sigma_{i,j}\in L^{\infty}(0, T;L^{2}(\Omega)) ,

and that satisfy

 (v'(t), z)_{H}-(div(a(t)), z)_{H}=(f(t), z)_{H} for all  z\in V,

and

 (\sigma'(t), \sigma(t)-\tau)_{\mathbb{H}}-(\varepsilon(v(t)), \sigma(t)-\tau)_{
\mathbb{H}}\leq(h(t), \sigma(t)-\tau)_{\mathbb{H}} for all  \tau\in V

for a.a.  t\in(0, T) with  v(0)=v_{0} in  H and  \sigma(0)=\sigma_{0} in  \mathbb{H}.

3.2 The perfect plasticity problem with the threshold depending
on time

We consider the case of the threshold function  g=g(t) depending on time, because, the
threshold function depend on the unknown function in the target hardening problem. We
use the same notation in the above section.

Definition 3.1. For each  \kappa\in(0,1 ] and  \nu\in(0,1], the pair  (v, \sigma) is called a solution
of modified problem for (3.9) and (3.10) in the sense of variational inequality if

 v\in H^{1}(0, T;H)\cap L^{\infty}(0, T;V)\cap L^{2}(0, T;H^{2}(\Omega)^{3}) ,

 \sigma\in H^{1}(0, T;\mathbb{H})\cap L^{2}(0, T;V) ,  \sigma(t)\in K(t) for all  t\in[0, T],

and they satisfy

 (v'(t), z)_{H}+\nu((v(t), z))-(div(a(t)), z)_{H}=(f(t), z)_{H} for all  z\in V,

 (\sigma'(t), \sigma(t)-\tau)_{\mathbb{H}}+\kappa(\sigma(t), \sigma(t)-\tau)_{V}
-(\varepsilon(v(t)), \sigma(t)-\tau)_{\mathbb{H}}
 \leq(h(t), \sigma(t)-\tau)_{\mathbb{H}} for all  \tau\in K(t)\cap V

for  a.a.  t\in(0, T) with  v(0)=v_{0} in  H and  \sigma(0)=\sigma_{0} in  \mathbb{H}.

Proposition 3.2. We assume that  (A1)-(A5) hold;

(A1)  f\in L^{2}(0, T;H) and  h\in L^{2}(0,T;\mathbb{H}) ;

(A2)  v_{0}\in V and  \sigma_{0}\in K(0)\cap V ;

(A3)  \sigma_{*}\in H^{1}(0,T;V) ;

(A4)  g\in H^{1}(0, T;C(\overline{\Omega}))\cap C(\overline{Q}) ;

(A5) There exist two constants  C_{1},  C_{2}>0 such that

 0<C_{1}\leq g(t, x)\leq C_{2} for all  (t, x)\in\overline{Q}.
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Then, there exists a unique solution  (v, \sigma) of modified problem for (3.9) and (3.10) in the
sense of variational inequality.

Let us remove the parameter  \kappa\in(0,1 ]. In this case, the problem is the same as the
Moreau sweeping process.

Definition 3.2. For each  \nu\in(0,1], the pair  (v, \sigma) is called a solution of the viscous
perfect plasticity model for (3.9) and (3.10) if

 v\in H^{1}(0, T;V^{*})\cap L^{\infty}(0, T;H)\cap L^{2}(0, T;V) ,

 \sigma\in H^{1}(0, T;\mathbb{H}) ,  \sigma(t)\in K(t) for all  t\in[0, T],

and they satisfy

 \langle v'(t),  z\rangle_{V^{*},V}+\nu((v(t), z))+(\sigma(t), \varepsilon(z))_{\mathbb{H}}=
(f(t), z)_{H} for all  z\in V,

 (\sigma'(t), \sigma(t)-\tau)_{\mathbb{H}}-(\varepsilon(v(t)), \sigma(t)-\tau)_{
\mathbb{H}}\leq(h(t), \sigma(t)-\tau)_{\mathbb{H}} for all  \tau\in K(t)

for  a.a.  t\in(0, T) with  v(0)=v_{0} in  H and  \sigma(0)=\sigma_{0} in  \mathbb{H}.

We replace (A3) by (A3’):

(A3 )  \sigma_{*}\in H^{1}(0, T;\mathbb{H}) .

Proposition 3.3. Under assumptions (A1), (A2), (A3 ), (A4), and (A5), there exists a
unique solution  (v, \sigma) of the viscous perfect plasticity model for (3.9) and (3.10).

The proposition 3.2 and 3.3 is showed by Fukao and Kano in [2].

3.3 The perfect plasticity weakly problem with the threshold
depending on time

To relax assumption (A4) on  g with respect to time regularity, we recall the concept of
the weak variational formulation:

Definition 3.3. For each  \kappa\in(0,1 ] and  \nu\in(0,1], the pair  (v, \sigma) is called a solution of
modified problem for (3.9) and (3.10) in the sense of weak variational inequality if

 v\in H^{{\imath}}(0, T;H)\cap L^{\infty}(0, T;V)\cap L^{2}(0, T;H^{2}(\Omega)
^{3}) ,

 \sigma\in C([0, T];\mathbb{H})\cap L^{2}(0, T;V) ,  \sigma(t)\in K(t) for  a.a.  t\in[0, T],
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and they satisfy

 (v'(t), z)_{\mathbb{H}}+\nu((v(t), z))-(div\sigma(t), z)_{H}=(f(t), z)_{H} for all  z\in V , (3.12)

