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LIFESPAN OF PERIODIC SOLUTIONS TO NONLINEAR
SCHRODINGER EQUATIONS
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1. INTRODUCTION

We study the Cauchy problem for the nongauge invariant nonlinear Schrédinger
equations of the form

10w + Au = Mul?, (t,z)€[0,T) x T" (NLS)
and the derivative nonlinear Schrodinger equations of the form
i0pu + 0%u = NO(|ulP~ ), (t,x) € [0,T) x T, (DNLS)

where T = R/27Z, A € C\{0}, @ = 9/0z, p > 1, and T > 0. The purpose of this
note is to present some explicit upperbounds for the lifespan of periodic solutions to
(NLS) and (DNLS) in terms of the Cauchy data and to examine their optimality by
exact solutions. Part of the contents of this note is devoted to a detailed description
of the argument of our recent papers [4, 5].

2. NONGAUGE INVARIANT NLS

In this section, we study (NLS) in [0, 7)) x T™ with 7 > 0 and n > 1. The Cauchy
problem for (NLS) is proved to be locally well-posed in the Sobolev space H*(T")
with s > n/2 and p € 2N U (s,00), where

H*(T") = {u € L*(T"); Y_ (1+[k[*)*[a(k)[* < oo}
kezn
and (k) is the Fourier coefficient

u(k) = (27r)_"/ e"*Ty(x)de, keZ®

n

in the Fourier series expansion

u(@) =Y ak)e™*, zeT
kezn
The blowup problem for (NLS) has been studied in [13] (see also [14]), where
the Cauchy data uy = u(0) is supposed to satisfy

n

(ReA)Im [ up <0 or (Im\) Re/ ug > 0. (A0)
n

The argument in [13] depends on a test function method [1, 20, 21], originally
introduced for nonlinear heat and damped wave equations. In the argument based
on a test function method, however, the condition (AQ) arises in a rather implicit
setting, so that it is unlikely that (A0O) provides a simple and direct description
of the blowup mechanism. In this section, we introduce a twisted total signed
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density of wavefunctions over T™ and prove its finite time blowup by differential
inequalities. Our argument clarifies how the blowup phenomena occur by ODE
mechanism on the basis of monotonicity. Moreover, a clear picture is given on how
necessary conditions on the Cauchy data come into play in the proof of blowup in
a rather general framework. Furthermore, an explicit and optimal upperbound of
the lifespan of solution is naturally introduced in our argument.

The main result is this section is the following:

Theorem 1. Let u € C([0,T5,); (H? N LP)(T™)) N CY([0,T)n) ; L2(T™)) be the
mazimal solution of (NLS) with uop = u(0) € H*(T")\{0}. Assume that :

1m<X/n uo> <0  or Re(X/nuo> #0. (A1)

Then, T,, < +o0. Moreover:
(1) If Im(X [, o) < 0, then Ty, is estimated as
(2m)n(p=1)

P-DIA m(l% /T ”°>

(2) If Im(X [} wo) = 0, then there exists to € (0, Tr,) such that Tm(X Jrn u(to)) <0
and T,, is estimated as

1-p

T, (2.1)

n(p—1) By 1-p
T, <to+ % Im(ﬁ /n u(t0)> (2.2)
(8) If Im(X [} o) > 0 and Re(X [1, uo) # 0, then Ty, is estimated as
(27r)(P=1) ( (Im(X . u0)>2)”/2 (1 ) 1
Tt oo U R L)) ) ™\ [ o 23)

Proof of Theorem 1. First, we prove that T,, < +oo, provided that there exists
o € C\{0} such that

Re(ad) > 0 > Im (a / n u0>. (2.4)

For that purpose, we assume 7, = +oc and derive a contradiction. We define

M(t) = —Im (a /n u(t)), t>0. /

M(0) = —Im(a / ) u0> > 0. (2.5)

Differentiating M in ¢ and using (NLS), we have

M'(t) = —Im <a / ) (9tu>
(o [ 10

= Re (a /n(—Au + /\|u|”)) = Re(aA)[lu(®)|5, (2.6)

Then
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where we have used
/ Au(t) = — Z |k|2ﬁ(t,k)/ T = — Z |k|?a(t, k)bor = 0
T kezn ™ kezn

with Kronecker’s delta §,; in Z". By (2.5) and (2.6), M (t) is nonnegative for all
t > 0. By the Holder inequality, M(t) is bounded by

