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1 Introduction

In this note, based on our recent papers [13, 14, 11, 12], we give some remarks
on the strong instability of standing wave solutions for nonlinear Scrhrodinger
equations.

First, we consider nonlinear Schrodinger equation of the simplest form:

i0u = —Au — |[ulP'u, (t,z) € R x RV, (1.1)

where 1 < p < 2* — 1. Here and hereafter, 2* = 2N/(N — 2) if N > 3, and
=00 if N =1,2.

In this section, we give a simple proof for a classical result on the strong
instability of standing waves for (1.1) by Berestycki and Cazenave [1].

It is well known that the Cauchy problem for (1.1) is locally well-posed
in the energy space H'(R") (see, e.g., [2, Chapter 4]).

Proposition 1.1. Let 1 < p < 2* — 1. For any uy € HY(R") there exist
Tnax = Tmax (o) € (0,00] and a unique mazimal solution

u € C([0, Tmax), H'(RY)) N CY([0, Tax), H ' (RY))
of (1.1) with initial condition u(0) = ug. The solution u(t) is mazimal in the

sense that if Thax < 00, then t li%n lu()||g: = oo.
Y

max

Moreover, the solution u(t) satisfies the conservation laws
lu®)l|Ze = luollZe,  E(u(t)) = E(uo) (1.2)

for allt € [0, Thax), where the energy E is defined by

1 1
E(v) = §HVU||2L? = m““”’iﬁl-



Next, we consider the stationary problem
—Ap+whp— ¢ 'o=0, zeR", (1.3)

where w > 0 is a paramter. Note that if ¢(z) solves (1.3), then e“!¢(z) is a
solution of (1.1). Moreover, (1.3) is written as S/, (¢) = 0, where

w
Suv) = B(®) + 2 |oll3

1 w 1
= SI9vlE + Sl —

is the action. The set of all ground states for (1.3) is defined by

G ={d € A, : Su(¢) < Su(v) for all v e A,}, (1.4)

where

A, ={ve H'RY): 8 (v) =0, v+#0}

is the set of all nontrivial solutions for (1.3).
The existence of ground states for (1.3) is well known.

Proposition 1.2. Let 1 < p < 2*—1 and w > 0. Then, the set G, is not
empty, and it is characterized by

Go={ve H'RY): S,(v) =dw), K,(v)=0, v#0}, (1.5)
where
Koy(v) = 0x8u(A)lam1 = V][22 +wllvllZ2 — [0l
1s the Nehari functional, and
d(w) = inf{S,(v) : v € H'(R"), K, (v) =0, v # 0}. (1.6)

It is also known that there exists a unique positive radial soliution ¢, of
(1.3) (see [6] for the uniqueness), and the set G, is given by

G, = {eieTyaﬁw HeER, ye RN},

where 7,0(z) = v(z — y).
The following is the classical result by Berestycki and Cazenave [1] (see
also [2, Theorem 8.2.2]).



Theorem 1.3 (Berestycki and Cazenave [1]). Let 1+ 4/N < p < 2* — 1.
Then, for any w > 0, the standing wave solution e“'¢,, of (1.1) is strongly
unstable in the following sense. For any e > 0 there exists ug € H*(RY) such
that ||ug — du||m < € and the solution u(t) of (1.1) with u(0) = uy blows up
in finite time.

Note that when 1 < p < 1+4/N, for all w > 0, the standing wave solution
e™'@, of (1.1) is orbitally stable in the following sense (see [3]). For any € > 0
there exists > 0 such that if ug € H'(R") satisfies ||ug — ¢, ||z < &, then
the solution u(t) of (1.1) with u(0) = uy exists globally and satisfies

sup inf |ju(t) — €“1,du]lm < e
t>0 OeR,yeRN ’

The proof of finite time blowup for nonlinear Schrodinger equation (1.1)
relies on the virial identity (1.7) below. We define

Y ={ve  H®RY):|z|jve LARN)}.

