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Energy transfer model and large periodic boundary
value problem for the quintic NLS

Hideo Takaoka*
Department of Mathematics, Kobe University

1 Introduction

This note is based on a talk given at the conference on Nonlinear Wave and Dispersive
Equations, Kyoto University. We consider a dynamics of mass density |u(t,£)| and energy
exchanges between a linear oscillator and a nonlinear interaction for the following defocusing
quintic NLS equation:

i0u + 0%u = |u|*u, t€R, z€ Ty =0,2rL], (1.1)

where u = u(t,z) : R x T, — C is a complex-valued function and the spatial domain T, is
taken to be a torus of length 2w L > 0, i.e., we assume the periodic boundary condition:

u(t,z +27L) = u(t, z).
The aim is to understand the dynamics of mass density |u(t, £)|, namely,
(i) how the wave energy is exchanged to another,

(ii) provide a demonstration of the conservative energy exchange of solutions between the
modes initially excited.

The equation (1.1) possesses at least two conservation laws, the mass M([u](t) and energy
Eu)(t): ,
Mful(t) = [lu(t)lz2,

Elu](t) = /T %|61u(t, o) + é|u(t, )| dz = E[u)(0).

These quantities impose the constraints on a dynamics of mass density of solutions.
We expect the following conjecture.

*This work was supported by JSPS KAKENHI Grant Number 10322794.



Conjecture 1.1. On bounded domain case: if the nonlinear Schrodinger equation is not
integrable, then there exists a time global smooth solution u(t) and some Sobolev exponent
s > 1 such that

lim ||u(t)]|gs = oo.

|t|] =00

Remark 1.1. The above conjecture means that the mass is shifted to high frequencies.

In fact, on R domain case, the local well-posedness for (1.1) was proved by Cazenave and
Weissler [3] for data in L? (see also [8] and [12]). Notice that the time of existence time
depends on the position of data and not only on its size. One can also prove the global
well-posedness in L? provided that the initial data in L? is sufficiently small by using the
above conservation laws. It is should be noted that the equation (1.1) is left invariant by the
scaling

s uy; u(t,x) - un(t,z) = A0 ), A> 0,
which preserves the homogeneous Sobolev norm H*(R) with s = 0. The global existence
result for any data in L? was proved by Dodson [6]. In [6], the deep results on scattering
behavior of solutions were also obtained. On the other hand, the associated focusing nonlinear
Schrodinger equation (the minus sign applies to the nonlinear term) has a finite time blow-up
solution [9].

2 Past works on the periodic boundary domain

When the spatial dimension is the two-dimensional torus T2, Bourgain [2] considered the
cubic nonlinear Schrodinger equation in the defocusing case

i0u + Au = |u|u,
and obtained the apriori estimate of solutions
lu@)||gs < @)D+ for u(0) € H?, s > 4.

In [5], Colliander, Keel, Staffilani, Takaoka and Tao constructed the solution satisfying that
for any s > 1, K > 1, 0 < 0 < 1 there exist a solution u(t) and a time 7" > 0 such that

[u(@)le <o and  [u(T)]a > K.

Observe that the cubic nonlinear Schrodinger equation in two spatial dimensions is known
as an example of invariant under the L2?-scaling:

ws uy = Au(\t, Az) (A > 0).

On the other hand, the quintic nonlinear Schrédinger equation in one dimension obeys
scale invariance under the L?-scaling. In [10], Grébert and L. Thomann examined the dy-
namics exhibited by the following Cauchy problem

0 + 0%u = v|u|*u, (t,r) eRxT, (2.1)

for v > 0. More precisely, they proved the following theorem.
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Theorem 2.1 (Grébert and Thomann [10]). Let k € Z\{0} and n € Z. A is a set of the
form A = {as, a1, bs, b1} where ay = n, ay = n+ 3k, bp = n+4k, by = n+ k. There
exist T > 0, Ao > 0 and a 2T -periodic function K, : R — (0,1) which satisfies K,(0) < 1/4
and K.(T) > 3/4 so that if 0 < v < vy, there exists a solution to (2.1) satisfying for all
Pt s

Z u;(t)e® + v/ (t, z) + V¥ %gs(t, 2),
JEA

with
|tay () = 2lua, (B)* = K. (vt),
o ()2 = 2l (8)]* = 1 = K. (1),
and where for all s € R, |lqi(t, )||as(1z) < Cs for allt € Ry, and ||qa(t, ) ||gsr) < Cs for all
DEEL v 2,

We now define the wavenumber set consisting of nonlinear resonance interactions in the
equation (1.1).

Definition 2.1 (Resonance interaction set). Let n € Z and k € Z\{0} be fixed. For j € Z,

we set oy, asj, Qo and oy ; as follows:

ay, J o3 J g J oay J
— — = = == k+=, — = 4k + =.
o +3k+L o n+L, o n+ +L, o n+ +L
With a,, ;, we set
m={om; | €L, 0<j<L},

forl<m<4,and C=Ut_ An.