0<M(®) <ol | [ul)] < al2n) * D ue)], (27)

By (2.6) and (2.7), we have
M’ (t) > Re(a))|a| P(2m)" =PI M (2)P. (2.8)
We now distinguish two cases: (i) M(0) > 0. (ii) M(0) = 0.
(i) If M(0) > 0, then by (2.6), M(t) is strictly positive for all # > 0 and (2.8) implies
L(M(1)'7P) = ~(p ~ M) M (1)
< —(p — 1)Re(aN)|a|~P(2m)" (1P (2.9)
which in turn implies
M(t) > (M(0)'"? — (p — 1)Re(a\)|a| P (2m)"(1-P)¢) =1/ (=1) (2.10)
for all ¢ > 0. This is a contradiction to T}, = +oo since M (t) tends to infinity in a
finite time.

(ii) Let M(0) = 0. We prove that there exists ¢y > 0 such that M(ty) > 0.
Otherwise, M(t) vanishes identically and so does M’(t). By (2.6), this shows that
[lu(t)|l, = O for all ¢ > 0. In particular, ug = 0, which is a contradiction.
Again by (2.6), M (t) is strictly positive for all ¢ > ¢, and (2.9) holds on [tg, 00).
Integrating (2.9) on [to, t], we obtain
M(t) > (M(to)' ™7 — (p — DRe(ad)|af P(2m)" 7P (¢ — t))~/®=D (211

for all ¢ > t¢. This is a contradiction to T,, = +0o as above.

1) If Im(X [} uo) < 0, we set & = X. Then (2.4) holds and M(0) > 0. Moreover,
2.1) follows from (2.10).

2) If Im(X [}, uo) = 0, we set & = X. Then (2.4) holds and M (0) = 0. Moreover,
2.2) follows from (2.11).

3) If Im(X [}, uo) > 0 and Re(X [}, ug) # 0, we set o = A(1 — ia) with
Im(\ an ug)

Re(\ Jpn w0)

Then, Re(a)) = |A|?Re(1 — ia) = |A|?> > 0 and

M(0) = —Im (X(1 —ia) / uo)
- —Im(X/n uo) +aRe<X/n u0> :Im(X/n uo).

Therefore, (2.4) holds and M(0) > 0. Moreover, (2.3) follows from (2.10) since
lo? = |A[2(1 + @?).

(
(
(
(
(

a=2

O
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Remark 1. The condition (A1) is optimal in the sense that there exist global
solutions if (A1) fails. For instance, let ¢ € C\{0} satisfy c = Z|:\\_|'C| Then

u(t,z) = c(1+ (p — 1)|\|[e[P~ 1)~/ (—1)
is a global solution with ug(z) = c. In this case,

Im(X / ) u0> = (27)"Im(3c) = (21)"|A[|¢| > O,

Re(X/ u0> = (2m)"Re(Xc) = (2m)"Re(i|A||c|) = 0.
Remark 2. The lifespan estimate (2.1) is optimal. Let ¢ € C\{0} satisfy ¢ =
—il’\Tl|c|. Then
u(t,@) = e(1 = (p = )[A||e[P~ 1)~/ D
s a blowup solution with ug(x) = c. The blowup time is given by

1 1 X\ [P
- DA T (- DA Im(mc)
B (2ﬂ.)n(p—1) 1 1-p
ETE “‘(iM/Tn“") ’

which is exactly the same as the right hand of (2.1). In this case,

Im(X/En uo) = —(2m)"A||¢| < 0,
Re(X/n u0> =0.

A characterization of (A1) is shown to be given by (2.4). In fact, we have the
following proposition.

Proposition 1. Let A € C\{0} and let ug € L*(T™). Then the following statements
are equivalent.

(A1) Im(Xan uo) <0 or Re(Xan uo) £0.
(A2) There exists a € R such that aRe(_)\_ - uo) < —Im(X Fon uo).
(A3) There exists o« € C such that Re(aX) > 0> Im (a S uo).