Proposition 1.4. Let 1 < p < 2* — 1. Ifug € ¥, then the solution u(t) of
(1.1) with u(0) = uq satisfies u € C([0, Tax), £). Moreover, the function

Bes ||xu(t)||§2=/ it )| do
]RN

is in C%[0, Thax), and satisfies

d?
Tallzu®)li: = 8P(u(t), t € [0, Tnax), (1.7)
where
_ 2 o p+1 - N(p - 1)
P(U) - ”VUHL2 p+ 1“UHLP+1’ o= 9 .

For the proof of Proposition 1.4, see, e.g., [2, Proposition 6.5.1].
Note that by the scaling v*(z) = A¥2v(\z) for A > 0, we have

IV |72 = X[Vollfa,  10MFe = olife, 1M = A%(lolhs,
and
)\2 /\u
A 2 +1
E(Y) = GVl — ol

6]
a p+1

P(*) = X||VvlZ2 - P [l = AARE(W”) = AoAS.(v?).




Remark also that o > 2if p > 1+4/N,
The proof of Theorem 1.3 by Berestycki and Cazenave [1] is based on the
fact that d(w) = S, (¢,) can be characterized as

d(w) = inf{S,(v) : v € HY(RY), P(v) =0, v#0} (1.8)

for the case 1+ 4/N < p < 2* — 1. Using this fact, it is proved in [1] that if
uy € B, NZ, then the solution u(t) of (1.1) with u(0) = ug blows up in finite
time (see Theorem 1.7 below), where

B,={ve HR"):S,(v) < dw), P(v) <0} (1.9)

On the other hand, Zhang [15] and Le Coz [7] give alternative proofs of
Theorem 1.3. Instead of considering the minimization problem (1.8), they
proved that

d(w) < inf{S,(v):v € HY(R"), P(v) =0, K,(v) < 0} (1.10)

holds for all w > 0 if 1 +4/N < p < 2* — 1. Using this fact, it is proved in
(15, 7] that if ug € BZL' N X, then the solution u(t) of (1.1) with u(0) = ug
blows up in finite time, where

BZ: = {v € H'(R"Y) : S,(v) < d(w), P(v) <0, K,(v) < 0}.

Remark that the method of [15, 7] does not need to solve the minimization
problem (1.8).

The following lemma is a modification of the ideas of Zhang [15] and Le
Coz [7], and it was introduced in [12] (see also [13, 14, 11]).

Lemma 1.5. Let 1 +4/N <p<2*—1andw > 0. Ifv e HY(RY) satisfies
P(v) <0 and v # 0, then

d(w) < Su(v) —%P(v).

Proof. Consider the function

(0,00) 3 A= Kuy(v*) = N[ VllZz + wllvlZ2 = X*[lvll7:

b7 it
for A > 0. Then, lim K,(v*) = wl|jv||%. > 0.
A—=40

Moreover, since o > 2, we have lim Kw(v’\) = —o0. Thus, there exists
A——+o00

Ao € (0,00) such that K, (v*) =0.



Then, by the definition (1.6) of d(w), we have d(w) < S, (v*0).
Moreover, since o« > 2, the function
22 a? — 2\ w
(0,00) 3 A+ S, (v*) — EP(U) = 2(11'%+1)—”U| I;;il + §||U||%2
attains its maximum at A = 1.
Thus, using P(v) < 0 again, we have

d(w) < Su(™) < Sy(v*) — 32913(@) < Su(v) - %P(v).

This completes the proof. O

Once we have the key Lemma 1.5, the rest of the proof is the same as in
the classical argument of Berestycki and Cazenave [1].