Here we consider (1.1) on Ty, instead of (2.1) on T, and obtain the following theorem.
Theorem 2.2. Letn € Z, k € Z\{0}, s > 1 and large integer L > 0 be given. There exist
a smooth global solution u(t) and a time T = O(LY?*7) s.t.

4

z) = ZuAm(t,x) +e(t, x),

m=1
where 1
llwa, @112 = 2llua, (B)II72 = 5~ K@),
1

lwas @172 = 2lluaB)llz: = 5 + K(2),
K (t) = sin(Arctanyt;) for [t| < LV~
sup [le(t, e < 57
u Ee\t, B N T
der #~ T

where a constant c;’s are independent of L.
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Remark 2.1. Putting n = 0, s > 0, |k|* > L3%, we have that there exists a solution u(t)
s.t. for some time ¢y > 0,

423

o) lzz= = llu(—to)lF ~ (k) (1 + = = 3*) K (to).

If s > 1, then ||u(—to)||gs < ||u(to)||ms (energy does not decrease). As opposites, we can
construct solution whose energy will not increase for a long time.

3 Proof of Theorem 2.2

The proof of Theorem 2.2 consists of three steps:
1. construct resonant sets,
2. construct finite dimensional model with initial replacement,

3. construct approximation lemma (error estimates).

3.1 Resonant sets
We first set nonlinear resonant interaction sets as follows.

Definition 3.1. We say the set {(£1,&3,&5), (£2,€4,8)} is resonance, if and only if the
following conditions hold;

(i) E+&+& =6+ 8+ &,
@

(iii) one of &, &3, &5 is element of Ay, that is n + %’,

i) two of &, &, &5 are elements of Aj, that are n + 3k + 4

Lon+3k+ 2,

i)

i)

(iv) two of &, &4, &6 are elements of Ajg, that are n + k + %, n+k+ jf,

(v) one of &, &y, & is element of Ay, that is n + 4k + —jf, ’
)

o J17H38 Jo+J4

(Vi) {j1,J3} = {J2, Ja} and js = jo = 2522 = 27

From the relation in the above definition, we have the following lemma.

Lemma 3.1. If {(&,&.&5), (€2:61,66)} is resonance, then ¢(&1, &, €3, &4, E5,66) = 0.
Proof. Since the equation (n + 3k)? + (n + 3k)> + n? = (n + k)2 + (n + k)% + (n + 4k)?, we

calculate

1 2k il
(2W)2¢(§1a§2-§3,§47§5,56) =7 (3(J1 + Js) — (J2 + ja) — 4ds) + ﬁ¢(j17j2’j35j4aj5,j6)7

which is equal to zero by jg = j";” = @ and ¢(J1, ja, 73, Ja, Js, Jo) = O. O
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3.2 Finite dimensional model

Now suppose that u is a smooth solution and let us start with the ansatz

ultia) = e [ aglt)e (de)s,

where .
o) = [ b= Y e
ce2nz/L
We choose the parameter G = —6L2 where My = [|u(0)(|2.. By direct calculation, ag = ae(t)
satisfies
. 6.M 3
e = (Gt 35 [laet*an + Foloel)
+ a&a—&a&s@a&eit¢(€1,52|53,€4,€5=§)’ (3.1)

bl Eatut)
where ¢(£17 §2>§3a £47€57 66) = _512 I ég - 5{% T+ Ei - Eg + ég

Then plugging the observation in Lemma 3.1 into the equation (3.1), we have the resonant

formula
.. 6.
iy = (——0| re|” — /|Tf' (d€) + 4|’"6|4>7"¢
+/ TerTEaTeaTEaTEx s (3'2)
res()

where res(€) denotes the resonant modes with respect to &, 1 < j < 5 such that the set

{(£1,€3,€5), (€2, €4,6)} is resonance.

3.3 A priori estimates

Next, observe the conserved quantities for (3.1).

Lemma 3.2. Let {re(t)} be a global solution to recasted NLS (3.2). Then we have the
relations;

&3 P =o, (33)
£ecC

d 2 2

- ch €l Ire(®)I* = 0. (34)
£e

Remark 3.1. These corresponds to the mass and the energy conservations, respectively.



Proof of Lemma 3.2. Tt will be convenience to change the index & by &. We first prove (3.3).
Multiplying 7¢; to (3.2) and taking the imaginary part, we have that

o 1 _ _
Im(ireTe;) = ==l T&Ter e TeTEsTes
L
res(€p)

Note that the left-hand side will be —1<|r¢ |%. Then after the summation over the resonant
set, we arrive at the following;

1d 1 e T
3% Y Ires (1) = ZiA D> (raTareTareTes — TaTaTara e )
€6€C £6€C res(Eg)

which is zero, since by symmetry.
Next we prove (3.4). In a similar way to above, we have

d G
2O IEPI P = 2Re) (66T

cec &6€eC

2 .
ﬂlmz Z |§6|2T51T527"£3T€4T55T56’

£6€C res(&p)

which is deduced by

1 ' S
3iLA Z ((512 + ég + 6?) - (6% + 52 + 562)) TeiTeaTesTeaTes T

res

since by symmetrization. Th e last term is zero, since (€2 + €2 + €2) — (€2 + €2+ €2) = 0 for
the resonance interaction modes. a

Let us consider the ansatz
re(t) = \/Ig(t)e®.

