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Abstract

We propose the outflow boundary condition of Signorini’s type to ensure the energy inequality for
the Navier-Stokes problem with an open outflow boundary. Since the Signorini’s boundary condition
involves the variational inequality, we propose several efficient numerical schemes to obtain the stable
discrete solutions, including the penalty method and Lagrange multiplier approach. To evaluate the
appropriateness of this artificial boundary condition, we carry out the numerical simulations using our
schemes, and compare the simulation results with the data from physical experiments.

1 Introduction

The Navier-Stokes equation has been applied to investigate the blood flow in aorta (a pipe-shaped domain,
see Figure 1), where the inflow velocity is specified and the non-slip boundary condition is imposed on the
blood vessel wall. Let Q be the computational domain with boundary I' = T';, U T U Ty, where 'y, Ty
and I',,; denotes the inflow, wall and outflow boundaries, respectively. The Navier-Stokes problem is stated
as follows.

u + (u-V)u—V-o(u,p)=f in Qx (0,7), (1.1a)
V-u=0 in Qx (0,7, (1.1b)
u=yg on (I'j, UTY) x (0,7, (1.1¢)
u(z,0) = uy in £, (1.1d)
where (u, p) represent the velocity and pressure, o(u,p) := —pl+2vD(u) denotes the traction tensor (D(u) :=
(Vu+ VTu)/2), and g is the inflow velocity satisfying
g=0 onlyx(0,7), / g(t)-nds=:53(t) <0forte (0,7 (1.2)
Tin

Here, n is the unit outer normal vector to I'. f and u, are the given force and initial velocity, respectively.
In application, since the profile of velocity/pressure on the outflow boundary cannot be prescribed exactly,
we need to put an appropriate artificial boundary condition on I'yy¢, such that the model is mathematically
well-posed and the simulation results agree with the experimental observation well.
As it requires no extra effort in implementation, the traction-free outflow boundary condition is popular
in simulation:
o(u,p)n =:7(u,p) =0 on Ty x (0,77). (1.3)

However, the mathematical well-posedness is questionable, and the nuwmerical solution can easily become
unstable when the Reynolds number is large, because the energy inequality may not hold. To verify the
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Figure 1: (a) A pipe-shaped domain. (b) The domain and mesh for numerical simulation. (c) A velocity
profile of simulation.

energy inequality, we assume that Q and ¢ are sufficiently smooth so that there exists a smooth reference
flow u,qs satisfying

Urep =g on (I UT) x (0,7, Upep-n >0 on Loy x (0,77, (1.4a)
Vo tpes =0 in Qx(0,7). (1.4b)

Multiplying

—

1.1a) with u — urcs and using the integration by part (noting that u — upey = 0 on 'y, UTY),

| s

[t = tre ) (O Z20) + 20D (u — res) (1]

1
2

IS

t o+ [ (0 V)= treg) (=) do

= / (f = Optrey — (- Vtres = (Ureg - V) - (u = Upey) da
Q
_/ D(ures) : D(u — wyes) dx := RHS.
0

For 2d/3d case, one can bound the right-hand side of above equation as follows (see [10, 11])
RHS < Cy, s (1D = tres) ()| L2y + llu — Uref“%Z(sz))»

where Cy, s is a constant dependent on the norms of ur.y and f. If the non-negativity f“((u = Upey) -
V) (u = treg) - (u— Upes) dz > 0 holds, then we can obtain the energy inequality

T
Il(u— Uref)(T)“%Z(sz) + /(J [l (u— urd)(ﬂ“?ﬂ(sz) dt < Cu,, ;o) (1.5)

where Cy, , f.u,.7 is a constant dependent on /" and the norms of urey, f and ugy. (1.5) shows the boundedness
of the velocity w in energy norm. Unfortunately, in view of

/(u-V)(u—uref)-(u—u,ef) dz:%/ - nlu— upes|? ds, (1.6)
Q Tout

since the sign of w-n on I'gyy is unknown, we cannot conclude the energy inequality (1.5), and the solution
may blow up.