Lemma 1.6. Let 1 +4/N < p < 2*—1 and w > 0. The set B, defined
by (1.9) s wnvariant under the flow of (1.1). That s, if ug € By, then the
solution u(t) of (1.1) with u(0) = ug satisfies u(t) € B, for all t € [0, Tiax)-

Proof. Let uy € B, and let u(t) be the solution of (1.1) with u(0) = wuy.
Then, by the conservation laws (1.2), we have

Sulu(t)) = E(u(t)) + 5 [u(®)l}2 = S.(uo) < d(w)

for all ¢ € [0, Tinax)-

Next, we prove that P(u(t)) < 0 for all t € [0, Tinax). Suppose that this
were not true. Then, there exists tg € (0, Tiax) such that P(u(ty)) = 0.
Moreover, since u(tg) # 0, it follows from Lemma 1.5 that

dw) < Su(u(ts)) = 3P(ulto) = Su(ult).

This contradicts the fact that S, (u(t)) < d(w) for all ¢ € [0, Tinax)-
Therefore, P(u(t)) < 0 for all ¢t € [0, Thhax)- O

Theorem 1.7. Let 1+ 4/N <p<2*—1andw > 0. Ifug € B,NE, then
the solution u(t) of (1.1) with u(0) = ug blows up in finite time.

Proof. Let ug € B, N'Y and let u(t) be the solution of (1.1) with u(0) = uy.
Then, it follows from Lemma 1.6 and Proposition 1.4 that u(t) € B, N X for
all t € [0, Thax)-



Moreover, by the virial identity (1.7), the conservation laws (1.2) and
Lemma 1.5, we have

for all ¢ € [0, Tinax ), which implies T,,a < 00. O

Finally, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. First, by the elliptic regularity theory, ¢, € ¥
(see, e.g., [2, Theorem 8.1.1]).
Next, since S,(¢,,) = 0 and a > 2, the function

b w e
(0,00) 3 A= S,(¢)) = EHV%H%? + 5”%”%2 - m|\¢w| A
attains its maximum at A = 1, and we see that

Su(9)) < Su(dw) = d(w), P(¢)) = AS.(4)) <0

for all A > 1.

Thus, for A > 1, ¢* € B, N ¥, and it follows from Theorem 1.7 that the
solution u(t) of (1.1) with u(0) = ¢, blows up in finite time.

Finally, since }\I_)H% 162 — ¢ llmr = 0, the proof is completed. O

2 NLS with double power nonlinearities

In this section, we consider nonlinear Schrédinger equations with double
power nonlinearities:

i0u = —Au — alulP u — blu|T u, (t,z) € R x RY, (2.1)

where 1 < p < ¢ < 2* — 1. For simplicity, we consider the case a > 0 and
b > 0 only.
The energy for (2.1) is defined by

1 2 @ +1 b +1
B(v) = 5IVole = Il - — Il



The Cauchy problem for (2.1) is locally well-posed in the energy space
H'(RY), and the same statement as in Proposition 1.1 holds.
Next, we consider the stationary problem

—Ap+wo —alplPre —blp|T g =0, zeRY, (2.2)

where w > 0. The action is defined by

1 w a 1 b 1
Sulv) = V0l + vl = =Sl = =g
The existence of ground states for (2.2) is also well known, and we have
the same statement as in Proposition 1.2. However, the uniqueness of positive
radial solutions for (2.2) is not known for the whole range of parameters p,
q, a, b and w.

2.1 Thecase 1+4/N<p<g<2--1

First, we give a simple proof of the following theorem, which is included in
Berestycki and Cazenave [1], by the same argument as in Section 1.

Theorem 2.1 (Berestycki and Cazenave [1]). Assume that 1 +4/N < p <
q<2*—1,a>0,b>0. Let w > 0 and ¢, be a ground state of (2.2). Then,
for any w > 0, the standing wave solution €“'@,, of (2.1) is strongly unstable.

For (2.1) with initial data u(0) = uy € X, we have the virial identity (1.7)
with '

aq b3
P(v) = [Vl — 2 eliEh — ol
Np=1] g _HNig—1)
2 ' 2 '

The following lemma is the key for the proof of Theorem 2.1.

