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COMMENTS ON MULTILINEAR STRONG MAXIMAL OPERATORS
ON MIXED LEBESGUE SPACES

KOZO YABUTA

0.1. Maximal type operators. Let n > 1 and f € L _(R"). Let M be the well-known
Hardy-Littlewood maximal operator deﬁned on R™ as follows.

Mi@) = sup s [ 1wl

where B,(z) is the open ball in R™ centered at x Wlth radius r and |B,(z)| denotes the
volume of B,(z). The corresponding uncentered maximal function will be denoted by
Mf. .

It is well known that M and M are of type (p, p) for 1 < p < oo and weak type (1,1).
In 1997, Kinnunen [18] first showed that M is bounded from the first order Sobolev spaces
WiP(R") to WIP(R") for 1 < p < co. Later on, the W!?-bounds for the uncentered
operator M was obtained by Hajlasz and Onninenin [15]. Since then, many works have
been done to extend the above results in a more general setting. We refer the reader to
see [19], [20], [7, 28], [27], [31], [32]. However, the results for p = 1 are quite different.
In 2004, Hajlasz and Onninen [15] surprisingly pointed out that the Hardy-Littlewood
maximal operator is not bounded on W?'! space. Thus, it is quite natural to consider
whether the operator f +— |VMf| is bounded from W11(R") to L}(R") or not. When
n = 1, this problem was completely solved in [2, 24, 26, 39]. But for n > 2, only partial
results were given by Hajlasz and Maly [14] and Luiro [33]. For more previous works or
related topic we refer the readers to consult [3, 5, 6, 8, 24, 21, 22, 29], and the references
therein.

In order to study the multilinear singular integral operators with multiple weights,
in 2009, Lerner et al [25] introduce the multilinear version of Hardy-Littlewood maximal
functions. In 2011, Grafakos, Liu, Pérez and Torres [13] introduced and studied the
weighted strong and endpoint estimates for the following multilinear strong maximal
function .Zx.

Definition 0.1 (Multilinear strong maximal function [13]). Let f?: (fi,o s fm)
be an m-dimensional vector of locally integrable functions. Define the multilinear strong
maximal function .#% by

m

(01) '% - supH |R| / 1f1 Yi ldyu

Rar 2 =1
where x € R" and R denotes the family of all rectangles in R" with sides parallel to the

axes.
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Whenever m = 1, we simply denote .#r by Myr. Then My coincides with the
classical strong maximal operator studied by Jessen, Marcinkiewicz and Zygmund [17]
in 1935. Unlike the Hardy-Littlewood maximal function, the strong maximal function
Mz, is not of weak type (1,1). Therefore, as an replacement, Jessen, Marcinkiewicz and
Zygmund [17] showed that it is bounded from L(log™ L)(R%) to L'(R%). In 1975, the
L(log™ L)(R?) type estimate was again proved by Cérdoba and Fefferman [9] by using an
alternative geometric method [9].

It is known that [13] .#% is bounded from LP'(R9) x --- x LP»(R%) to LP(R?) for all
1 <pi,eoospm,p <00 and 1/p = 37" 1/p;. Moreover, for each f; € LP(R?), it holds
that

—

(0.2) AR ()l o ®e) Sorveeipm H Il fill Lo (mey-
i=1

0.2. Mixed Lebesgue spaces. We first introduce the definition of mixed Lebesgue
spaces.

Definition 0.2 (Mixed Lebesgue space LP4(R" x R"2), [23]). Let 1 < p, ¢ < oo and
n; > 1(i = 1,2), the mixed Lebesgue space LP4(R™ x R"2) is defined by

LI},q(Rm x an) — {j CRMtn2 R; “f‘”vaq(R'anRrﬂg) < oo}7

It o= / ( / . vfu,y)r'dy)%dx)?

Similarly, we can define mixed Lebesgue space with ¢ terms by LPLP2-P¢(R™ x R"2 x
<o x R™). It is easy to see that LP9(R™ x R"2) = LP(R™*"2) if p = ¢.

where

It is well known that this space still preserves the following properties: it is a Banach
space and some classical theorems, such like monotone convergence theorem, Lebesgue’s
dominated convergence theorem still hold. The definition of mixed Lebesgue space can
be traced back to the nice work of Benedek and Panzone [4], in 1961. Since then, achieve-
ments have been made in the study of some classical operators on mixed Lebesgue spaces.
Among these achievements, there are nice works of Adams and Bagby [1], Lizorkin [34],
and Milman [35].These works mainly focused on the translation-dilation invariant esti-
mates for Riesz potentials, the multipliers of Fourier integrals and bounds of convolutions,
and the interpolation problem of Banach spaces and Lorentz spaces with mixed norms.
Later on, the maximal inequalities and Fourier multipliers for spaces with mixed quasi-
norms were studied by Schmeisser [37] and the theory of vector-valued singular operators
on mixed Lebesgue spaces was considered by Fernandez [11]. Recently, some weighted
theory for maximal operators associated with some special rectangles constructed by the
products of two cubes was developed by Kurtz [23]. Still more recently, Radial mul-
tipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces were
demonstrated by Cérdoba and Latorre Crespo [10]. Moreover, the smoothing properties
of bilinear operators and Leibniz-type rules in mixed Lebesgue spaces were presented very
recently by Hart, Torres and Wu [16].

