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Degenerate Bernoulli polynomials and poly-Cauchy
polynomials

Takao Komatsu
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1 Introduction

Carlitz [6, 7] defined the degenerate Bernoulli polynomials (3,,()\, x) by means
of the generating function

<m) (1+ Mt)*/* = Zﬁn(A,x)g , (1)

When A — 0 in (1), B,(z) = £,(0, x) are the ordinary Bernoulli polynomials
because
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When A — 0 and z = 0 in (1), B, = (3,(0,0) are the classical Bernoulli

numbers defined by
t S
6t—1:ZBnm. (2>

The degenerate Bernoulli polynomials in A and x have rational coefficients.
When z = 0, 5,(\) = (A, 0) are called degenerate Bernoulli numbers. In
[17], explicit formulas for the coefficients of the polynomial 3,()\) are found.
In [27], a general symmetric identity involving the degenerate Bernoulli poly-
nomials and the sums of generalized falling factorials are proved.

On the other direction, hypergeometric Bernoulli polynomials By (%)
(see, e.g., [19]) are defined by the generating function
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where 1 F(a; b; z) is the confluent hypergeometric function defined by

) a (n) o
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= (b)™ n!

with the rising factorial (z)™ = 2z(z+1)...(z+n—1) (n > 1) and (2)© =
1. When z = 0 in (3), By, = Bnx(0) are the hypergeometric Bernoulli
numbers ([14, 15, 11, 12, 21]). When N =1 in (3), B,(x) = By ,(x) are the
ordinary Bernoulli polynomials. When 2 = 0 and N = 1in (3), B, = B1.,(0)
are the classical Bernoulli numbers.

Many kinds of generalizations of the Bernoulli numbers have been con-
sidered by many authors. For example, Poly-Bernoulli number, Apostol
Bernoulli numbers, various types of g-Bernoulli numbers, Bernoulli Carlitz
numbers. One of the advantages of hypergeometric numbers is the natural
extension of determinant expressions of the numbers.

The determinant expression of hypergeometric Bernoulli numbers ([2, 20])
are given by

NI
(N+1)! 1
N! N!
(N+2)! (N+1)!
Byn = (=1)"n! : : 1 (4)
N! N! N! 1
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N! N! N! N!
(N+n)!  (N4n-1) (N+2)l N+
The determinant expression for the classical Bernoulli numbers B, = Bj,

was discovered by Glaisher ([10, p.52]).

2 Hypergeometric degenerate Bernoulli num-
bers

Denote the generalized falling factorial by
(zla), = z(z — a)(z — 20) - (z — (n — 1)a)

with (z|a)y = 1. When a = 1, (z),, = (z|1), is the original falling factorial.
Define hypergeometric degenerate Bernoulli polynomials By (A, z) by

1 -1
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(n=1)
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where o F}(a, b; ¢; z) is the Gauss hypergeometric function defined by

o 20 (a)(”)(b)(”) on
2F1 (CL, b> Z) - ; (C)(n) n'

When z = 0 in (5), Bvn(X) = Bya(A,0) are the hypergeometric degenerate
Bernoulli numbers. Since

t = 1—AMH1
(S )

n=1

in (1), we can write
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When N = 1, the definition (5) with (6) is reduced to that of degenerate
Bernoulli polynomials by

-1
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When N =1 and A — 0, the definition (5) with (6) is reduced to that of the
classical Bernoulli polynomials by

< > mfl) =Y B

=1 =0

We have the following recurrence relation of hypergeometric degenerate
Bernoulli numbers Sy, ().
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Proposition 1. For N > 0, we have

e nl(1 — NAJA)p_pNV!
Brn(h Zle+nL%£,ﬁw()(nZU
k=0

with ﬁN,O()\) = L.
We have an explicit expression of Sn ().

Theorem 1. Forn > 1,

(1= NN, (1= NA),
Pn(A —”'Z —NDE ) (N+i)!  (N+ip)!

11+ tip=n

There is an alternative form of [y ,(A) by using binomial coefficients.
The proof is similar to that of Theorem 1 and is omitted.

Theorem 2. Forn > 1,

e (L= NAWa (L= NAY,
(A —”'Z - <A+1>IZ (N+a)l (N +iy)!

3 A determinant expression of hypergeomet-
ric degenerated Bernoulli numbers

Theorem 3. Forn > 1, we have

ﬁN,n(/\)
(1-NA)N! 1
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(N+n)! (N+n—1)! (N+2)! (N+1)!
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Remark. When A\ — 0 in Theorem 3, we have a determinant expression
of hypergeometric Bernoulli numbers By, in (4). If A — 0 and N =1 in
Theorem 3, we recover the classical determinant expression of the Bernoulli
numbers B,, ([10, p.52]).