Lemma 2.2. Assume that 1 +4/N < p<q<2*—1,a>0,b>0. If
v € HY(RY) satisfies P(v) <0 and v # 0, then

dw) < S, (v) — %P(v).



Proof. Consider the function

(0,00) 3 A = K, (v*)

= N|[VolZ: +wllvllzz = Mallvlf5i — Abllv] 7.

Then, )\limo K,(v*) = wl|jv||22 > 0. Moreover, since § > a > 2, we have
—
lim K, (v*) = —oo. Thus, there exists Ao € (0,00) such that K, (v*) = 0.

A—+00

Then, by the definition (1.6) of d(w), we have d(w) < S, (v*).
Moreover, since [ > « > 2, the function

/\2

(0,00) 3 A = S, (v*) — ?P( v)
ad?-22% o BAR— -,
= WGH e +'2(—+1—bH |G + 5 H’U||L2

attains its maximum at A = 1.
Thus, using P(v) < 0 again, we have

d(w) < Sw(U/\O) < Sw('U/\O) -
This completes the proof. O

Once we have the key Lemma 2.2, Theorem 2.1 is proved in the same way
as Theorem 1.3

2.2 Thecase l<p<1+4+4/N<qg<2*—1

Next, we consider the case 1 < p < 1+4/N < g < 2*— 1. For this case, it is

known that the standing wave solution e*“!¢,, of (2.1) is orbitally unstable for

sufficiently large w (see [10]), while e™*¢,, is orbitally stable for sufficiently

small w (see [4] and also [9, 8] for more results in one dimensional case).
The following theorem is proved by Ohta and Yamaguchi [13].

Theorem 2.3 (Ohta and Yamaguchi [13]). Let1 < p < 1+4/N < g < 2*—1,
a>0,b>0. Let w> 0 and ¢, be a ground state of (2.2). If E(¢,) > 0,
then the standing wave solution e™'¢,, of (2.1) is strongly unstable.

Corollary 2.4. Let 1 <p<1+4/N<qg<2*—1,a>0,b>0. Letw>0
and ¢, be a ground state of (2.2). Then there exists wy > 0 such that the
standing wave solution €“'¢,, of (2.1) is strongly unstable for allw € (wy,00).



Proof of Corollary 2.4. Since P(¢,,) = 0, we see that E(¢,) > 0 if and only

if
(2 B a)a p+1 (/j - 2>b
w p+1 <
(| pull 7o+ o

i [N et (23)

Note that 0 < o < 2 < 8. Moreover, as in the proof of Theorem 2 of [10],
we can prove that

1
llolth
o gl

Thus, there exists w; > 0 such that (2.3) holds for all w € (wy,00). O

In the following, we give a proof of Theorem 2.3, which is slightly different
from that in [13] (see Remark 2.8 below).
The key lemma for the proof of Theorem 2.3 is the following,.
Lemma 2.5. Let1 <p <1+4/N <qg<2*—1,a>0,b>0. Ifv e HY(RY)
satisfies E(v) > 0, P(v) <0 and v # 0, then
1
d(w) < S,(v) — §P(v).

Proof. Consider the function

(0,00) 3 A = K, (v*)

= N|[VolZ: +wllvllZz = Xalloll7r — Mbllvll T

Then, /\limo K,(v") = wl||v||22 > 0. Moreover, since 0 < o < 2 < f3, we have
—+

)\lim K, (v*) = —oo. Thus, there exists Ao € (0,00) such that K, (v*) = 0.

—+400

Then, by the definition (1.6) of d(w), we have d(w) < S,,(v*?).
Next, we consider the function
a A2
9N = S.(%) — T P(v)
al? —2)\@ pr1 |, BAE—2)P

= 2(p+ 1) a||v||LP+1 + 2(q+ 1)

for A > 0. Then, we have

w
bloll5iks + Sl

g'(1) = xS, (v*)|,_, — P(v) =0.

