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OBSERVATION INEQUALITIES FOR KLEIN-GORDON
EQUATIONS

W. SCHLAG

1. INTRODUCTION

In this short communication we present an estimate for Klein-Gordon equations,
both linear and nonlinear, which permit controlling the energy norm of the solution
point-wise in time (say at time ¢ = 0) by a space-time average of the solution over
an interval around that time. These estimates arose naturally in the author’s work
with Nicolas Burq and Genevieve Raugel, [BurRauSchl, BurRauSchl]|, where they
play an essential role. In fact, the contents of this note are part of a larger and
more systematic discussion of problem of this type, see [BurRauSch3]. The approach
chosen here in order to pass from the linear to the nonlinear equation is concentration-
compactness [BahGer|. An alternative method is presented in [BurRauSch3].

2. OBSERVATION INEQUALITIES

2.1. Basic linear estimates. We begin with the free equation. The following
lemma explains what kind of estimate this entire note is concerned with.

Lemma 1. Let u solve Oyu — Au + u = 0 with data in H. Then for any 0 <b < 1
1E(0) Iz < C(®)l|ow] 20,61, 22(ma)) (1)
with C(b) = Cy b2 and Cy absolute. One also has
[@(0) 34—, < Cb)|lull L2051, L2(ma)) (2)

where H_y = L* x H71(R9).

The author thanks RIMS, Kyoto and the Universities of Kyoto and Tokyo for their generous
support during the summer of 2017. The author is grateful for Professors Shu Nakamura, Yoshio
Tsutsumi, and Kenji Yajima for their kind invitation to come to Japan in order to attend the
dispersive PDE meeting and the Kato centennial conference. The author was partially supported
by the NSF, DMS-1500696.



W. SCHLAG

Proof. We write @(0) = (f,g). Then with y = 2b{(§) > 2b

d 111
| tewotgar = 3 | {0~ e

—21—_%%#(5)@( )+ (1+ S la(R  de

The expression on the right-hand side is a quadratic form with matrix
[1 __ siny 1—cosy ]
y Y 4)
1—cosy siny (
== L

has eigenvalues py = 1 + 4/¢(y), where ¢(z) = 21=%52 One checks that ¢(z) <
for x > 0 and 1 — /¢(z) 2 2% for 0 < z < 1. Thus, (3) yields

b
j ()2 dt > B (f. )12
0

as desired. The second estimate (2) is established by an analogous calculation. The
matrix (4) only changes by interchanging the elements on the diagonal which does
not affect the eigenvalues of the associated quadratic form. g

(3)

The lemma extends trivially to b > 1 with an absolute constant C' replacing C(b)
(or in fact, it decays like b_%).

Next, we allow a potential V' in the linear Klein-Gordon equation. Because of
eigenvalues that might be present, we can no longer bound «(0) in terms of d;u in
that case. Agmon [Agmon75| showed that H = —A + V where V is real-valued and
continuous! in R? with

V(@) < C&)™, y>1 (5)
admits a distorted Fourier transform in the sense that there exists a unitary map
F i L2 (R?) — L*(R?) (where L2 (R?) is the absolutely continuous subspace of L2
relative to H) given by

Ff@)=f() = lm | xquer f(z) (e, €) da,

R—® R4

A ©)
@) = Jim | xiiem £€) ola,6) de

Here ¢(x,&) are the generalized eigenfunctions or plane waves associated with H.
By Kato’s theorem there are no embedded eigenvalues in the continuous spectrum
of H, which moreover satisfies the asymptotic completeness property (no singular

IThis can be weakened considerably but is enough for our purposes.
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continuous spectrum and wave operators are isometries onto L% (R?)). F extends
to a map on all of L2(R?) with kernel given by the pure point subspace of L? (the
closure of the span of all eigenfunctions of H).

Under the previous condition on V', H may have infinitely many negative eigenval-
ues. But it is known (Birman-Schwinger, Cwickel-Lieb-Rozenbluym, Newton) that
for |V (z)| < K{z)=° in R? with ¢ > 2 the number of negative (or zero) eigenvalues
counted with multiplicity is bounded by C(d, K, o).

