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THE DISTRIBUTION OF RELATIVELY R-PRIME LATTICE
POINTS

WATARU TAKEDA

1. INTRODUCTION

In this article we consider the error term of the distribution of relatively r-prime
lattice points over number fields. Let K be a number field and let O be its ring of
integers. We regard an m-tuple of ideals (a;, as,...,a,,) of Ok as a lattice point in
K™. We say that a lattice point (aj,as,...,a,,) is relatively r-prime, if there exists
no prime ideal p such that a;,as,...,a,, C p". Let V;7 (x, K') denote the number of
relatively r-prime lattice points (aj, as, ..., a,,) such that their ideal norm Na; < x.
One can show that for all z > 1 and for all number fields K the number of relatively
1-prime lattice points Vj!(z, K) = 1, so in this paper we assume rm > 2.

B. D. Sittinger shows that

Theorem 1.1 (cf. [Sil0]). Let n = [K : Q] then

Ok (am~ ifm>3, orm=2andr>2,
Ok (2?~wlogz) ifm=2andr =1,
m
Vin(@, K) = A +{ Ok (a'-w log z ifm=1 and —n(r:f) =1,
CK(rm) ) T ,
OK (1;1—; 7fm:land17's‘+'1)>17
Ok HC%(Z_%)) if m=1 and —n(:__f) <1,

where (i is the Dedekind zeta function over K and pg is the residue of (x(s) at
s=1.

It is well known that

2m(2m)"hR
(1.2) i 1o L ]

vaK ’

where h is the class number of K, r; is the number of real embeddings of K, ro
is the number of pairs of complex embeddings, R is the regulator of K, w is the
number of roots of unity in O} and Dy is absolute value of the discriminant of K.

Let Ik (x) be the number of ideals of Ok with their ideal norm less than or equal
to z. Then it is known that

(1.3) Ix(x) ~ pxz.

We denote Ak (z) be the error term of I (x), that is, Ix(x) — pxx. And we know
that the number of relatively r-prime lattice points V. (2, K) can be expressed

m
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as the sum of product of I (z) and px(a) and the relation between Ay (x) and
E7 (z,K). Thus we consider Ak (z) throughout this paper.

In the next section, we introduce and show some auxiliary theorems to consider
an uniform upper bound of the error term Ay (z). In Section 3, we prove the fol-
lowing theorem about the error term of relatively r-prime lattice points E! (z, K),
where K runs through number fields with [K : Q] < n.

Theorem. For alle >0 and C > 0 the followings hold.

(1) When K runs through cubic extensions field with Dy < Czi, then
19 A-_m-lie .

E" (2,K) = Qo <x13r+6D;€ 8 2 ~1) Frm=2,

" Oc.e (Im_ﬁ“D}?_TH) otherwise.

(2) If K runs through number fields with [K : Q] < n and Dk < Cx7¥s ¢,

then
4n -2 el mel .
r
Em(I’K) = m—1

_ .4 . _
OCyn,e (@™ TFTFepprdt 2 ) otherwise.

2. AUXILIARY THEOREM

In this section, we show some important lemmas for our argument. Let s = o+t
and n = [K : Q]. We use the convexity bound of the Dedekind zeta function:

n(l—o)

(2.1) Clo +it) = One (18177 4D, 7 )

as [t/"Dg — oo on 0 < o < 1, where the constant implied in O depends on ¢ and
extension degree.

It is also well-known fact that Dedekind zeta function satisfies the following
functional equation

(2.2) Zx(1 - 8) = Zk(s),

g

s T
where Zg(s) = D227 (" Dr2p=% 1 (g) ' T'(s)"2Ck ().

In the previous papers, we used upper bound of Dedekind zeta function to esti-
mate the distribution of ideals. In the following sections, we show some estimate
for Ag(x) in the similar way to our previous papers [Tal7].