  \int_{0}^{t}(\eta'(\mathcal{S}), \sigma(s)-\eta(\mathcal{S}))_{\mathbb{H}}ds+
\kappa\int_{0}^{t}(\sigma(s), \sigma(s)-\eta(s))_{V}ds
 - \int_{0}^{t}(\varepsilon(v(s)), \sigma(s)-\eta(s))_{\mathbb{H}}ds+\frac{1}{2}
|\sigma(t)-\eta(t)|_{\mathbb{H}}^{2}

  \leq\int_{0}^{t}(h(s), \sigma(s)-\eta(\mathcal{S}))_{\mathbb{H}}ds+\frac{1}{2}
|\sigma_{0}-\eta(0)|_{\mathbb{H}}^{2} for all  \eta\in \mathcal{K}_{0} , (3.13)

for  a.a.  t\in(0, T) with  v(0)=v_{0} in  H and  \sigma(0)=\sigma_{0} in  \mathbb{H} , where

 \mathcal{K}_{0}  :=\{\eta\in H^{1}(0, T;\mathbb{H})\cap L^{2}(0, T;V) :  \eta(t)\in K(t) for  a.a.  t\in(0,T)\}.

We assume the weaker condition (A4 ) in place of (A4):

(A4 )  g\in C(\overline{Q}) .

Proposition 3.4. Under assumptions  (A1)-(A3) , (A4’), and (A5), there exists a unique
solution  (v, \sigma) of modified problem for (3.9) and (3.10) in the sense of weak variational
inequality.

The proposition 3.4 is showed by Fukao and Kano in [2], too.

4 Hardening case

By the Section 2.2, our hardening problem in one‐dimensional case  \{(4.14)-(4.18)\} is
expressed by the following formulation:

  \frac{\partial v}{\partial t}=\frac{\partial\sigma}{\partial x}+f , in  Q:=(0, T)\cross(0, L) , (4.14)

  \frac{\partial\sigma}{\partial t}+\partial I_{Z}(\sigma+\sigma_{*}-
a\frac{\partial u}{\partial x})\ni b\frac{\partial v}{\partial x}+h , in  Q , (4.15)

  \frac{\partial u}{\partial t}=v , in  Q , (4.16)

 \sigma(0)=\sigma_{0},  v(0)=v_{0},  u(0)=0 in  (0, L) , (4.17)
 v(0)=0,  \sigma(L)=0 in  (0, T) , (4.18)

where,  0<T<\infty,  0<L< oo and  b>a\geq 0 are given constants.  \sigma_{*} and  h are
given functions in  Q , indeed, in order to consider the homogeneous Dirichlet boundary
conditions, we change the variable  \sigma.  f is also given.  g is the threshold function in  Q,  \sigma_{0}

and  v_{0} are given functions in  (0, L) , the set  Z  :=\{r\in \mathbb{R}|(1/2)|r|^{2}\leq g(t)\} is constraint
set, the  I_{Z} is indicator function of  Z and the  \partial I_{Z} is subdifferential operator of  I_{Z} . To
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discuss the existence of solutions, we can use the method of quasi‐variational inequality.
Quasi‐variational inequality can be discussed by the foılowing evolution equation with
subdifferential operator of convex functions  \varphi^{t}(u;\cdot) in the Hilbert space  H ;

 u'(t)+\partial\varphi^{t}(u;u(t))\ni f(t) in  H.

Some results are known to quasi‐variational inequality, this problem is one of the appli‐
cation for  Kano-Kenmochi-Murase [ 3].

5 Future problem

We are going to consider the next two problems. The first problem is the hardening
problem in the 3‐demensional case. Namely, that problem is expressed by the following
formulation:

  \frac{\partial v}{\partial t}= diva  +f in   Q:=(0, T)\cross\Omega , (5.19)

  \frac{\partial\sigma}{\partial t}+\partial I_{Z}(\sigma+\sigma_{*}-
A\varepsilon(u))\ni B\varepsilon(v)+h in  Q , (5.20)

  \frac{\partial u}{\partial t}=v , in  Q , (5.21)

 \sigma(0)=\sigma_{0},  v(0)=v_{0},  u(0)=0 in  \Omega , (5.22)
 v(0)=0 , on  (0, T)\cross\Gamma_{D} , (5.23)
 \sigma=0 on  (0, T)x\Gamma_{N} , (5.24)

where,  T,  \Omega,  \Gamma,  \Gamma_{N} and  \Gamma_{D} are the same one as Section 3.1.  \sigma_{*} and  h are given functions
in Q.  f is also given.  g is the threshold function in  Q,  \sigma_{0} and  v_{0} are given functions in
 \Omega.  Z,  I_{Z} and  \partial I_{Z} are the same one as Section 2.1.  A and  B are the  3\cross 3 matrix. As the

remark,  A and  B make no physical meanings.
The second problem is the hardening problem with non‐linear hardening.

  \frac{\partial v}{\partial t}=div\sigma+f in   Q:=(0, T)\cross\Omega , (5.25)

  \frac{\partial\sigma}{\partial t}+\partial I_{Z}(\sigma+\sigma_{*}-
\alpha(\varepsilon(u)))\ni B\varepsilon(v)+h in  Q , (5.26)

  \frac{\partial u}{\partial t}=v , in  Q , (5.27)

 \sigma(0)=\sigma_{0}, v(0)=v_{0}, u(0)=0 in\Omega , (5.28)
 v(0)=0, on  (0, T)\cross\Gamma_{D} , (5.29)
 \sigma=0 on  (0, T)\cross\Gamma_{N} , (5.30)

where some notations are the same one as above problem.  \alpha :  \mathbb{R}^{3}arrow \mathbb{R}^{3} , is the non‐linear
smooth function.

We think that we can discuss the solvability of these problems using the quasi‐
variational inequality, too.
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