Lemma 2. Let |V (z)| < {(z)™" inR? with o > 2. Let u solve dyu—Au+Vu+u =0
with data in H. Then
|0l zo(z,L2) < C(V, ]| Opull 21, L2 (ay) (7)
for any finite interval I. Moreover, one has
@l o2 < C(V, TN (| Opull 22, L2 ey + 1nf ITTo w(t)]|z2) (8)
with Iy being the projection onto the zero eigenspace of H. Finally, one has
Nl Lo myy) < CV, )l L2, p2 may) (9)
Proof. By time translation, we may assume that 0 € I. The operator
H=-A+V+1

has eigenvalues Ay, < 1,1 < k < K < o0, with orthonormal (relative to L?) eigen-
functions 1. If A\x < 1, then vy, decays exponentially, whereas for A\, = 1 the decay
is at least 2. The solution u(t) is of the form

K

u(t) = > cr(t)vr + w(t)

k=1
where w(t) L ¢y for all k and all ¢t. The ¢, are given by é + Apck(t) = 0 and
ck(0) = (u(0), Yryre, ¢k(0) = (0u(0), Yryre.
Thus,
sm (t
= cos(t\/ Ak)ex (0 \/f) ¢k(0) A >0
sinh(ty/—\g)

ci(t) = cosh(ty/—Ag)ex(0) + Y = =

(‘k(O) ,/\k <0
Ck(t) = Ck(O) -t tCk(O) 7/\k =0

Moreover, the distorted Fourier transform for w from above yields

w(t.) = [ (6. €)o,6)de
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with the Plancherel theorem
lw(®)]3 = J |(t, €)[* dé
]R'i

More generally, we claim that for any 0 < s < 2,

|| ot e de = o) (10)

By duality, these bounds extend to all |s| < 2. Indeed, this follows from the fact that
for M > 0 large enough we have (H + M)~!: L? — H? as an isomorphism, whence

. @ttt de = o)

The general case (10) follows by complex interpolation with s = 0.
One has

|Geu(0)]Z = ch ) + [2aw(0)]Z:

“atu”L2([0 8,12 (R4)) ZJ t)dt + ||(7t“’||L2([o B, L2(R4))

For the piece w coming from the continuous spectrum the proof of Lemma 1 applies.
It therefore suffices to analyze the contribution of the discrete spectrum. If Ay # 0,
then it is elementary to check that

b
c2(0) + ¢;(0) < C(b, )\k)f éx(t)dt (11)
0
where the constant blows up as Ay, — 0 (due to the existence of stationary solutions).
The constant also decreases as A\, — —oc. However, no eigenvalue lies to the left of
—|V_|lo where V_ = max(0, —V'). Estimate (11) shows that (8) holds if there is no
zero eigenvalue.
On the other hand, if A\, = 0, then by inspection

b
f < 5 J é2(t) dt

0
which proves (7). To obtain (8), we use that for any linear function h(t)
sup |h(t)| < inf |h(t)] + f |R'(t)| dt (12)
tel tel 7

Applying Cauchy-Schwarz to the right-hand side and adding over the range of II,
finishes the proof of (8).
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Finally, (9) follows by an analogous argument. The difference here lies with the 0
eigenvalue for which one uses

sup (1) = | In(o) d
tel T
for any linear function h. The constants only depend on I. O

2.2. The nonlinear equation. For the nonlinear Klein-Gordon equation one has
the following corollary to Lemma 1. For the sake of simplicity, we present the model
equation

Opu—Au+u—u®=0 (13)
in R®. The argument below extends to all subcritical nonlinearities.

Corollary 3. There exists an absolute constant 1 » oy > 0 with the following
property: consider data (ug,u1) € H so that the linear Klein-Gordon evolution
wo(t) = So(t)(uo,u1) satisfies |wo| rs(jo),6®s)) < 0. Then the solution u to (13)
ezists for all times 0 <t <1 and
]| Lo ([0,17, 1 (R)) < CllOvuall L2(fo,1), 2Ry (14)
with an absolute constant C'.
Proof. With w =(V),
t
u(t) = cos(tw)uy + w™ ! sin(tw)u; + J wtsin((t — s)w)u3(s) ds (15)
0
= wp(t) + N(t)