4 Applications by the Trudi’s formula

We shall use the Trudi’s formula to obtain different explicit expressions and
inversion relations for the numbers [y ,, ().

Lemma 1. For a positive integer n, we have

a; ag 0
a9 ay
0
Qp—1 a1 Qo
an, Ay~ - a9 aq

bt
_ Z 1+ n (_ao)n7t1~..-—tn,at]1at22 . aﬁln’
T ws = by

t1+4+2t24--4+ntp=n

where (tlt;r“:t”) = W are the multinomial coefficients.

This relation is known as Trudi’s formula [25, Vol.3, p.214],(26] and the
case ap = 1 of this formula is known as Brioschi’s formula [4],[25, Vol.3,
pp.208-209].

In addition, there exists the following inversion formula (see, e.g. [23]),
which is based upon the relation

n

> (-1)"FaxD(n—k) =0 (n>1)

k=0
or Cameron’s operator in ([5]).
Lemma 2. If {a,}n>0 is a sequence defined by ag = 1 and
D(l) 1 Qaq 1
iy = D@y - , then D(n) =
§ ® " 1

D(n) - D@) D) S,



From Trudi’s formula, it is possible to give the combinatorial expression
Qy = Z ( lt " ”> (—1)"=t="=t D(1)1 D(2)% - - - D(n)' .
t142to+-+ntn=n 1y = % 5 by,

By applying these lemmata to Theorem 3, we obtain an explicit expression
for the hypergeometric degenerate Bernoulli numbers.

Theorem 4. For N,n > 1,

BuaN) =nl % (tl/f---+tn>(_1)h+...+t,,

t1+42to+-+nt,=n

(T Y- (R

Theorem 5. For N.n > 1,

BN,l()\) 1
Bn2(N) BN,I()\)

2!
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e et o B 1
3 n A 8 n— A B v A
N’n!( ) 1\(/1'1—11)(! R A;!( L Bra(V)

Applying the Trudi’s formula in Lemma 1 to Theorem 5, we get the
inversion relation of Theorem 4.

Theorem 6. For N,n > 1,

(1= NA)WN! _ 5 (h e v o tn> (< 1)ttt

|
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5 Generalized Stirling numbers

Hsu and Shiue [18] defined generalized Stirling number pairs by the generat-
ing function

n
nl

(1+ at)dlo — 1)’“

A'ZSnkaﬂr) 3

= (1+at)"/® <

where (a,3) # (0,0). The usual Stirling numbers of the first and second
kinds s(n, k) and S(n, k) are given by the parameters (a,3,7) = (1,0,0)
and (a,f,7) = (0,1,0), respectively. (When o = 0 or 8 = 0 the equation
is understood to mean the limit as @ — 0 or  — 0.) The parameters
(1,0, —x) and (0,1,2) give Carlitz’ weighted Stirling numbers of the first
and second kinds, and the parameters (1, A,0) give the degenerate Stirling
numbers of Carlitz. Hsu and Shiue demonstrated that there is in general a
duality between the generalized Stirling numbers with parameters (o, 3, 7)
and (3, a, —r).

Carlitz [7] also defined the degenerate Bernoulli polynomials of higher
order ﬁ,(lw)()\, x) for A # 0 by means of the generating function

t )“’ = t
—— ) A+ =) W\
(s o= >

where A\ = 1.

6 Convolution identities

Theorem 7. If k > w we have
« (n (w) ()
Z ( ,)S(n—j,k;a,ﬁ,r)ﬁj (A z)F = S —w,k—w;a, B, 7+ Br)
= \J ()

where A3 = «; and for k < w we have

n—k

> (5)se sk naon = (st i



6.1 Limiting cases

When A = 0 our convolution involves the order w Bernoulli polynomials
and weighted Stirling numbers of the second kind, and the result is either
a weighted Stirling number of the second kind or a Bernoulli polynomial,
depending on whether k£ > w.

Corollary 1. (A =0 case) If k > w we have
n—~k

Z <@>S(n—j,k;0,1,r)B§w)(x) = #S(n—w,k—w;O,l,r+x)
J

= (i)

and for k < w we have

n—k
(7) S(n — j,k;0,1,7) B (z) = (’Z) B™ Pz + 7).
3 ;

J=0

When g = 0 our convolution involves the order w Bernoulli polynomials
of the second kind and weighted Stirling numbers of the first kind, and the
result is either a weighted Stirling number of the first kind or a Bernoulli
polynomial of the second kind, depending on whether & > w.