Lemma 2.3 states the growth of the product of Gamma function and trigono-
metric functions in the functional equation of Dedekind zeta function.

Lemma 2.3. Let f € {cos, sin} and n be a positive integer

F(S)n ( o8 7Ts>r1+r2 ( . TI'S)T2
COS — SN —
1—s 2 2

=Cn™™T (ns _n ;_ 1) f (L”lf) '3 (tt|—2+%+e) ’

2

where C' is a constant.

Proof. This lemma is shown from the Stirling formula and estimate for trigonomet-
ric function. d
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Next we introduce the generalized Atkinson’s lemma:

Lemma 2.4. Lety >0, 1< A< B and f € {cos,sin}, and we define
1 [A+B

I=— L(s)f (E) y~° ds.

2W1. A—iB 2
If y < B, then

1 B q . )
I:f(y)+0(y—§ min((log—)vB§>+y—ABA-§+y,§).
Y

If y > B, then

1=0 <y_A (BA_% min ((log%) ,B%> +AA_%)).

This lemma is quite useful for calculating the integral of the Dedekind zeta
function. Many authors used this generalized lemma but as far as I know there is
no proof. But we give proof of this lemma following the Atkinson’s original proof
in my preprint paper.

Finally we introduce the following lemma to reduce the ideal counting problem
to an exponential sum problem.

Lemma 2.5 (Proposition 3.1 of [Bol5]). Let 1 < L < R be a real number and ¢ be
an arithmetical function satisfying ¢(m) = O(m*®), and let e(x) = exp(2miz) and
F = ¢ * p, where * is the Dirichlet product symbol. For a € R —1, b,z € R and
for every € > 0 the following estimate holds.

Z SD( 27T:Um )

m<R

L'"% + R* max S~¢
L<S<R

X max  max max Z F(m) Z e (z(mn)")

S<S1<28M,N<Sy M< M, <2M
MN=S N<N;<2N |M<m<M; N<n<N,

= On,a

Next proposition plays a crucial role in our computing I (z). We consider the
distribution of ideals of Ok, where K runs through extensions with [K : Q] = n
and some conditions. The detail of the conditions will be determined later, but
they state the relation of main term and error term. Let ax () be the number of
ideals of O with their ideal norm equal to z.

Proposition 2.6. Let Fx = ak * p, where * is the Dirichlet product symbol, and
let e(x) = exp(2mix). For every € > 0 the following estimate holds.

Ag(x)
n—1 L n+1
xm DgZn REISna%cS’ In X
<

1

_ zmk\ ™

=One| x max max max E Fr(m) E eln|—
S<S1<2SM,N<S1M<M;<2M Dy

MN S N<N;<2N |M<m< M, N<E<Ny
n—2
+z7om +EDK" ‘REFE 4 ™%

+EDI?+ER~%+E

where I runs through number fields with [K : Q] = n and some conditions.
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Proof. We consider the integral
1 7/ z°
— )= ds.
2mi /C Cx(s) S 5

where C' is the contour C; U Cy U C3 U Cy shown in the following Figure 1.

S(s)
iT Ce
—-e|] O IT+e R(s)
Cs Cq
—1d C
4

FIGURE 1. path of integral

In a way similar to the well-known proof of Perron’s formula, we estimate

1 i e
— —ds=1 (@) .
27ri_CICK(3)s s K@)+ E( T )
We can select the large T', so that the O-term in the right hand side is sufficiently
small. For estimating the left hand side by using estimate (2.1), we divide it into
the integrals over Cs, C3 and Cy.