Thus |uls < |wols, where S := L3([0, 1], L%(R?)) as well as

lu — wolls + & — Wol Logo,1,20) < IN |22 qo,17,22) < lwol®

Therefore, by Lemma 1,

I oo (ro,170) < [oll (o150 + Cllwoll% (16)
< Cléwul r2(o,11,L2) + Cllwol|
If || (wo,u1)| = 2C63, then (16) implies that
€] o 0,11, < l|O¢utl| 2(f0,17,22) (17)

as desired. On the other hand, assume that p := |(ug,u1)|x < 2C63 « 1. By
standard Strichartz estimates |wp|s + |ulls < p and we may repeat the previous
analysis to conclude that (17) holds. Indeed, (16) yields the desired bound since

p = |[(ug, 1)l » p° 2 |wol%
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The size of dy is determined so as to ensure smallness of C§3. O
Next, we turn to the nonlinear damped Klein-Gordon equation R?
Ouu — Au + 20(t)opu + u —u® = 0 (18)

with o satisfying our assumptions. We assume that a solution u(t) exists on the
interval I = [to,t;] with |[@(t)|ly < M for ¢t € I. Also, for simplicity, we restrict to
the radial case. We shall drop this assumption in the following subsection.

Proposition 4. There exists C = C(M, |I|) so that
IGcull oo (r,2) < C(M, |I1)]|0su p2(r,r2(rey) (19)
for radial solutions of (18).

Proof. Without loss of generality take |I| < 1. By local well-posedness one has with
S = L3(I, L%(R?))
lulls < C(M)
If the proposition fails, then there exists a sequence u,, of solutions to (18) on I with
sup ||t (t)|ln < M Vtel

and thus also
sup lunls < C(M)

such that

|OstnllLoo(r,2) = | Octinl L2(1,L2(r3)) (20)
The left-hand side here is < M so that

HﬁtunHLz(LLz(Rd)) — (0 as n— @ (21)

We can assume that ||0yun |2 r2®e) > 0 for all n. We claim that there exists a
sequence v,, with the same properties which solves (18) without damping. To see
this, let ¥, solve the undamped equation

Ouv —Av+v—2v2=0 (22)

on I with the same initial condition as , at time ¢;. By Lemma 2.19 in [NakSch]
we have

= - L
| — Tl o (r,30) < S ()| Gsunllr(r L2@ay) S 1112 |0stunl 21,2 (ma)
(=
Taking |/| to be smaller than some absolute constant without loss of generality, one

notes that (20) now holds for v, as claimed. For the remainder of this proof we will
use u, for the sequence of solutions without damping.
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Pick a time ty € I with ||0yu,(t2)[|2 — 0. We apply the radial concentration-
compactness decomposition to the sequence {@,(t2)}>_,, see Proposition 2.17 in [NakSch]|.
Thus there exist free Klein-Gordon solutions V7, v/ (up to passing to subsequence)
and times t/ € R so that

in(ta) = 3, V(th,) +7(0) (23)
I<j<d
where
[t —t5| — oo, n—ow,j#*k
limsup ||77{||L?°L§n$ = 07 J — 00, 2 =< D <6
n—o0
F(~t1) =0, n—ow, j<J (34
|@n 3, = Z VI3 + 19015 + 0o(1) n— o
1<j<J

In the second line S is the L3L® Strichartz norm. The profiles V7 are obtained by
considering all possibly weak limits So(—t)d,(t2) in H. Thus, if such a weak limit
exists and does not vanish, then it must appear in (23) for large enough J. Note
here that due to the final orthogonality property of the H-norm in (24) one knows
that

D0 IV, < sup |3, <
1<j <00 T

This point of view is important in the construction of the profiles Wi below.
We first assume that [t/| — o0 as n — oo for all j. By (23) we see that

[So()Tn(t2)|ls = 0 as n— oo

where Sy is the free Klein-Gordon evolution. Corollary 3 thus gives a contradiction
to (20).