Moreover, since P(v) < 0 and E(v) > 0, we have

o(1) = 5.(0) = 3P() > S,(0) > Slolf3 = o(+0).
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Further, since 0 < o < 2 < f3, there exists A; € (0, 1) such that ¢'(A\;) = 0,
g (N\) <0 for A € (0,\1)U(1,00), and ¢g’'(A\) > 0 for A € (A\1,1). Thus, g(\)
attains its maximum at A = 1.

Therefore, using P(v) < 0 again, we have

2
d(w) < Sw(vAO) < Sw(UAO) - ﬁP(v) < Su(v) — %P(v)~
This completes the proof. O

By the key Lemma 2.5, we have the following Lemma 2.6 and Theorem
2.7 as in Section 1.

Lemma 2.6. Let 1 <p<1+4/N<qg<2*—1,a>0,b>0. The set
= {ve H'(RY) : S,(v) < d(w), P(v) <0, E(v)> 0} (2.4)
18 invariant under the flow of (2.1).

Theorem 2.7. Let 1 <p<144/N<qg<2*—1,a>0,b>0. Letw >0
and ¢, be a ground state of (2.2). If ug € B, N'E, then the solution u(t) of
(2.1) with u(0) = ug blows up in finite time.

Remark 2.8. In [13], instead of (2.4), the set

= {ve H'RY) : [Ju]72 = l¢ull72, 0 < E(v) < E(¢y),
P(v) <0, K,(v) <0}

is defined, and it is proved that if ug € B2NY, then the solution u(t) of (2.1)
with u(0) = up blows up in finite time. Remark that B2 C B,

Finally, we give the proof of Theorem 2.3.

Proof of Theorem 2.3. By the elliptic regularity theory, ¢, € .
Next, we consider the function

(0,00) 3 A = S, (¢)
A? g W 2 aA™ o pg bA? g+1
= EHV%HH + §|l¢w||m - ;jr—l”%llmﬂ - m|’¢wlqu+1-

Since 0 < a < 2 < 3, S/ (¢,) = 0 and E(¢,,) > 0, there exists A\; € (1, 00)
such that

Sw((pi\;) < Sw(¢w) = d(w)v P((bi\;) = /\d/\Sw((ﬁj\;) <0, E(¢:) >0



for A € (1,)\;). Thus, for A € (1,\), ¢} € BL N X, and it follows from
Theorem 2.7 that the solution u(t) of (2.1) with u(0) = ¢ blows up in finite
time.

Finally, since /1\1_12 |2 — dullgr = 0, the proof is completed. O

Remark 2.9. It is proved in [10] that if 0{E(¢})|,_, < 0, then the standing
wave solution e™*¢,, of (2.1) is orbitally unstable. We remark that E(¢,) > 0
implies 93 E(¢})|,_, < 0 for the case where 1 < p < 14+4/N < ¢ <2 —1,
a >0, b > 0. We conjecture that the standing wave solution e“!¢,, of
(2.1) may be strongly unstable under the assumption 02 E(¢)) ‘ sy < 0. See
[11] for a related result on nonlinear Schrodinger equations with a harmonic
potential.

3 NLS with delta potential

In this section, we consider nonlinear Schrodinger equations with a delta
potential in one space dimension:

10 = —0%u — vé(z)u — |[ulf'u, (t,z) € R xR, (3.1)

where v > 0 is a constant, d(z) is the delta measure at the origin, and
1 < p < 0. The energy for (3.1) is defined by

1
E(w) = g0l = F0)? = = IvliZ

for v € H'(R), and the Cauchy problem for (3.1) is locally well-posed in the
energy space H!(R).

We study the strong instability of standing wave solutions e, (x) of
(3.1), where w > ~%/4, and

bu(z) = {@mﬂ (WM + tamhi (ﬁ)) }_ (3.2)

which is a unique positive solution of
—02¢ — v6(2)p +wo — 9P 'p =0, z€R. (3.3)

The following theorem is proved by Fukuizumi, Ohta and Ozawa [5].