First we consider the integrals over Cs and Cy as

1 / e
— Cr(s)— ds
271 Gy S

1+4€ o

z° 1 It+e T
et TN do+ — — i do
Sop )., Ik (oDl dot 5o /_ (e (o =4T)| = do

It holds by the convexity bound of Dedekind zeta function (2.1) that their sum is

estimated as
1+ . z°
= Ope (/ (T"Dg) = To— do)
g T

14e€ €
' T¢D n_ lye _
= On,e ( K + T2 1+EDI?» 78] E) i

S

1 &
o / k()= ds
e CaUCy S

(2.7)

T1-ne
By Cauchy’s residue theorem we get
1 7/ &
— g — ds = 3
5 | Ce(0)% ds = pr

S

This leads to
s 1+5D5
(2.8) Ix(z) = pm;+/ gK(s)% ds + On.c (”’” K
Cs

1
Z-l+epate, —¢
—_— 2
TTi—ne +T Dg 'z )



Thus it suffices to consider the integral over C5 as
1 s 1 —e+iT s
27 T om —e—iT S

Changing the variable s to 1 — s, we have

1 - 1 I4e+iT gl-s
— ds = — 1—c ds.
gt |, e ds= o [ e - s
From the functional equation (2.2), it holds that
1 z®
T Ci (s )— ds
i
1 1+E+1T s_1 TS\ T1+T2 TS\ T2 rl—s
L D 29n(l=s) —nsp(g)n ( _) ( H )
=5 oy D T (s)™ (cos 5 sin CK(S)1 -

By lemma 2.3 the integral over C'5 can be expressed as

1 1l
— — d
27 Cs Cre(s) S s

14+e+iT i n.n —-s ,
_ B Dy* (%) F(ns—n_;—l)f(nﬂs) Ck(s) ds

27 Jiye it

i n
+ O (D}§+ET§_1+€$~E> .

. . n+1
Changing the variable ns — &

to s, we have

1 732
— Y a
27 Cs gK(S) S s

- A n— ; =5
_ C'a:z-nlDén Tl+n€+nzT Siar i F(s)f E n (Tl -+ l)ﬂ'
2me ”T‘l—knafm’T Dk 2 4

1 1 1 1 n
X CK < nt > ds + On,s (D}§+ET§_1+ECB‘E> .
n 2n

3=

The Dedekind zeta function (x (s) can be expressed as

oo
L ak(n)
(2.9) Ck(s) = Zl v for s > 1.
=
This Dirichlet series is absolutely and uniformly convergent on compact subsets on
R(s) > 1. Therefore we can interchange the order of summation and integral. Thus
we obtain

n—1

+ne+niT LN ¢
z \™® TS (n + )7 s n+1
o T = d
/"Tlﬁ-ns—ni’f < " <DK> ) (S)f < 4 ) CK <n N 2n > °

] 2= et niT 1\ 7°
- 2 n 1 1
_ 3 axm) / - (ﬁ) r(s)f <E + M) ds.
m=1 M72n 2= 1+nr niT Dy 2 4

169



170

Properties of trigonometric function lead to

s (n+1)7 f(E if n is odd,
f 7—1— 4 = LQf)% +g (% if n is even,
7 (F(5) +9(%)

where {f, g} = {sin, cos}. Hence it holds that

1
277 SO

n—1 .

C’J: T = ax(m g THetmT mx
E n+1 2nm | —
m=1 M2 E-;-l-f-'ns—'niT DK

+ Onﬁe (DE-FET?_H—ECL'*E) “

CK(S)— ds

3=

)ﬂ C(s)f (7;5> ds

1
Now we apply lemma 2.4 to this integral with y = 2nr (g’—}i) ", A=1+ne B=

2
nT and T = 27 (g—i) " this becomes

We evaluate three O-terms as follows.
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. . . -1
First we consider the first O-term. One can estimate (log %) =0 (%), S0
we obtain

n—2 CLK(m . R -1 RfL‘ %
on. [0k 3 2 (i) (57) 7}

m<R m 2n

n+2 R
n —m
m<[R]-1 m = [R][<m<R

- —_ U R n- P 1 2
= On,g (fEZ_"QD}:l} Z al((m) 7 4% 2"1 ngn Rﬁ Z aK(Tn)