Now assume that one sequence of times, say {t.}%_, remains bounded in n. We set
t! = 0 for each n whence 7/ (0) — 0 in H. Since |Gyun(t2)[2 — 0, one has V! = (9, 0).
For j > 1 necessarily |t} | — o0 as n — c0. By construction,

So(=t1)in(ts) — V7 as n— o
Since |Gyun(t2)]2 — O,
So(t))iin(ts) — W7 as n —

where V7 = (¢;,4;) and W7 = (¢;, —1);). Hence we know that W/ appears in (23),
and that the times ¢/ must come with its mirror image —tJ. Hence also |}, +tk| — o0
asn — o if j # k, cf. (24).
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In other words, abusing notation we can write (23) in the form (with m(wy, wq) =
(w1, 0) the projection onto the first component in H),

n(te) = (,0) + D, [V(th, ) + W/(=45, )] +7,(0)

= (6,00 + Y mSo(t)(2¢;,2v;) + 7, (0)

l=g=d

(25)

where now ¥7(+tJ) — 0 in H as n — c. By inspection, |0, (0)]z — 0 as n — o
for each J.
Passing to the nonlinear evolution we claim the following representation

un(t) = Ur() + Y, [VIt—ta+t), ) + Wit —t, — 1], )]
1<j<J (26)
+ v (t —ty) +na(t) forall tel
where U; is the solution of (22) with data (¢,0) at time t,. The error satisfies
Nn(t) = o(1) in H as n — oo, uniformly in ¢t € I. This decomposition follows from
Lemma 2.19 in |[NakSch| and the preceding properties of the linear decomposition.
This lemma in particular gives that U; exists on I with bounds on the S norm.

To be specific, we let v = u,, in Lemma 2.19 and u = U; on the time interval I, as
well as Wy being the linear solution with data at time t = t5 equal to

doltz) = Y [VI(H, ) + Wi(~t,)] +7(0)
1<j<J

In the notation of the lemma, we have eq(u) = eq(v) = 0 and |v|s < B = C(M)
uniformly in n. Furthermore, given any ¢ > 0 taking first J large and then n large,
we can ensure that

lwolls < e
Then the lemma implies that
17l o2 30y = |G + Wo — T Loy < C(M)e

which proves our claim.
Next, we claim the orthogonality property,

Hatuﬂ ||iQ(I‘L2(]Rd)) - l|0t01||2[2( ; 2(]Rd)) § “étl J ”[2((,[2(]1{(1))
1<j<J ( )
+ H(?t Vn(‘ t2)||L2(1,L2(]Rd)) ( )

where

Vit —ta+8, ) + Wit —ta—t,-) = U(2), tel (28)
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This follows (i) by the dispersive properties of linear and nonlinear flows as the times
tJ diverge from each other arbitrarily far (ii) by the weak convergence 3/(+t]) — 0
that we already used above. To be specific, taking a time derivative in (26) and
computing L?-norms the claim (27) reduces to the asymptotic vanishing

<atU1: atU;L> = <atUl?a 6,:U?>
= (0U, Oy (- — )y = Uy, O (- —ta)) = o(1)

as n — . The pairings are in L(I, L?(R%)), and J > j,k > 1, j # k. As a first
step, we reduce those pairings involving v/ to pairings in L?(I, H(R%)) by means of
the following device:

(29)

1 . . - , .
UL, 0y (- — to)y = f §<Vf(t —ty+tl, ) = VI(=t+tg—t4,), 7 (t — ta)dp dt
I
T, it , "y :
+ f 5<WJ(1t —to+tl, ) = Wit +ty—t1,), 7 (t — o))y dt
I

Moving the free evolutions §O(it{l) over to the second slot, and using the afore-
mentioned vanishing 77 (£#}) — 0 in the weak sense, as well as the uniform strong
‘H-continuity of the free evolution as a function of ¢ € I now shows that the ex-
pressions above are o(1) as n — 0. The same argument applies to the third term
n (29). On the other hand, for the first and second terms one uses the dispersive
decay of the free evolution. First, approximating the free waves U7 be ones with
smooth compactly supported data (which only produces an error of small 4 norm),
we may assume that [|0,U7 (t)||c — 0 uniformly for ¢ € I as n — co. Using the finite
propagation speed on the compact time interval I, we see that U7(t) is supported in
some fixed compact set K for all ¢t € I. It follows that

Ko (t), &UR ()] < L 12U (8, 2)| dz QU7 ()llo = 0(1)

uniformly in ¢ € I. For the terms {(J,Uf, 0;UT") we need to consider all possible
combinations of VI, W7 V¥ Wk as in (28). Writing each of these free waves in terms
of cos(tw) and sin(tw) as in (15) leads us to consider expressions of the form

(p,cos((t) £ tp)wp),  Lp.sin((8 + th)wd)

where ¢, ¢ are Schwartz functions. Since |t} + 5| — oo for k # j, we conclude that
all of these expressions vanish in the limit n — co. Thus our second claim (27) holds.

