BN REAT TS Sk 5520902 20184F 95-101

95

On a bifurcation problem for viscous
compressible fluid between two rotating
concentric cylinders

Yoshiyuki Kagei

Faculty of Mathematics,
Kyushu University,
Fukuoka, 819-0395, JAPAN

1 Introduction

We consider a viscous fluid between two concentric cylinders. The inner
cylinder is rotating with uniform speed w and the outer one is at rest. If w is
sufficiently small, a laminar flow (Couette flow) is stable. When w increases,
beyond a, certain value of w, a vortex flow pattern (Taylor vortex) appears.
Mathematically, this phenomenon is formulated as a bifurcation problem.
If the fluid is incompressible, the bifurcation of the Taylor vortex from the
Couette flow was proved for the incompressible Navier-Stokes equations by
Velte [12], Tudovich [3], Kirchgéssner and Sorger [7] and etc. See the book
[1] by Chossat and Iooss for the Taylor problem.

In this article we give a summary of the results in [6] on a bifurcation
problem for the compressible Navier-Stokes equations.

A non-dimensional form of the governing equations is written as

{ Op + div (pv) = 0,

1.1

p(8v + v - Vo) — vAv — (v + /)Vdive + 5 Vp(p) = 0 (11
on a cylindrical domain Q. Here p and v are the unknown fluid density and
velocity, respectively; v > 0 is a non-dimensional parameter proportional to
1/w; € > 0 is the Mach number; p(p) is the pressure that is a smooth function
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of p and satisfies p/(1) = 1; and the domain €, is given by

1
Qa = {(T,Q,Z) : ],—j?-_?] <r< m, RS Tzﬂ-, FAS T%r}
Here (7,6, z) denotes the cylindrical coordinates; 0 < n < 1, @ > 0 are given
constants; and Tg = R/SZ. We note that the periodic boundary condition
in z is included in the definition of €2,, namely, p and v are %”-periodic in z.

The boundary conditions on r = 1—2;;, —1—1—5 are

velr:ﬁ =1, Ue|r=ﬁ—;, =0.v"=v*=0onr =L, ﬁ, (1.2)

Here (v", v, v?) are the (r, 0, z)-components of v = v"e, +v’eq +v?e,, where
e, = '(cosf,sinf,0), eg = ' (—siné,cosf,0) and e, = 7 (0,0, 1).

The problem (1.1)—(1.2) has a stationary solution (Couette flow) ug, =

T(pce, ve): \ )
PCe = pC,a('r) =1+ O(E )> Ve = vC(T)eG‘

Note that vc represents the Couette flow for the incompressible Navier-

Stokes equations:
divv =0,
(1.3)
Ov+v-Vv—rvAv+Vp=0

on £, with the boundary condition (1.2).

One can show that if ¥ > 1 and 0 < € <« 1, then uc, is asymptotically
stable. In this article we are interested in what happens in the stability
problem of the Couette flow uc, when v decreases.

To study tthe stability problem of the Couette flow uc,, we rewrite (1.1)
into the equations for the perturbation of the Couette flow. We denote
the perturbation by u = T(¢,w) = T(e72(p — pce),v — Vo). Since the
Taylor vortex is axisymmetric, we consider the azisymmetric perturbation
u="(¢,w), where

b= d(r,z,t), w=w"(r,zt)e, +w(r, z,t)es + w?(r, 2)e,,

ie., ¢, w? (j =r,0,2) do not depend on the variable 6.



It then follows that div(¢vc) = 0, and, hence, the perturbation u is
governed by the following system of equations:

Ord + E%div (pcew) = —div (pw),
Baw — 52 Aw — L Vdivw + V (£edg) (1.4)

PC,e

+ve - Vw +w - Ve = g(é, w, 8,0, ,w, O2w; ¢, v).

Here g = —w - Vw + £2g(¢, w, 8¢, O,w, O2w; e, v) denotes the nonlinear
terms. Recall that the periodic boundary condition in z is included in the

definition of €2,: ¢ and w are %"-periodic in z. The boundary conditions on

_n 1
T =15, 1o are

r 6

= w’ = w?

=0onr=:2L, L (1.5)

Il

w

Furthermore, we impose the condition

/ pdx =0, (1.6)
Qa

which naturally follows from the conservation of mass.

2 Results

In this section we state the stability and bifurcation results for the compress-
ible problem (1.1)—(1.2) obtained in [6].

We first introduce notation used in this paper. For 1 < p < oo we denote
by LP(Q,) the usual Lebesgue space over €, and its norm is denoted by
| - l- The mth order L? Sobolev space over (2, is denoted by H™(,), and
its norm is denoted by || - ||gm. The inner product of L?*(€,) is denoted by

(-,-), ie.,

(f,9) = f(z)g(z)dz.
Qo

Here Z denotes the complex conjugate of z € C.
We set

H} () = the H'(Q,)-closure of C5°(£y),
H™(Q,) = the dual space of H}(£,).
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We define L2(f2,) and H¥(Q,) by
L0 = {f € D00 [ flo)de =

H¥(Q4) = H¥Qo) N LA(QW) (k> 1).
We set
L2(Q) = {v € L} (%)% divo = 0 in Qq, v - nfsq, = 0}.