Proposition 1 is reduced to the following elementary proposition.
Proposition 2. Let A € C\{0} and let p € C. Then the following statements are
equivalent.
(i) Im(Ap) < 0 or Re(Ap) # 0.
(ii) There ezists a € R such that aRe(M\u) < —Im(Ap).
(i1i) There exists o € C such that Re(aA) > 0 > Im(au).

Remark 3. (A0) is regarded as a special case of (A3). Indeed, if « = ReX # 0,
then (A3) becomes

(ReX)? > 0> (ReA)Im /[ g
Tn
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and if o = —iImA\ # 0, then (A3) becomes

(Im\)? > 0 > —(Im)\) Re/ Up.

n

(A1) is recovered by a specific choice of a in (A3). Indeed, if o = X, then (A3)

becomes
A2 >0> Im(X/ uo)

and if o = * [}, uo, then (A3) becomes

j:Re(X/ uo) >0:Im<i/ uo/ u0>.
TTL n n
Proof of Proposition 2. (i) = (ii):  If Im(Au) > 0, then we take a = 0. If
Im(Ap) < 0, then (i) implies Re(Ap) # 0 and we take

a = —Im(\u) + 1D)Re(Apn)/|Re(Ap)|?,
which yields

aRe(\p) = —(Im(Ap) + 1) < —Im(Ap).
(ii) = (iii): Let a = (1 4+ 4a)X. Then

Re(a)) = (A2 >0
and
Im(ap) = Im(Ap) + aRe(Ap) < 0.

(ili) = (i):  Assume that Im(Apx) > 0 and Re(Au) = 0. Then for any a € C,

Im(ap) = Im(&—l/\2 'X[t) = #Re(a)\) -Im(Ap).

If Im(apr) = 0, then Re(aA) = 0, which contradicts (iii). If Im(au) # 0, then
Im(apu) and Re(aA) have the same sign, which is also a contradiction to (iii). [

3. DERIVATIVE NLS
In this section, we study (DNLS) in [0,7) x T with 7> 0 and p > 1. The

original derivative nonlinear Schrédinger equation takes the form
i0yu + 0%u = +i0(|ul?u),

namely, (DNLS) with ReA = 0 and p = 3. There is a large literature on the Cauchy
problem for (DNLS). We refer the reader to (3, 6, 7, 8, 9, 10, 11, 12, 15, 18, 19] for
instance. The blowup problem for DNLS is still open, however (see [2, 16, 17] for
related results).

In this section, we consider the maximal solution

u € C([0,Tn); H*(T)) N C*([0, Tn); L*(T))

with Cauchy data uy = u(0) € H?(T)\{0}. The periodic boundary condition is
explicitly given by

u(t,0) = u(t,2m), Oru(t,0) = Opu(t, 27) (3.1)
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for all £ € [0,T,,). We note that constants are global solutions to (DNLS). To study
blowup problem for (DNLS), we impose the following renormalization excluding

constant solutions:
2m
/ ug = 0. (3.2)
0

The renormalization condition is shown to be preserved in time. Indeed, by (3.1)
and (3.2), we have

/O () = /0 7 <u0+ /O t asu(s)ds)
_ /0 t ( /0 7 i&m(s))ds

i/ot ( OZW 0(—0u + /\|u|”_1u)(s)>ds =0 (3.3)

for all t € [0,T},).
We introduce the positive and negative momentum of integrated wavefunctions

by
My (t) = iIm/OZW u(t)</0'zm>
= +Im /027r u(t,:c)(/oz Wdy) dx.

The main result in this section is the following:

Theorem 2. Let u € C([0,T,,); H*(T)) N C'([0, T)n); L%(T)) be the mazimal solu-
tion of (DNLS) with ug = u(0) € H*(T)\{0}. Assume:
e Sign condition I: ReX # 0.

27 T
e Sign condition II: (Re)\)Im/ uo(x)(/ uo(y)dy)dw > 0.
0 0

2
e Renormalization condition: / uo(z)dz = 0.
0

Then, T,, < +oc0. Moreover:
(1) If My (0) > 0, then T,, is estimated as

2p—1lgp 1-p
T < —— M, (0)7Z .
< p-Dren =07

(2) If M+(0) = 0, then there exists to € (0,T,,) such that My (to) > 0 and T, is
estimated as

(3.4)

2p=1xp
(p—1)[Re)|

Remark 4. The original derivative NLS does not satisfy sign condition I.