To ensure the energy inequality, a large number of works have been devoted to the open outflow boundary
condition. [3, 4, Bruneau and Fabrie] proposed the following noulinear type outflow boundary

[w-n]-
2

T(’LL“D) == (u' - Uref) + VD(uref)n on Poyt,
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where [s]_ := max(0, —s) denotes the negative part of s. Since [u-n|- > 0 means the backward flow exists
on Iy, the above boundary condition can be regarded as enforcing a traction vector 7(u, p) to control the
backward flow, which has been applied to the simulation of blood flow in [1, Bazilevs, etc.]. The mathematical
well-posedness of the non-homogeneous Navier-Stokes equations with this boundary condition is studied by
[2, Boyer, etc.]. A class of more general energy-stable open boundary conditions has been proposed and
investigated by [5, Dong] and [6, Dong and Shen], which is stated as follows:

1.
vDyus —pn+v(n-Viu - 5”“‘““ + (u-n)JuBg(n,u) = fo  on oy,

where D and f, are given parameter and function, and ©(n,u) is a smooth approximation of [u-n]_. A
comparison to the physical experiments has been discussed detailedly in [5]. In [9, 11], we proposed an outflow
control boundary condition of Signorini’s type and proved the mathematical well-posedness. This condition
is an analogy to Signorini’s condition in the theory of elasticity [7], which is to enforce the non-backward flow
on Loy, een,

U, >0, 7(u,p) >0, upTn(u,p)=0, 7r(u)=0 on Ty, (1.7)
where u, := u-n denotes the normal component of velocity u, 7,(u,p) := 7(u,p) - n and 7p(u) :== (I —
n @ n)7(u,p) represent the normal and tangential parts of traction vector 7(u,p). Noting that 7(u,p) =
Tn(u, p)n + 71 (u), we can regard (1.7) as an extension of the traction-free condition:

7(u,p) =0 on oyt 4, 1.8a)
u, =0, 7r(u)=0 on Loui\Lout 4, (1.8b)

where Toye+ := {z € Tour | up > 0}. In view of u, > 0 and (1.6), the energy inequality (1.5) holds true.
We also proposed a penalty method and obtain the error estimates the P1b/P1 element for the stationary
Stokes problem with the condition (1.7).

This paper is concerned with the numerical methods for the Navier-Stokes problem with Signorini’s
boundary condition (1.7). As a preliminary, we introduce the variational inequality for our model problem
(1.1)(1.7) in Section 2. In Section 3, we apply the penalty method to approximate (1.7), and derive the
energy-stability for the discrete solution. We consider the Lagrange multiplier approach in Section 4, where
we consider the Uzawa method with projection and the active/inactive set method to implement (1.7). Finally,
in Section 5, we study the convergence of our scheme. Moreover, we apply our schemes to the numerical
simulation and comparing the results to the experimental data of [8], which indicates the suitability of
Signorini’s boundary condition in application.

2 The variational inequality

Assume that the model problem (1.1) (1.7) admits a unique strong solution (u, p) for 0 < ¢t < 7" with regularity
(ck. [11])

we L0, T; H () N LA0,T; H*(Q)Y), w € L*(0,T;L*(Q)%), pe L*(0,T; H'(Q)).

Let us derive the variational inequality of (1.1) (1.7). For simplicity, from now on, we assume that g is
independent of t (or else we can derive the variational form for U = u— u,.5). We define the function spaces:

Vi={ve HH Q) |v=gon [y ULy}, Vo:={ve H Q) |v=0o0nT;,Ul},
K:={veV]v,>0onTou}, Q:=L*Q), Q= LX(Q).

For any v € V, multiplying (1.1a) with v — u and integrating with the integration by parts, we have (noting
that v —u =0 on I';, NTy)

/nut‘(v—u) dz+/”(u-V)u~('v—u) da:+2V/QD(u):D(U—u) da:—/[l o(u,p)n - (v—u) ds

A/pV~(1V—u)dx:/f-vdx.
Q Q



Decomposing the traction vector o(u, p)n and v — u into normal and tangential component yields

/ o(u,p)n-(v—u)ds = / Tn (U, p)(Vn — up) + 77 (u) -(vr — ur) ds,
Tout Tout \1:7’

:/ Tn (U, p) vn dsf/ Tn(u, p)u, ds > 0.
Tt S~~~ Tout S———~—

>0 20 =0

where vy := (I — n ® n)v denotes the tangential part of v, and we have applied the boundary condition of
Signorini’s type (1.7).
For u,v,w € H'(Q)? and p € L?*(Q), we introduce the notations
a(u,v) :=2v(D(u),D(v))q, ai1(u,v,w):= ((u-Vv),w)q,
b(v,p) = =(V-v,p)a,
where (u,v)q = [, u-v dz is the inner produce of L?(Q)? (or L?()). The variational form of (1.1)(1.7) is
stated as follows.
(u, v —uw)o + a1 (u,u,v — u) + alu,v — u) + b(v —u,p) > (f,v —u)g Vv e K, (2.1a)
b(u,q) =0 Vg € Q. (2.1b)

To overcome the difficulties of solving the variational inequality problem (2.1) numerically, we consider
the penalty method and Lagrange multiplier approach respectively in the next sections.