Corollary 2. (=0 case) If k > w we have

n—k n
Z <n>5(n —J, k; 1,0,r)j!b§w)(:z:) = #S(n —w,k—w;1,0,r +x)
>0 &)

and for k < w we have

=5 y,k,1,0r>

(n— !

b (1)

w) —
) = =

“M

6.2 Zero-order cases

In this section we consider the specializations of the main result when either

k=0,w=0,or k—w=0. When £ = w the sum reduces to a single falling

factorial or power; this occurs because S(n,0;a, 3,1) = (r|a),, where
(rla)n =r(r—a)---(r—(n—1)a)

denotes the generalized falling factorial with increment «, with convention
(rla)o =1 ([18, eq.(8))).
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Corollary 3. (k =w case) We have
n—k - _ -

(7)s0- ks 2.0 0090 = (7)) -+ Bl
=0

where \3 = a; in particular for A = 0 we have

and for p =0 we have
<L/ n

<j>5(n — 7,k 1,0, T)j!b;k)(q;) = (k) (r+z|1) -
=0

When » = 2z = 0 in the above corollary we obtain the orthogonality

relations
n—k

> ()80 kia.0.0087 (05" = b

j=0

where 6, is the Kronecker delta; in particular we have
n—k -
( ) S(n— 4, k) B = 6,
J

and

n—k n

> ( )s(n — 5. k)IBY = b,
=0 \J

in terms of the usual Stirling numbers s(n, k) and S(n, k) of the first and
second kinds.

In the case £ = 0 the generalized Stirling number disappears from the
convolution and we obtain a recurrence involving Bernoulli polynomials only.

Corollary 4. (k =0 case) We have

nnra.(@xj:m)xT n
> (%) rlada-sB 02} = B9+ (/)

J=0



155
where A\ = «a; in particular for A = 0 we have

i:(7>ﬂlnﬁmcw==B$Mx+r)

=0

and for = 0 we have

ﬁé(nij>¢”@):byxx+r)

J=0

Note that the second equation (A = 0) of this corollary is a well-known
recurrence for Bernoulli polynomials, particularly in the case x = 0. The
third equation (u = 0) does not appear to be so well known.

In the case w = 0 the Bernoulli polynomial disappears from the convolu-
tion and we obtain a recurrence involving Stirling numbers only.

Corollary 5. (w =0 case) We have

n—k
J=0

(?)S(n — g ks, B,7)(z|N\); 8 = S(n, k;a, 8,7 + Bx)

where A\ = «; in particular for A = 0 we have

n—k
7=0

(ﬁ)ﬂn—ﬁh&lmmjzsmﬁﬂer+m
J

and for p =0 we have

n—

k
(7>S(n—j, k;l,O,r)j!(Jf) = S(n,k;1,0,7 + )
J J
0

g=

These two special cases (A = 0 and p = 0) are well-known recurrences for
weighted Stirling numbers, particularly in the case r» = 0.

6.3 First-order cases

When either kK = 1 or w = 1 the generalized Stirling number may be simplified
to

S(n, Ly, B,1) = B ((r + Bla), — (r|a).)
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in terms of generalized falling factorials. This may be proven by induction
from the recurrence

S(n+1,k0,6,r) = S(n, k — L, B,) + (k6 — ncx + 1)S(n, ks 0, B, 1)
(18, eq. (7)]. Taking the limit as § — 0 yields

1 1 1
S(n,1;1,0,7) = (r|1), +—1+ ”+;——n—+1

Corollary 6. (k=w =1 case) We have

n—1

JZ:; (J) ((r + Bla)n—j — (rla)u—;) B;(A, )~ = n(r + fz|a)n

where A\ = a; in particular for A = 0 we have

S 1( ) (r+1)"7 — ") Bj(z) = n(r + )"

g=

and for =0 we have

52 (0) bty by b= (02

In the case r = 0, the A = 0 case of the above corollary reflects the
usual recurrence and difference equation for the Bernoulli polynomials. In
the ;1 = 0 case the weighted Stirling numbers of the first kind reduce to
generalized harmonic numbers; in particular taking » = n we obtain

zn: (D (Hy — H;)bj(z) = (7:?)

7=0

where H,, = 1 + % 4+ o+ % denotes the nth harmonic number, and more
specifically for x = 0 we get

zn:(r,‘)(ﬂn—ﬂ)b —n.

=0
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Taking = —1 and using the identity B = nlb,(—1) ([16, eq. (2.10)])
yields the identity

> (%) - my 2 -1

—\J !
for the Nérlund numbers B

Corollary 7. (k =1 case) We have

n—1

Z (?) ((r + Bla)n-; = (rla)a—s) B 0 2)F " = 0B (@ + (/)"

where A\ = «; in particular for X = 0 we have

n—1
( > r+1)"7 — ) B](-w)(x) = nBY Y (z+7)

“M

and for p = 0 we have

it A 1 1 1
w w—1
Z(ﬂ—j> [?+r—1+"'+ - b (@) = b3V (@ + 7).

=0
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