11
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Theorem 3.1 (Fukuizumi, Ohta and Ozawa [5]). Let v > 0 and w > 72 /4.

(i) When 1 < p <5, the standing wave solution e“'¢,, of (3.1) is orbitally
stable for any w € (v*/4, 00).

(ii) Whenp > 5, there exists wy = wi(p, ) € (v*/4,00) such that the stand-
ing wave solution €“'¢,, of (3.1) is orbitally stable for w € (v2/4,w,),
and orbitally unstable for w € (wy,00).

The following theorem is proved by Ohta and Yamaguchi [14].

Theorem 3.2 (Ohta and Yamaguchi [14]). Lety > 0, p > 5, w > +*/4, and
let ¢, be the function defined by (3.2). If E(¢,) > 0, then the standing wave
solution €“'e,, of (3.1) is strongly unstable.

We repeat the same argument as in Subsection 2.2 to give a proof of
Theorem 3.2 slightly different from [14].
We define the functionals S, K, and P by

Lpt+1ly

1 1
Su(o) = g8e0ls — ZOF + F vl ~ — Il
Ku(o) = 1850112 = 2o(0) +wlfoll3: — oll25h,
1

Y o p—
P(v) = 100|172 — §Iv(0)|2 - muvll’ﬂfh, o=

Note that by the scaling v*(z) = A\/2v(A\z) for A > 0, we have

Lp+1y

3 ~ w e
5.(0%) = S 10u0ls = IO + Sholls — Aol

vy aX?
P(v*) = X*[[0,0]172 — §A|v(0)l2 e Ll Dt = A0S, (v%).
Moreover, we define
d(w) = inf{S,(v) : v € H'(R), K, (v) =0, v # 0}. (3.4)

Then, we have d(w) = S, (¢.) for the case p > 1, v > 0 and w > 72 /4.

Lemma 3.3. Lety > 0, p > 5, w > 7*/4. Ifv € HY(R) satisfies E(v) > 0
P(v) <0 and v # 0, then

)

d(w) < Su(v) - %P(v).
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Proof. Consider the function
FA) = K, (v*) = X[[Vol[fz — vA[0(0)]* + wllv]|Fz — A*|lvllhs
for A > 0. Then, /\limo fA) = w|v||72 > 0. Moreover, since a > 2, we have
St
lim f(A) = —oo. Thus, there exists Ay € (0,00) such that K, (v*°) = 0.

A—~+o00

Then, by (3.4), we have d(w) < S,,(v*°).
Next, we consider the function

g(A) == S,(v*) - %P(U)
A ;2A7‘v(0)|2+‘1;(7121’;_a;| B+ 2 5 vl

for A > 0. Then, we have

g (1) = 0Su(Y)],_, - Pv) =0.
Moreover, since P(v) < 0 and E(v) > 0, we have

(1) = 5u(0) = 3P(0) > 5u(0) > Ll = g(+0).

Further, since o > 2, there exists \; € (0,1) such that ¢'(\;) = 0,
g (A) <0 for A € (0,A\)U(1,00), and ¢'(A) > 0 for A € (A,1). Thus, g(A)
attains its maximum at A = 1.

Therefore, using P(v) < 0 again, we have

d(w) < S, (v™) < S, (v*0) — %P(v) < S,(v) - %P(v).

This completes the proof. O

By the key Lemma 3.3, we have the following theorem, which improves
Theorem 1.6 of [14] (see Remark 2.8 above).

Theorem 3.4. Let v >0, p > 5, w > ~v%/4, and define
B, ={ve H(R): S,(v) < d(w), P(v) <0, E(v)>0}.
If ug € BLNE, then the solution u(t) of (3.1) with u(0) = uo blows up in

finite time.

The proof of Theorem 3.2 is exactly the same as in that of Theorem 2.3.

Remark 3.5. We conjecture that the standing wave solution e*“!¢,, of (3.1)
may be strongly unstable under the assumption 9} FE(¢)) | /\ L < 0 (see also
Remark 2.9).
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