Passing to the limit n — o in (27) gives 0;U; = 0, so U; = ¢ is a stationary radial
solution with —A¢ + ¢ = ¢*. Furthermore, applying Lemma 1 to the free waves ur

and 77 whose time derivatives are o(1) in L?(I, L?) we infer that they in fact are
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o(1) in the energy norm L*(I,H). Thus we can write
un(t) = ¢ +ma(t),  [Tnlewmy = o(1) (30)
where 7,, now collects the second, third, and fourth terms in (26). By (20),
|Cemnll 1,2y = nl|Oemnl|2(1,12(ma) (31)
The error 7, # 0 solves
OuTin — A1y + 1 — 3¢°1, = 3¢5 + ) (32)

Lemma 2 now leads to a contradiction. Indeed, if the right-hand side vanishes in (32),
then that lemma contradicts (31) directly. To include the nonlinearity on the right-
hand side of (32) requires Strichartz bounds such as L3(I, L(R?)) to hold for the
linear flow with potential V = —3¢?. This, however, follows perturbatively from the
Strichartz estimates without potential since we are working locally in time on the
interval I, and ¢ is bounded and decays rapidly. Coming back to (32) we thus have

[nlls = 0(1)  n— o0 (33)

where S is any admissible Strichartz norm.

In Corollary 3 we passed from observation inequalities for the linear flow without
potential to analogous bounds for the nonlinear flow. This same argument goes
through for (32) provided H = —A + 1 — 3¢? does not have any eigenfunctions with
0 eigenvalue. If, however, H does have a nontrivial kernel then the presence of Il
in (8) is a serious obstruction. To avoid it, we differentiate (32) in time and use (9)
instead.

The functions v,, = 1, solve

with data in H_;. The solution is

Un(t) = S'(E0n(0) + S(E)2n(0 j S(t - 5)Gu(s) ds

where S(t) is the fundamental solution of the linear problem with potential. Thus,
by (9), as well as the equivalence of Sobolev norms (10) we infer that

[VnllLo,z2y S lnlzoaaoy) S 1Wnllzeg c2@e) + 1Gallor g, m-1ms)) (35)
with constants uniform in n. By the embedding L5 < H~!,

e ¥nllLra,m-1y < |@ll6lmnlrr,oo)|¥n Lo, L2)

(36)
In2bnllr a1y S MnllZ2(r poy 1¥0nlLoor,2)
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In view of (33) we may therefore absorb the G,, term in (35) into the left-hand side
to conclude that

|YnlLew,c2)y S [¥nl2a,L2@sy

with uniform constants in n. This contradicts (31) and we are done. g

We now briefly indicate how to modify the argument for other nonlinearities, say
for the equations with p < 5

Ot — Au+u— |ulPlu=0 (37)

in R3, still radial (for nonradial solutions the concentration-compactness argument is
different due to spatial translations). Corollary 3 is a simple application of Strichartz
estimates and carries over immediately to other powers. The concentration compact-
ness decomposition as well as the perturbative Lemma 2.19 from [NakSch| apply to
all subcritical NLKG equations, see [IbrMasNak]| for details.

The previous proof therefore applies more or less unchanged in the case where there
is no stationary profile. Only the final step involving u,(t) = ¢ + n.(t), see (30),
requires some modifications. For example, for p = 4 one has

att‘nn - Ann = Tin — 4'¢|3nn = Rn

|Rul < &% + 1l 5
and the time-differentiated version is
Outbn = Dbn + ¥ = 4I9*n = Rutn (39)
|Ral < &%l + 1]
The difference now lies in the bounds (36). Here one has
| natnlra,m-1) S 1613207 222,29 [ ¥nl 2oz, 22) (40)

||77731’l/)n||L1(1,H—1) = ||77nt|is(1,L9)||’l/)n||L°°(1,L2)

Since L3(1, L°(R?) is an admissible Strichartz estimate for Klein-Gordon (see (2.130)
and (2.121) in [NakSch]) we can conclude as before. Note that on the level of the 7,
equation (38) we place n? in L(I, L?) which leads to L*(I, L3(R®) which is again an
admissible norm (locally in time).