+E+x2ﬂD2nR "Jrl)

Next we calculate the second O-term.

n—2
R 2n n 1 n 1
On e | T 2" D Z aKn+2) ((E) + 1) = On,s :L‘Q_"ZDITERQ_"Q Z aK(m)

m<R m72n

Since it is well-known that ax (m) = O(m*®), we get

n—2
A 1 ax(m R\ ™ A i A R e
On.e 272_"2D;'<" K£+2) <—) +1 = Dy & IZ_fDIQ R% / — dt
m<R Il m )

n—2 1l n-2
One (27 DR t€
1,€ K

Finally we estimate the third O-term in a similar way to calculate the first O-term.
One can estimate (log %)_1 =0 (;ﬁlf—R), so we obtain

1
n=2_ 1  n-2 ag(m) . my\ ! Rz \ "
4 <x z DR Rz te Z Wmm{(log §> » (D_K

m>R

o [pfni ( $ s (f)E 5 i ()

R<m<[R]+1 R]+2<m

ne1 o b no1 ar(m) ax(m) R
— n e n te n n —
= O |2 DZF R ) e +a T DR Y e
R<m<[R]+ [R]4+-2<m

w?nDz"R_ e L g DR RT“).

Il
S
=
™
"
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From above results, we obtain

— 1 1
1 x* Cz's D2" ax (m) mz\ "
— 2 ds = K E ) el
omi Jo, K5 & omi 2 I\ (D )
(2.10) "=

From estimate (2.8) and (2.10), it is obtained that

C’x T a ma\ "
AK(I) K Z 77152 (27’),71' (D—K) )
m<R

_ 1 Ly L A
4+ Ope (:1:7’2—_71 +ED]?+5R e 1TI+ED}?+ER_%+E) .

Next we consider the above sum. Let Fx = ak * u, where x is the Dirichlet product
symbol. From lemma 2.5 with L = 1 this becomes

Ak ()
n—1 oL
2 D 2" R°maxS ™ 2n X
K " 5<Rr

1
— zmk\ "
=One| x max ma max E Fr(m) E eln

S$<S51<25M, 1\r<s1 M< M, <2M Dk

MN S N<N1<2N M<m<Ml N<k<N;
1ie
% R o Zte -+ aj n

+$n2—nz K+€R_ Lye
This proves this proposition. 0O
Let Sk (x,S) be the sum in the O-term, that is,

Y
_n+1 k™
maxS~ 2"  max  max max E Fy(m) E eln
S<R 5<S51<2SM,N<S1 M<M;<2M Dy
MN=S N<N;<2N |M<m<>M,; N<k<N;

This proposition reduces the initial problem to an exponential sums problem. There
are many results to estimate exponential sum. In the next section, we estimate ideal
counting function by using some results for exponential sum established by many
authors.

3. IDEAL COUNTING FUNCTION

In this section, we consider the distribution of ideals of O, where K runs
through extensions with [K : Q] = n. In the last section, we show that the error
term of ideal counting function can be expressed as a exponential sum. Let X > 1
be a real number, 1 < M < M; < 2M and 1 < N < N; < 2N be integers and
(am), (by) C C be sequence of complex numbers, and let a, 8 € R and we define

(3-1) S= > am ) be( (M)Q(%)B)

M<m<M; N<n<N;
In 1998 Wu shows this lemma.
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Lemma 3.2 (Theorem 2 of [Wu98]). Let a, 5 € R such that af(a—1)(8—-1) # 0,
and |am| <1 and |by| <1 and £ =1log(XMN +2). Then

(XM3N)5 4+ (X*MON"1)16 4 (X M7N0) ™ )

=9 o
Lre= O( +MN?% + (X" 'M¥N2)s% + X~ MN

Next Bordelles also shows this lemma by using estimate for triple exponential
sums by Robert and Sargos.