3 The penalty method

The idea of the penalty technique is to approximate the Signorini boundary condition (1.7) by a Robin type
boundary condition. \
Introducing the penalty parameter € (0 < € < 1), we state the penalty problem:

Uet + (Ue - VIue = V-0 (ue,pe) = f in Qx (0,7, (3.1a)
Vou =0 in Qx (0,7), (3.1b)
Ue =g on (I'iy UTY) x (0,77, (3.1c)
7(te,pe) = € ue -n]_n on Loy x (0,7, (3.1d)
ue(z,0) = ugy in Q. (3.1e)

As [uc - n]_ denotes the backward flow on Ty, the Robin type boundary condition (3.1d) is to make the
normal traction vector 7, (u.,p.) sufficient large (¢! > 1) at the places where the backward flow occurs,
so that the backward flow can be restrained. On the other hand, if the normal traction vector 7, (u., p¢) is
bounded, then (3.1d) indicates that

[ue - n]- = emn(ue,pe) = 0, ase— 0,

which approximates to the boundary condition [u-n]_ = 0 (i.e., u-n > 0) on Tpye. In [11], the existence
of (ue,pe) has been proved, as well as the convergence (u,p.) — (u,p) when passing to the limit ¢ — 0.
Therefore, instead of solving the variational inequality (2.1a), we compute the solution of penalty problem
(3.1) to approximate (u,p). In this section, we discuss the numerical schemes to (3.1) or its variational form
presented as follows.

1
(te.t; V)0 + a1 (ue, ue,v) + a(ue,v) + b(v, pe) — E/ [ten]—vn ds = (f,v)0 Yo eV, (3.2a)
Fnuf

b(ue,q) =0 Vg € Q. (3.2b)
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3.1 The spatial and time discretization

We consider the case that Q is a polygon/polyhedron, and introduce a regular triangulation 7;, to Q. We
apply the P1b/P1 element for velocity/pressure:

Vi i={vn € C(Q? | valr € P(T)? @ B(I)? VT € T, vy = gp, on Dy, UT),

Vio = {vn € C()? | vylr € P @ B(I) VT € T, vy =0 on Iy UT},

Qn={an € C(Q) | anlr € A(T) VYT € T},
where Py (1") and B(T') stands for the sets of linear functions and bubble functions in 7 respectively, and g
is an interpolation of g.

For time-discretization, we set the time-step-size At := 1\1 for some integer M (M > 1), and divide the

T
time interval (0,7) into M segments {(tm—1,tm) M, with t,, == mAt. Let uy) € V4 be the approximated
initial velocity (i.e., uj) ~ uy) satisfying

u) n >0 on oy (3.3)

We shall use the backward Euler scheme for the time-differential approximation:

_ um — um—]
ou™ = —Qa; ut(tm) (W™ == u(tm)).

3.2 The discrete penalty problem

With the above settings, we give the discretization of penalty problem (3.1). Find {(uf*,p)}M_; C Vi, x Qp
satisfying: for all (vp,qn) € Viy X Qp,

/) m— m 1
(Ouy',vn)a + a(up ],u?wh) +aluy', vn) + b(vn, py') — z/ [uhn]—vnn ds = (f™,vn)a, (3.4a)
FUM’
b(ul, gn) = 0 (3.4b)
where f™:= & ::"’71 f(t) dt and up} == up* - n.