Here and in what follows, n denotes the unit outward normal to 0€),. It is

known that
(L*(a))® = L2(Qa) ® G* (),

where G?(2,) = {Vp; p € H}(Q)} is orthogonal complement of L2(€,).
The orthogonal projection P from L?*(Q,) onto L2(,) is called the
Helmholtz projection.
Let X be a function space consisting functions u = T (¢, w) on €, where
¢ and w are scalar and vector fields on €2, respectively. We denote by Xym
the set of functions in X that satisfy the following symmetries:

e axisymmetry:

¢ = ¢(r,2), w=w(r,2)e, +w(r,z)es + w?(r, 2)e,,

o reflection symmetry with respect to z = 0:

o(r,—2) = ¢(r,2), Wi (r,—2) = wi(r,2z) (j =r,0), w(r,—z) = —w?(r, 2).

Similarly, for a function space Y of vector fields on €2,, we denote by Y,n,
the set of vector fields in Y with the above symmetries.

We denote the resolvent set of an operator A by p(A) and the spectrum
of A by o(A).

To state our results, we next introduce linearized operators around the
Couette flow. We define the linearized operator

L,: L2, (Q)— L%, (Q)

o,sym o,sym

around the Couette flow for the incompressible problem by

Lyv = —vPAv + P(ve - Vv + v - Vog)
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for w € D(L,) with domain D(L,) = [H?*(4) N H3 ()]’ N L2 0 ()
The linearized operator

Leins H,},sym(Qa) x L2 (Q.)° = HL,_ (Q) x L2 _(2,)?

sym *,8Ym sym

for the compressible problem (1.4)—(1.6) is defined by

PC,e PC.e

0 2div (pc,e ) &
LE’V'U/ = \v4 p'(pce) v_A v+ di T
(—) —— —EV iv +ve-V+ (V'Uc)' w

foru = T(¢,w) € D(L.,) with domain D(L.,) = H2 . (Qu) X [H2(Qa) N HE 1 ()]

*,5Ym
We make the following assumption on the spectrum of the linearized
operator L, for the incompressible problem.

Assumption (A): There are constants v, > 0, kg > 0 and Ay > 0 such that
for v — v | < 1,
p(=L,) D {A € C;Re X > —ro|Im A|® — Ao} \ {\(¥)}.
Here A(v) € R is a simple eigenvalue satisfying A(v.) = 0 and £ (v.) < 0.
Remark 1 (i) It was proved by Velte ([12]) and Iudovich ([3]) that A(v.) = 0,
D (1) # 0 (for a.e. a>0).
(ii) Numerical computations and experiments support the Assumption

(A) for physically relevant values of a. See, e.g. [1, 7].

Under Assumption (A), the bifurcation of the Taylor vortex for the in-
compressible problem (1.3), (1.2) can be proved by applying the standard
bifurcation theory ([2]).

Proposition 1 ([12, 3, 7]) For each v = v(8) (|6| < 1), the problem (1.3),
(1.2) has a nontrivial stationary solution v;s (incompressible Taylor vortex)

such that
v(0) = v.—ad®+ 0(8%),

vs = vo+6(w® + 6w§1)).

Here a is a constant; w® is the eigenfunction for the zero eigenvalue of —L,,.
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Remark 2 (i) the bifurcation of the Taylor vortex from the Couette flow was
proved for the incompressible Navier-Stokes equations by Velte [12], ITudovich
[3], Kirchgéssner and Sorger [7] and etc. See the book [1] by Chossat and
Iooss for the Taylor problem.

(ii) Numerical computations and experiments support that the constant
a satisfies a > 0 for physically relevant values of a. See, e.g. [1, 7).

For sufficiently small Mach number ¢, we have the following result on the
spectrum of the linearized operator L. ,.

Theorem 2 ([6]) There are constants g > 0, Ay > 0 and vy > 0 such
that the following assertion holds true. For each 0 < € < gg there exists a
critical value v,(g) with v.(€) = v. as € — 0 such that if v — v.| < 14, then
p(=Ley) D {X € C;ReX > —A1} \ {A(v)}, where A(v) € R is a simple
eigenvalue satisfying A-(ve(e)) = 0 and %= (ve(e)) < 0.

In view of Theorem 2 one could expect a stationary bifurcation from
the Couette flow at v = v.(¢). However, the standard bifurcation theory is
not applicable since the nonlinearity is not Fréchet differentiable due to the
derivative loss in the term —div (pw). Nevertheless, we have the following
bifurcation result.

Theorem 3 ([6]) Let 0 < € < &g. Then for each v = v.(9) (|6| < 1), the
problem (1.4)-(1.6) has a nontrivial stationary solution us. (compressible
Taylor vortex) such that

v:(8) = ve) —a.0%+ O(83),
use = O(UL +6UD).

Here a. = a + O(e?) with the constant a in Proposition 1; UE(O) 1s the eigen-
function for the zero eigenvalue of —Lg . (c)-

Theorem 3 can be proved in a similar manner to the argument in [4].

Our proof of Theorem 1 is outlined as follows. One can show that if
0 < e < 1, then o(—L,) N {\;|ReA| < Ag} is decomposed into two parts
S1USs, where S; = o(—L¢,)N{A; |A| < O(1)} is the incompressible part that
is obtained by a perturbation of the incompressible spectrum o(—L,); and
Sy = (=L, )N{\; |Im A| = O(¢71)} is the compressible part that consists of



the spectra for acoustic modes (sound waves with propagation speed O(¢™1)).
Due to the assumption on o(—L,), one can show that S; = {A.(v)}. Since
we consider axisymmetric perturbations, we can prove ReS; < —A; < 0
by using an argument similar to the one in [5] for the stability problem of
stationary solution of the artificial compressible system.

Remark 3 For general perturbations (i.e., without axisymmetric assump-
tion), one can show the above decomposition by S; and S; with S; = {A.(v)}
for 0 < € < 1. But, it is still open whether Re Sy < —A; holds for the case
of general perturbations.
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