Lemma 3.3 (Proposition 3.5 of [Bol5]). Let a, 5 € R such that af(a—1)(f—1) #
0, and |a,,| <1 and |b,| < 1. If X = O(M) then

(MN) =S
=0 ((XMSN7)% + NX2MM T 4 (X 3M* N5 4 MiN + X-%MN) .
In the following Sriaivasan’s result is important for our estimating.

Lemma 3.4 (Lemma 4 of [Sr62]). Let N and P be positive integers and u, > 0,
v, >0, A, and B, denote constants for 1 < n < N and 1 < p < P. Then there
exists a q with properties

Q1 <q<Qs
and

N P N P N P
ZA7lqun_+_Z qu—v,, -0 <ZZ uﬂ+1'<y/A:,l;pB;;n + zAanfn + ZBPQQ_UP) )
=1 p=1 n=1 p=1 n=1 p=1
The constant involved in O-symbol is less than N + P.

Sriaivasan remarked that the inequality in lemma 3.4 corresponds to the ‘best
possible’ choice of ¢ in the range @ < ¢ < Q9 [Sr62].

Theorem 3.5. For alle > 0 and C > 0 the followings hold.
(1) If K runs through cubic fields with Dy < Czi

AK(Z‘) = OC,e ($%+ED;§+E> g

(2) If K runs through number fields with [K : Q] < n and Dk < CrzFs <
then

2n-3 el
AK(«T) — OC,n,e (.7} 2n¥1 +5D12('n.+1 ) )

Proof. We note that

2,5 2 ((5))

M<m< M, N<k<N
1 1
gMN\™ rm\= (k\"
= Y Fx(m) > e<n( D > (ﬂ) (N) > .
M<m<M, N<k<N

3=

We use the above lemmas with X =n (Ing I > > 0. We consider four cases:
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|
Case 1. | Se < N <« S2
Case 2. | S <« N < S1-@
Case 3. | S'"* <« N
Case 4. | N <« S°

When S < N < S2, we apply lemma 3.2 and this gives
S—¢2’F D27 S (x, S)
255 DI R 4 o D RS
=One | +a % Df %R?{ng $“Q—7SDI§E R — 3o
—|—gj“2n2n D “"R 44n + 1’712:.2 D;’an_;?

(3.6)

When S2 < N < S'=° we use lemma 3.2 again reversing the role of M and N.
We obtain the same estimate for the case that ¢ <« N < S2.
For the case 3, we use lemma 3.3

n—1 1
S~¢z DF Sk (z, 5)
4n-3
$gn DS”RS11+“—|—13 5nD3"R12n +1za
3n—5

4

= On,E +x gﬂ‘)DsnR 8n 120
- 1

+x"2n DI?"R an +Z’* +x 4n 4"R 4n

(3.7)

For the case 4, we use lemma 3.3 again reversing the role of M and N. We obtain
the same estimate for the case that S'~® < N. Combining (3.6) and (3.7) with
proposition 2.6, we obtain

IK(CL‘) = PKZT

5n— S

,r 10n DlO"R Tom +E+g; an D“"R 321
+x Tan D 22“R o e +x 72 S D R o — B ote

11n— 5n-—24 n—2
41 22n D 11”R1 1an . 4+ T 2n R on 1€

(3.8) +One -8, 1
+.’E o D 5"R &n 2+ 10te 4 fact D 3"R Tom +iz0te

—|—:Zj Bn DSnR Sn +12”+E+x Tn ‘D‘P"‘I%ZZnS_FE
+xT+ED,’(‘+€R—%+€

By lemma 3.4 with 1 < R < xDg there exists an R such that the error term of
estimate (3.8) is much less than