To derive the discrete energy inequality for u}*, we introduce the approximated reference flow {ufzﬁh};\,{:l -

Vp, which satisfies

Uperp =gn  on Ty MDYy, Uepp >0 on Doy, (3.5a)
b(ufes i gn) =0 forall gy € Q. (3.5b)
Theorem 3.1. Given {f™ f‘n]:] and u‘,’L, for sufficiently small €, there exists a unique solution {(u}", pj") 11‘7{:1

to (3.4), and the discrete energy inequality holds:

M M M
; At .
HUQIHEZ(Q) + At Z Hu;?!\zm(sz) + s Z [l [uhs *”iﬁ(l‘) < C(At Z Hfmni%n) + HUZH%Z(SZ))-
m=1 m=1 m=1

3.3 The approximation of [up,]-

Since the nonlinear term [up,] - is not C'-differentiable, we introduce the regularization to [up,]_ and consider
the Newton iteration for solving the nonlinear problem. Let ¢ (0 < § < 1) be the regularization parameter.
The regularization to [s]_ is given by

¢s(s) == = (V% + 62— s). (3.6)



We see that ¢5(s) — [s]— as § — 0. Then, we replace [up,]|- in (3.4) with ¢s(upy), i.e., we solve the following
regularization problem.

Find {(u, p?)}M_, C Vi x Qy satisfying: for all (vn,qrn) € Vio X Qn,

_ ~ o1 ‘
(Oupt,vn)a + a1 (u =" upt, vn) + a(ul, vn) + blug, pit) — ;/ &5 (Uhn)Vhn ds = (™, vp)q. (3.7a)
b(uy', qn) = 0. (3.7b)

Since ¢s(s) € C2, we can apply Newton’s iteration to (3.7).
(Algorithm 1)

Step 1). Set j = 1. We compute the initial value (u}" (”),pm'(o) € Vi, x Qp, for iteration, which satisfies:
; h h
for any (va,qn) € Vio x Qn,

1 _ m— . m
7 = enda e (T, o) + al Y en) + b(on, pp ) = (7)o, (3.82)
b(uy ", gn) = 0. (3.8b)

(Step 2). Solve the problem: find (du?"j),dp;n'(j)) € Vi x Qp, satistying for all (vg,qn) € Vig X Qp,

;t(duhl ),Uh)gz + al(u;f‘],du;?-(])’ n) + a(duh 111)
- %/r' o (uﬁ(jfl))du;nﬁ(])@hn ds + b(vh,dp?'(])) = F"™ (vy), (3.9
b(duY gy) = 0, (3.9b)
where ¢j(s) := %(ﬁf — 1) denotes the derivative of ¢s(s), uhn(] - u;n'(jfl) -n, du;lnn =0
du;?'(jfl) -n, and F™J(vy) is defined by
F™3 (o) =(f™, v)0r — Alt (“h (i-1) u}:" e — al(u)rln l,u?’(jfl),vh) B a(uZl‘(j_l),i‘h)
/ 05 (™ )opn ds — b(op, )
Then we update the solution:
(U;In«(j)m;:l-(ﬂ) (u;:’ (3-1) + du;"'(j),pzl'(jfl) + dp;zr-u)) (3.10)

(Step 3). Increase j by 1 and iterate (Step 2) until convergence.

4 The Lagrange multiplier approach
In this section, we consider the Lagrange multiplier approach to treat the Signorini’s boundary condition in
numerical computation. First, let us pay attention to the continuous problem (1.1)(1.7) and its variational
inequality (2.1). Introducing the Lagrange multiplier

A= —7,(u,p) <0,

we enforce the boundary condition u, > 0 by the weak form

[un,p— A <0 for all p e A},
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1
where [vy,, p] == fF v ds is the dual product between H(,()(Tout) and its dual space Hg,(Loye)*, and

1
A" = {u € Hyy(Tou)” | [on,u] <0 Vo € K},

Then, with the help of A, we write an equivalent form of (2.1).

(ug, v)o + a1 (u, u,v) + a(u,v) + b(v,p) + (v, Al = (f,v)a Yo eV, (4.1a)
b(u,q) =0 Vg € Q, (4.1b)
[un,p—A <0 Ve A”. (4.1c)

The equivalence between the boundary condition of Signorini’s type (1.7) and (4.1c) has been derived in [10].
Therefore, we can solve the Lagrange multiplier problem (4.1) instead of (2.1). To discretize (4.1), we need to
introduce a finite element function space for A. Let &,,; be the mesh of the outflow boundary Iy, inherited
from the triangulation 7. We define the function space

Ah = {:uh € C out) ‘ /Jhie S Pl( ) Ve € gout}; Ah.— = {/1/1 € Ah ‘ Hh < 0},
and the bilinear form
le
c(Vnn, ptn) Z lel Z/Jh (NDvnn(NZ) Vo € Vi, i € Ay,
e€E,ur

where {]\” 1 denotes the vertices of the edge/face e.
The dlsc1et1zatlon of the problem (4.1) reads as: find {(u}®, pf*, A7) }_| C Vi, x Qp x Aj,._ such that for
all (va, qn, ftr) € Vo X Qn X Ap.—,