To verify that this process extends to the full subcritical range, we can check it
for the endpoint p = 5. Then

attnn — Bt T — 5(1547)71 =R,

41
Bl < 1602 + [P (41)
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and the time-differentiated version is

att'Zr/}n - Awn =i wn - 5¢4wn = Rnwn

| (42)
| Bl < 6%l + [l
The difference now lies in the bounds (36). Here one has
16 ¥nllr 1) < 1813slmnl 10r,20) |9 or,22) (43)

Imatonllscm-ry < Imalzacr oo ¥l 2y

Once again, L*(I, L'*(R?) is an admissible Strichartz norm, whereas for (38) we
place 15 in L(1, L?) which leads to L?(I, L'°(R?)) which is again an admissible norm
(locally in time). Note, however, that the critical case p = 5 is not included for the full
observation inequality argument, since the concentration compactness decomposition
takes a different form then (one needs to include the dilation symmetry, and there is
no mass term).

2.3. The nonlinear equation, nonradial data. In this section we indicate how
to modify the preceding arguments so as to encompass nonradial data. The main
difference lies with the profile decomposition in which the translation symmetry needs
to be taken into account. In particular, the analysis will require a version of Lemma 2
for potentials consisting of several “bumps”.

Lemma 5. Fiz some nonempty finite interval I < R. Suppose V = ZLl Vi(- — )
where

max [Ve(z)] < <{x)7° ¥z eR?

with o > 2. There exists S > 0 depending the V, and the interval I so that if
MiNgsy, |Tp — Tpm| > S, then the following holds: let u solve

Opu—Au+Vu+u=0
with data in H. Then
Il Lorae 1) < Cllullpaqr,remay) (44)
The constant depends on I, L, and the Vi, but not on the translations x,.

Proof. Fix a bump function x > 0, x(z) = 1 for |z| < 1, and x(z) = 0 if |x| > 2. We
use the partition of unity

L

1= Xoo(2) + Y, x((z — 2¢)/R) (45)

£=1
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where R > 1 will be fixed later. The “infinite channel” y is defined by the previous
equation. Given a solution u(t) as above we write accordingly

s
u(t, ) = u(t, 2)xeo() + Y ult, 2)x((z — x)/R)

=1

£ (46)
= ug(t, ) + > ue(t, x)
=1

Set x¢(z) = x((z — x¢)/R), which is supported on |z — z,| < 2R. We therefore take
S = 5R. The constituents solve the equations

OstUor — Aoy + Uy = —(AXw )t — 2V Vu — V(CE)XOO u

L
47
Ontg — Aug + Vo(x — 20)up + up = —(Axe)u — 2Vx,Vu — Z V(- — k) xeu (47)

k%t
To prove (44) we perturb around (9) of Lemma 2. For uy, we use Lemma 1. To be
precise, by (2) and the Duhamel formula applied to the first line of (47) yield,
lGeollLor,2-1) S luoollz2@ p2may) + (1AXwlo + VX0l
+ [V (@)Xoolloo) ull 22,2 ReY) (48)
< luoollz2(,2may + R ullzr, 2 (rey)

where the constants depend on L. As in (35) one gains a derivative in the Duhamel
integral, which allows us to bound Vu in terms of u. In fact, one has

IV Vi1 £ D [VxeVula-r < LKETH(RTR(R:)] + mdir(n))2 (49)
=1

< LR ul
The final bound follows by Schur’s test applied to the kernel
K(&n) = & RTHR(R(E —)[Km
Indeed, from
sup [ |K(€mldn+sup [ (K€l de < R
€ JRd n JRd
we deduce that
|| &) fmydn| < RIfl
Rd 2

The terms involving Axq and V(z)xe in (48) are bounded directly in the stronger
L? norm and give R~2 in L* by our assumptions. For the potential we use S > 5R
and that xo(z) = 0 if |z — 2| < R for some ¢. This implies that |V (z)x«(z)| < R72.