Once again, using this coordinate, we obtain the following lemma.
Lemma 3.3. For j € [0, L], we have that

d
i (fn.,.%(t) i In+4k+%(t)) =0,

d
& okt 0+ L () =0,

Moreover, assuming additional constrains of /;(¢) and 6;(¢), we have the following lemma.

Lemma 3.4. Assume

In+l(t) = n+%(t)’ 9"“'% (t) = 9n+%(t)»
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In+3k+% (t) = dn43k4+ 3 (t)v 0n+3k+% (t) = 9n+3k+% (t),
[n+4k+% (t) = Intak4+- 3 (t)7 9n+4k+% (t) = 9n+4k+’—}} (t),

In+k+%(t) = n+k+%(t)» 9n+k+%(t) = ‘9n+k+%(t)
for all |j|,|m| < L. Then

%Z (In+3k+%(t) - 21n+%(t)) =,

d
dt Z (In+k+%(t) - 2In+4k+%(t)) =4l

Proof of Lemmas 3.8 and 3.4. The proof of Lemmas 3.3 and 3.4 is similar to the one of
Lemma 3.2. a

Then by Lemmas 3.2, 3.3 and 3.4, it is reasonable that we recast the equation (3.2) into
the following Toy model form:

: 3L2+3(2L+1) /o .
]Azzw 1,242]}141_,241]A351n(29¢42+0,44-29A1_9.A3)a
. 2L2+2L+1) /o .
14, (t) = -—W [,242[44[,241]!13 sin (29/12 + 9A4 == 29A1 — 9A3) N
: 3IL%+3(2L + 1) _
Lag = W”I?MIAZI?M]A‘& sin (204, + 045 — 204, — 0.4,)

. 31(2L2+2L+1) /5 5 .
I4,(t) = W Ii1[A3[i2[A4 sin (26 4, + 04, — 204, —04,),

: 6M, 12(L + 1) 4
=04 = —L—;)IAI 7 (L - Lay 4 Ly 4 T + ﬁlftls

3IL2+3(2L + 1) |13, 1a13%,

COS(29V42 +0.A4 *29441 —9A3),

@L+ 1)L Ta
. 6.M 12(L+1 4
=04, = _L_30 Ay = % (fag & Ly Ly - Tag ) + ﬁfil

3I2L* + 2L + 1)
itV e aias 008 (B, +Ba — 264, — O5),
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. 6M, 5E 4 1

-y = ~—li- —(L—) (Lag + Lay + La + L) + L4’3‘4

B2 +3(2L+1) 15 Ial’,
B, = 2l —
(2L +1)L4 T4, cos (204, + 6.4, A = Oa)
and
, 6M 12(L +1 4
—04, - L3OIA2 - % (Lag + Loy + Lag + Lay) + LA L

S22 +2L+1) [ 7
+W 1341]_,431A4COS(29AQ+9A4—26",4,—GAS).

Remark 3.2. A straightforward calculation show that this ODE system enjoys the conserva-
tion of the Hamiltonian following Hamiltonian

3M L+1
# = LBo (41,48, 0)= (—L_) (La, + La, + I, + Ig,)?
4
+377 (L + Ly + Ly + 1)

SVEEA 4 2F, - 1)

1 1
(2L + 1)L4 IA] I‘A2 [j3]j4 cos (26-'42 & 9A4 - 20./11 - 0.A3) ¢

O = af;
IC aec
for C = Aj.

In virtue of £(21%, +1% —2I% —1I% ) =0 for k = 1,2, we obtain the particular dynamics
of [A], (9_,4].

Indeed, we see that

Proposition 3.1. There exists a solution (I4;,04;)1<j<4 to (Toy model) s.t.

29/12 +0.A4 ‘29_,41 —0_,43 ~

o

and

L) = 2Las(t) = 5 = K(0), La(t) = 2L, () = 5 + K(0),
K(t) ~ sin(Arctants)

Proof of Proposition 3.1. The proof uses the symplectic change of variables.
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3.4 Approximation lemma

We show how the toy model approximates the original NLS.

Proposition 3.2. Let {ag(t)}eez/ and {re(t)}eec be a solution to the Fourier transformed
NLS equation and its resonant NLS, respectively, with a¢(0) = r¢(0) for € € C and ||ag(0)
T~ Then for s > 1 and |t| < cL'/?*7,

il
23 = T1/2—-¢°
g Nz L1/2—e

where r¢(t) =0 if £ € C, and || fllez = [[(€)° F(E) ez

Proof of Proposition 3.2. The proof uses a priori estimates of M[u], E[u], energy argument,
bootstrap argument and the perturbation argument. O
By Propositions 3.1 and 3.2, we conclude the proof of Theorem 2.2.

llag(t) — re(t)
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