(Qu, vp)a + al(uhm,u’gl,vh) +a(up',vn) + b(vn, i) + c(Onn, AFY) = (f™,vn)a Vop € Vi, (4.2a)
b(up', qn) = Ygn € Qn,  (4.2b)
(Upmy fh — /\’") 0 Yun € Ap . (4.2¢)

The discrete problem (4.2) preserves the energy inequality.

Theorem 4.1. Let {(u®, pj*, /) }M_, be a solution of (4.2). On the outflow boundary oy, uyy, > 0 holds
exactly. Moreover, we have the discrete energy inequality:

M
[y ||L2 o) T At Z flug HHl o) S C(AL Z HmeU o)t {03 “1} Q)
m=1 m=1

Next, we consider two methods to implement (4.2): the Uzawa wmethod with projection and the ac-
tive/inactivie set method.

4.1 The Uzawa method with projection

We define a projection operator:

P:Ap— DMp—y pta = Pun,

W (V] if un(N?) <0,
Py, = Hn(Ne) i n( v) forall e € Egue and i = 1,...,d,
0 if pp(N7) > 0.
The projection Puy is a truncation of the positive part of pj,. With the help of P, we state the Uzawa
method for (4.2).
(Algorithm 2).



the condition wu,,,

(Step 1). Let /\hm‘(U) = 0. Find (u;n‘m),p;”'(())) € Vi x Qp satisfying: for all (v, qn) € Vi X Qp,

1 m. m. .
E(uh A0 _ u;”_l,vh)” + al(um'(l]) Uy, © ,v) + aluy, w),l’h) + b(w”P? (U)) (4.3)
.3a
= (™, vn)a — c(vhn, Ay ),
bu] m. <u)7qh) —o (4.3b)
We take the solution (u}" (”),p as the initial value of the Uzawa method. Set j = 1.
h h

(Step 2). We update the Lagrange multiplier using the obtained solution u;n’(jfl)

operator P:

and the projection

A= PO 4 g Ty (o> 0). (4.4)

hn

Then find (u:( ),ph )) € Vi x Qp, satisfying: for all (va, qn) € Vho X Qn,

LoomG) _ me1 m.(j)  m.() m. () m.(j)
—(u —u ,Up)a tar(u ,Uu , ) +alu svp) + b(uvp, p
At( h h ) l( h h ) ( h ) ( h ) (4.5&)
= (™ vn)a — c(vnn, A ),
b, gn) = 0. (4.5b)

(Step 3). Increase j by 1 and iterate (Step 2) until convergence.

4.2 The active/inactivie set method

Noting that the projection (4.4) in Uzawa’s method only ensures the non-positivity of the Lagrange multiplier
AR, the condition ufl, A\j* = 0 has not been treated explicitly, whereas the active/inactivie set method ensures

m'(])/\hm ) = 0 at every iteration.

The idea of the active/inactivie set method is to think of the Signorini’s boundary condition as a com-

bination of the traction-free boundary condition on the active set Iout.+ and the slip boundary condition
u, = 0 on the inactive set Ty \Iour.+ (see (1.8)).

The algorithm is presented as follows.
(Algorithm 3).

(Step 1). Let /\ZI'(U) = 0. Find (u,;n‘(()),p U)) € Vi x Qy, satisfying: for all (v, qn) € Vi x Qp,

1 m. T
_A—t( ;ln.(U) _ ,u;ln—l7 Uh)&l + CL](U (U)vuh (U) ) + a(um (0) ) + b( 71 0)) (fm v ) o (463)
by ) = 0. (4.6D)

(0) 1n.([J))

We take the solution (u;"‘ Py as the initial value for iteration. Set j = 1.