W. SCHLAG

Analogous estimates applied to the second line of (47) lead to similar bounds for
ug. We use Lemma 2 with the potential V;(z). The translation by x, on the left-hand
side of (47) can be removed by translation invariance of that lemma. Furthermore,
the equivalence of norms (10) allows us to pass from Sobolev estimates relative to
—A with a potential to those without a potential to which the preceding argument
applies (this is for the continuous spectrum, the finitely many eigenfunctions simply
absorb the derivate). Finally, the potential term in (47) satisfies

L
| D Vil = z)xe||, < R72

k#L

Hence, we obtain
“’Elf”Lw(I,H_l) 5 “WHLZ(I,Lz(Rd)) + R_1”u”L2(1,L2(]Rd)) (50)

In combination with (48) we conclude that
L
Il Lo sy S looll o,y + Z, el oo 1,301)
=1
L
< w22, L2y + Z luell L2z, 2ayy + B ull 2 2wy
=1
'l

< lullez,c2@ey + Bl po(r,L2(ray)

The final term satisfies R~ |[ul| feo(s z2(ray) < R[] z0(r,3_,)) and so can be absorbed
in the left-hand side if R is large enough. Setting S = 5R proves the lemma. ]
We can now establish the nonradial version of Proposition 4.
Proposition 6. There exists C = C (M, |I|) so that
Il zeo(z,L2y < C(M, [T])]|Opull L2z, 2 may) (51)
for all energy solutions of (18).

Proof. We will only sketch the argument and indicate the modifications of the radial
proof. Once again, we assume (51) fails, then remove the damping. We pick a time
to € I with |dyun(t2)|2 — 0. We apply the nonracial concentration-compactness
decomposition to the sequence {i,(t3)}>_;, see Proposition 2.24 in [NakSch|. Thus
there exist free Klein-Gordon solutions V7.~ (up to passing to subsequence) and
times t, € R and translations zJ € R® so that

in(ta) = > VI, +28) +71(0) (52)

I<i<F

89



90

OBSERVATION INEQUALITIES FOR KLEIN-GORDON EQUATIONS

where
|t{z—tfl|+|xfl—a:ﬁ|—>oo, n—o, j#k
lim sup '|7£]||L§>L£ns = 07 J — 0, 2< p< 6
n—00
Hl-t,—al)—0 n-—sm, jd

l@nl2 = D VI3 + 15013, +01)  n— o
1<ji<d

In the second line S is the L3LS Strichartz norm (the same holds for any admissible
Strichartz norm other than the energy).
We first assume that [t],| — o0 as n — oo for all j. By (52) we see that

[So()n(t2)|s = 0 as n— o0

where Sp is the free Klein-Gordon evolution. Corollary 3 thus gives a contradiction
to (20) as in the radial case.

Now assume that one sequence of times, say {t.}*_; remains bounded 1n n. We
then set t. = 0 for each n. By translation invariance, we may also set z., = 0 for
all n. If one has |t/| — oo for all j # 1, then the argument from the radial case
carries over mutatis mutandis. We sketch the details: by construction, one has for
each 7 that

So(—t0, =22 )i (ty) — V7 as n — o

Since ||Gyun(t2)]2 — 0, also
So(t, —a2 )i, (ts) — WW as n — o

where V7 = (¢;.%,) and Wi = (¢4, —;). We can therefore write (52) in the form
(with 7 (w1, we) = (w1, 0) the projection onto the first component in H),

@n(tz) = (6,0)+ >, [VI(t,- +ad) + Wi(—t,- +3)] +7.(0)

L=yl
o (59)
= (6,00 + Y, mSo(t)(26;, 245)(- + ) + 7 (0)
1&j<J
where now §/(£t/, —24) — 0 in H as n — 0. By inspection, J(0)]; — 0 as

n — oo for each J.
Passing to the nonlinear evolution one has the following representation

0= U0+ 3 [Pttt ad) + Wt ot )]
l=qg=ad (54)
+ 4t —to) +ma(t) forall tel
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where U] is the solution of (22) with data (¢, 0) at time t5. The error satisfies 7,,(t) =
o(1) in H as n — oo, uniformly in ¢ € I. This decomposition follows from Lemma 2.19
in [NakSch| and the preceding properties of the linear decomposition in the exact
same fashion as in the radial setting. As before, we establish the orthogonality
property (27), viz.

|0vunlZacr 2may = 1001 321 Loy + Z 10U 13 21, L2 mey)
l<j<J

+ 107 (- = L) 221 L2qmay) + 0(1)
where
Vit —to+tl, - +al) + Wit —to—t],-+al) =UMNt), tel

This follows (i) by the dispersive properties of linear and nonlinear flows as the times
t2 or the spatial translations zJ, diverge from each other arbitrarily far (ii) by the
weak convergence 7y (+t7, — ) — 0 that we already used above. Other than in-
serting spatial translations 1nto that radial argument, and using that a sequence of
translations of fixed functions that diverge from each other infinitely far are asymp-
totically perpendicular, the proof of (27) goes through as before,

After this point the argument proceeds exactly as in the radial case, obtaining a
contradiction to the representation (30) via the linear observation inequality with
potential of Lemma 2.