2 5 6
2 T+ 5n+3 ety 6n—4 +
LT D E+x#:2-4+ED5n+24 € 4 pongistep At TE

%'HD “‘1“_{;+1+ isn_2o+5D 3"+4+5 "—2+ED wte
== =f  18mt +z %

n

(2a+1)n—2a 2(1# (a+5)n—a—7

a+5s
4 EatDnEs +£D @atDnFs t€ + $—)—("+5 T d +5DKW+55n.+4 +e

(2a+9)n—2a-12 — 2049 __ 4 2n—3 =2 te
Cato)mFo — TE ) Caton+s Sarr TE ) 2ntHl
+x " Fall. +a2F TED R :

+e +e 25 29 +e 3 Z+te
+$3+€D3 +:E30+ED 15 +1‘57+ED&“ +.’L’7+5D[’(



If K runs through cubic extension fields withDy < Cm%, we obtain

A (z) = Oc.. <x%+€D,§3+f) .

When n > 4 and a = 2% then we have

n—2 1 Sn— =2 +te
_ o +e€ 205 e 1 2nF1
AK(-'E) = OC,n,E (.’E s D[? + x2n+1 DK ) .

From this estimate we obtain the following result. If K runs through number fields

with [K : Q) < n and Dy < Cxzers

2n—3 =—=2—+¢
_ S—7 t€ on+1
A (z) = Oc e (x?nﬂ D2 ) .

This proves our theorem.

Theorem 3.5 leads to the following corollary.
Corollary 3.9. For all e > 0 and C > 0 the followings hold.

(1) When K runs through cubic extensions field with Dy < Cz1, then

Oce (xll_;JrED%i e

- 2 m-—1
—Ltep-Trite ;
Oc.e (mm uteDpE ) otherwise.

ifrm =2,
E (z,K) =

(2) If K runs through number fields with [K : Q] < n and Dg < CZTS%"E,

then

an—2 2 )
Ocne |z TEDZFT 72 if rm =2,
El (z,K)=

n—1

mrlte

4 2 __
M— 5——7+E€ ) 2n+1 .
Ocne | 2" 7F17° Dy ) otherwise.

Proof. We show the first case. The Inclusion—Exclusion Principle shows that

(3.10) Vi@, K) = S0 pla) ( mi r)m .

‘Jlagx%

Theorem 3.5 and the binomial theorem lead to

S o) (22 4 0c. () ¥ 0E™))"

NaLgl/r

o Y o | Y (q)" 0k

Na<Lat/r Na<al/m

Vo (z, K)
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. pu(a) 1
By using the fact ; Narm Eclrm)’ we get

(pr )™ p(a)

Vilm K) = ——<—(pga)™ ) K& =

CK(Tm) Na>zl/7 "
T \M—1gte 2 _m-i
+0ce | Y (5) DT

Na<gl/™

2
Theorem 3.5 states Ix(z) — Ix(z — 1) = Oc (m%+5D}(3 +E), so we have

2 _m
o, S4epniz T2 e
( 1,)771 Z :u(a) — () m ys DI]( d
PK Narm — YCe T m Y
Na>zxl/" @t/ Y

19 2 Pl
:che(xwr""':_D}](3 2 ).,

and

Z T m—1—73+6D%_m;1+5
RIGY K

NaLgl/r
1/r 6 2 4e

2 _m-—1 T ﬁ—i-ED 13

5- +e Y K
-0 M- 13 teDI3 2 14+ NP ; S—,
C.e K . y'r(m—%+s) Y

- m m -1
m— & +¢e +e 19 4 o . +e
=0 (a: eI T T | e plsT e e

Hence we get

e m—1 4 m—1
Vi@, K) = —FE—am 4 Oc, (am=B+Df "7 pathreppp )
' Ck (rm)
o, A _m=-1, .
e . Oc e (m e 3 5) if rm =2,
3
= e % 2 _m-—1
Cr(rm) Oc.e (:E""ﬁ‘“:D;? 2 +E> otherwise.
This proves the first case. We can also show second case by the same argument of
first case with 16—3 and 1% replaced by % and 271.2+1’ respectively.
This proves the theorem.
]
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