T <tg+ Mi(to)l_;e. (35)

Remark 5. Sign condition II is understood to assume that
M,(0) >0 if ReA >0

and that
M_(0)<0 if ReX < 0.
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Proof of Theorem 2. Let A satisfy ReA > 0 [respectively, ReA < 0] and let ug satisfy
M, (0) > 0 [respectively, M_(0) < 0]. We denote both cases by +ReX > 0 and
+M, (0) > 0. We assume T;, = +00 and derive a contradiction. Differentiating
My in t and using (DNLS), (3.1), (3.3), and integration by parts, we have

o~ " an( [ )« ([ )
ol [ [5) [+ [ )
—+Re —/Ozw(—a(('?u—/\|u|p_1u))(/o.ﬁ> +/027ru</0' a(—%uwla)ﬂ

2

r 2
=+ Re| — (Ou — NulP~tu)z + / u(—0u + A|u|p_1ﬂ)]
0 0

27
=+ 2Re)\/ [ulPT! > 0. , (3.6)
0

By (3.6) and the sign condition II, M. (t) are nonnegative for all ¢ > 0. By the
Holder inequality, My (t) are bounded by

0< M < [ i |u<t,x>|< I |u<t,y>|dy) dz

_ %/02” %(/Om ju(t,y)|dy)2dx
. ( / i <u<t,y>|dy)2

((2m) 747 ||u(t) | p41)2. (3.7)

IN
N = N

By (3.6) and (3.7), we obtain

0 < My(t)™F < 2°7 wP|lu(t) |21}

1 1
= P —— ML(t). ’
We now distinguish two cases: (1) My (0) > 0. (2) M4 (0) = 0.

(1) If M1(0) > 0, then by (3.6), M (t) are strictly positive for all ¢ > 0 and (3.8)
implies

d _p-1 -1 _p+l
F M7 = -E—Me () F ML)
p—12Re) 1
- 2 2%171'17 - CO’ (39)
where
_ 2%71'1)
O - DReA”

Integrating both hand sides of (3.9), we have

- - 1
Ma(t)™"7 — My (0)™"7 < ——t,
0
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which are equivalent to

b1 1\ TP
M) > (Ma(0)F - 2t (310)
0
for all t > 0. This is a contradiction to 7, = +oco since M4 (t) tend to infinity in a
finite time. Moreover, (3.4) follows from (3.10) which holds for all ¢ € [0, T,).

(2) Let M4 (0) = 0. For definiteness, we consider M, only. The other case may
be treated similarly. We prove that there exists to > 0 such that My (ty) > O.
Otherwise, M, (t) vanishes identically and so does M/ (t). By (3.6), this shows
that ||u(t)|[p+1 = 0 for all ¢ > 0. In particular, uy = 0, which is a contradiction.

Again by (3.6), M (t) is strictly positive for all ¢ > ;. Integrating (3.9) on
[to, t], we obtain

2

Mu0) 2 (M) - Zt-t0)) T (3.11)

for all t > to. This is a contradiction to T}, = +o0 as above. Moreover, (3.5) follows
from (3.11) which holds for all ¢t € [0,T},). O

Remark 6. The sign condition II is optimal in the sense that there exist global
solutions if it fails. For any A € R with FA > 0 and any ¢ € C\{0}, functions
ut : [0,00) x T — C given by

ut(t,z) = ce "E2(1 T A(p — 1)|¢[P~ 1)~V (P~D
are global solutions to (DNLS) with u* (0,z) = ce*™*. In this case,

27
/ u*(0,z)dz =0
0
and My (0) = 27|c|?, so that £AM4 (0) < 0, violating sign condition II.
Remark 7. Let +X > 0 and let ¢ € C\{0}. Functions uy : [0,T;,) x T — C given

by
o ¢\ ~1/e-D
ug (t, ) = ce_“i”<1 — —)
Tm

are solutions to (DNLS) if and only if
1
(p = DIA[|efr~1
The upperbound given by the right hand side of (3.4) is greater than T, since

o =

2%]71"’ ( )l;g 771%‘1

—_— ML (0 = .
(p— DReX[ " * (p — 1)|ReA[cJr—T
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