Recall that we assumed that exactly one sequence of times remains bounded. The
main difference to the radial case occurs if this does not hold. It is exactly for this
scenario that we need Lemma 5. Thus, suppose that 7 = 0forall1 < j < Jy < J
in the nonradial profile decomposition. We shall deduce later that J, is uniformly
bounded, but for now we take this integer as a parameter. In analogy to (53)

dn(te) = Y, ($(- +22),0)+ Y, [VI(t, +ad) + Wi(—t],- +23)] + 72 (0)

1<5<Jo Jo<g<dJ (55)
= > (¢ +25),0)+ D) mSo(th) (265, 25)(- + 24) + 7 (0)
1<j5<Jo Jo<g<dJ

For the nonlinear evolution we claim that

Jo
i = ZU]-(t,-—kxfl) + Z [Vit—ta+tl, - +al)+ Wit —to—t], +2l)]
j= Jo<j<dJ
+ 97t —t) + ma(t) forall tel
(56)
where U; are the solutions of (22) with data (¢;,0) at time t,. The error satisfies
Ma(t) = o(l) in H as n — oo, uniformly in ¢ € I. This is obtained by means
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of Lemma 2.19 as before. The only difference is that Zjil Uj(t,- + 22) is close
to a solution to the nonlinear equation due to the large separation between the
translations. From this we deduce the crucial orthogonality property

”atun”2L2(1,L2(Rd)) = Z “atUj”2L2(I,L2(]Rd)) + Z ”atU;lH%?(I,LQ(]Rd))
1<j<Jo Jo<j<J
+ ey (- — tz)“%?(z,m(md)) +0(1)
with essentially the same proof as before. Passing to the limit n — co implies that

oU; = 0 forall 1 < j < Jp so that each U; = ¢; is in fact a stationary solution.
From the orthogonality of the free energy we conclude from here that

Jo
Dileslin < M
=1

Since the H' norm of any stationary solutions satisfies ||¢;|g1 = €9 > 0 with some
absolute £y that only depends on the nonlinearity, it follows that J, < Mey? is
uniformly bounded. In place of the decomposition (30) we have

Jo
un(t) = Y, &5(+23) +ma(®),  Ialzega = o(1) (57)

=1

The error n, # 0 solves,

Jo
OutTn — ATy + M — 3 Z ¢?( + 3331)7771 = 3<I)n77,21 + 772 + Yoln + Rn (58)
=

with
J() :
&, = ) 65(- + )
J=1
U, =3 (- + 2l) (- +2k)

Jj#k

as well as the error
A .3 K _
B = (2050 +ad) = Y, 04 +2i)°
=1 i=1

Since |Rul2 + [|[¥nlw — 0 as n — oo, the solution of (58) satisfies ||n,[s — 0 where
S is any admissible Strichartz norm, cf. (33). Indeed, note that the linear evolution
of the left-hand side of (58) obeys the usual local in time Strichartz estimates since
the potential term can be moved perturbatively to the right-hand side.
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To obtain a contradiction to (31) we apply Lemma 5 to the time derivative v, =
OnMy Which solves the equation

Jo
attwn - Awn S5 7771 - 3 Z ¢§( S x%)wn = G(Dnnnwn =+ 3777211/% T ‘I/nwn = Gn

=1

It is essential that the R, here drops out, since it does not depend on time. We can
now proceed exactly as for (34) treating the right-hand side G,, perturbatively. We
thus obtain from (44) that

¥l Lor,c2) < Cllonll L2, L2way
contradicting (31). O

Finally, the arguments extends to the entire subcritical range as in the nonradial
case. The arguments following (37) do not use any radial assumption.
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