(Step 2). We define the active set A™ () and inactive set 1™ () by :

A™D) = {a € Toue | AT 4 pui 07 > 0}, 1m0 =T, \ AM0), (4.7)

(Step 3). Flnd (up” @) ,p;ln U € v, x Qp satistying up @) = 0 on I"™0U) and for all (v qn) € {vn €
‘/h(J ' u;zln =0on 1771 } X th

L um.(]) m—1 m.(j) , m.(j)

At( h Up zh)ﬁl + ax (uh s Up :1'11) + a(u;L ) ’Uh) +b( 1’11713}1 ) = ( 11'11)&27 (4-83)
blup ", qn) = 0. (4.8b)

o1



h=0.038, k=002 e=le-4, k=0.02 k=0.02
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Figure 2: (left) The error Hu?’ —uh! |1 (qy for different penalty parameter e with fixed mesh size h = 0.038
and At = 0.02. (middle) The error “u?’ - uﬂ’l\m(m for different mesh size h with fixed penalty parameter

€=10"% and At = 0.02. (right) The error Huy —up! || f1 (@) for different mesh size h with At = 0.02 for the
Lagrange multiplier approach.

(Step 4). With obtained (u}ln'(j),p;n'(j)), we calculate )\;ln'(j), which satisfies: for all v, € Vjy,

) 1 B G P
C(T/m,AZL(])) =(f™, vn)a — E(U;ﬂ’m —u ! vn)a — ar () m,u? (J)ﬂ'h)

(4.9)
—a(u" vy = b(vg, pyy,

(Step 5). Increase j by 1 and iterate (Step 2)-(Step 4) until convergence.

The condition u%(]))\;"‘(j) = 0 on 'y, is satisfied at each iteration. In t'a(’t, at (Step 3), the problem (4.8)
implies that /\hm'(]) = 0 on the active set A ). On the other hand, u;{;(]) = 0 on the inactive set 1™ ) is
explicitly implemented. Hence, we have u;" (]))\Zq'm =0on I"™yA™U) =T,,,.

5 The numerical experiments

5.1 The convergence rate
5.1.1 The convergence rate of the penalty approach

We investigate the convergence rate of the penalty approach by numerical experiment. We simulate the
flow in domain Q := {(z,y) [0 <z <3, -1 <y < -1, (z — 0.4)? + 3> > 0.4?} with inflow boundary
Tin == {(z,y) | = 0}, the no-slip boundary Ty := {(z,y) | y = £1}, and the outflow boundary I'oy; =
{(z,y) | x = 3}. We set the viscosity ¥ = 0.01 and the inflow velocity g = 2(1 + 0.3sin(27t))(1 — ) on I';,.

For a very fine mesh 7; and tiny penalty parameter ¢; and time-step size At, we compute the numerical
solution at 1" = 0.6, which is denoted by (u?/,py). We regard (u?l,pﬁj) as the exact solution and calculate
the error Hu?’ — u;’:’HHl(m, where u}’ is the discrete solution with coarser mesh 7 or the penalty parameter
e(ef <exl).

First, we fix the mesh 7;, and plot the errors for different € in Figure 5.1.1 (left), which indicates the
convergence of order O(e). Next, for fixed penalty parameter es, we compute the error for different mesh size
h (see Figure 5.1.1 (middle)), which shows the convergence of order O(h).

For the Lagrange multiplier approach, we investigate the convergence order depending on mesh size h with
a fixed time-step size At. The error is plotted in Figure 5.1.1 (right), which also shows the O(h)-convergence.



Drag Force

where d = (1,0)7
for v = 9.76 x 107" and v = 4.88 x 107" respectively. The average of drag and lift forces for various Reynolds
number o« Re = v~
v > 1073,
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Figure 4: The drag and lift forces for v = 4.88 x 107°.

The numerical simulations

To validate the suitability of applying the Signorini boundary condition for real-world fluid simulation, we
compare the simulation results to the experimental data. We simulate the flow in domain Q := {(z,y) |
0 <z < 25L,
L =1, Ty = {(z,y) | = 0}, the no-slip boundary Ty := {(z,y) | y = £L}, and the outflow boundary
Tout := {(z,9) | z = 2.5L}. The inflow velocity is given by g = L? — y* on I';,,. We compute the drag force
Dy and the lift force Ly on the circle boundary C; == {(z,y) | (z — 0.5)* +

—-L <y < —L, (x—05)? +y* > r?} and time interval (0,7"), where 7' = 30, r = 0.1,

y* =r’k

Dy := —/ o(u,p)n - d ds, Ly:= / o(u,p)n-1ds,
C1 Cy

and I = (0,1)7. We plot two profiles of the drag and lift forces in Figure 5.2 and Figure 5.2

I are plotted in Figure 5.2, which somehow corresponds to the experimental data [8] for
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