Based on the previous results for the Hardy-Littlewood maximal operators, the mul-
tilinear strong maximal functions and some other classical operators, it is therefore a
quite natural question to ask whether the multilinear strong maximal operators are still



bounded on the product of mixed Lesbegue spaces. and enjoy the regularity and conti-
nuity properties.

0.3. We will consider the boundedness, regularity and continuity properties of the mul-
tilinear strong maximal operators on the mixed Lebesgue spaces and mixed Lebesgue-
Sobolev spaces. We will see that these results rely heavily on one dimensional results. To
begin with, we introduce the definition of mixed Lebesgue-Sobolev spaces.

Definition 0.3 (Mixed Lebesgue-Sobolev spaces W1P4(R" xR™)). Let 1 < p < oo,
1<g<ooandn; >1(i=1,2), the mixed Sobolev Lebesgue space W'P7(R™ x R"2) is
defined by

Wl»,PqQ(Rm % an) e {f . Rnﬁ—nz - R; ||fHW1*T’*"?(R"1 XR"2) < 00}7

where || fllwiramn xrn-2) = ||V f|| Lra@r1 xgrz) + || f || Lr.a(rr1 xgrz2).- Similarly, we can define
mixed Lebesgue-Sobolev spaces with ¢ terms by W1Pip2ePe(R x R"2 x .. x R™),

We obtain the following boundedness of .#% on mixed Lebesgue spaces.

Theorem 0.1 (Estimates on mixed Lebesgue spaces). Let £ > 1 and n = Zf:] n;
withn; > 1(0=1,...,£). Let 1 < pj,p1j,p2js- - Pmj < 00 and 1/p; =37 1/py; (7 =
1,...,4). Then, the following inequality holds
m
H%R(f)“Lm-Pz-----Pi(]R{"l xR"2 x---xR™¢) Sn.pl,..,,p; HHf] HLT’]lanQ-'<--T7]2(Rn,1 XR72 %+ xR™)"
j=1
Now, we may consider the properties of .#% on mixed Lebesgue-Sobolev spaces.

Theorem 0.2 (Estimates on mixed Lebesgue-Sobolev spaces). Let ¢ > 1 and
n = Ele n; withng > 10 =1,...,£). Let 1 < pj,p1;,D2j,-- - Pmj < 00 and 1/p; =
S 1/pii (G =1,...,¢). Then 4y is bounded from products of Lebesgue-Sobolev spaces
WhpipizePie(R™M ) R™2 X -+ X R™) x -+ o x WIPmiPm2eePme(R™M x R™2 x - x R™) to
Lebesgue-Sobolev spaces WhPLPzePe(R™M x R"2 x ... x R™), and it holds that

m

j=1
Moreover, the following property holds

m

\Ditn(f)(2)| < Mr(F) (), ae z€R™ xR™ x - x R™,
j=1

where FJ = (f17 BN} fj—la le_]7 fj+1> e fm)-

Theorem 0.3 (Continuity on mixed Lebesgue-Sobolev spaces). Let ¢/ > 1 and
n = Zle ng withn; > 10 =1,...,0). Let 1 < p;,p1j,D2j -+ Pmj < 00, D1j = Daj, >
<>y >land l/p; =300 1/p; (7 =1,...,0). Then My is continuous from products
of Lebesgue-Sobolev spaces WP11P12:P1¢ (R™M XR™2 X -+ - X R™M) X -+ - x W 1Pm1Pmzbme (R
R"2 X --- x R™) to Lebesgue-Sobolev spaces W1P1P2-Pe(R™M x R™ x - .. x R™).

Remark 0.4. If f,Vf, € L"(R*) (1 = 1,2,...,m) for some 1 < r < oo, then the
assumption pi; > pa;, > - -+ > py,; > 1 can be removed in Theorem 0.3.

We state here some comments on fundamental facts on mixed L” spaces, used in the
proofs of the above results.
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Lemma 0.4. Let 1 < py < p; <00 and ny,ny € N. Then

| fll Lozpr (grz srray < |l Lo1m2 s xmnz)-

Proof. By Minkowski’s inequality

p1/p2 1/p1
TP ( / ( / ’f(xla@ﬂmd@) d)
R \JR"2
p2/p1 1/p2
s(/ (/ |f(x1,z2>|mdzl> d:c2)

= || fllLr1p2(®m1 xr2)-

From this, it follows immediately the following:

Lemma 0.5. Let 1 < pq,ps,...,pe < 00, p; < pj_1 and ny,na,...,ny € N. Then,

Hf”L”l """ Pj=2PjPj=1Pjt 1 PLRML X X R™T =2 X R"I X R™I =1 xR"I+2 x - xR™2 ) < “fHL"l-”2 ----- Pe(R™ XR"™2 X xR™¢) -
Using this we get

Lemma 0.6. Let 1 <p, <pp1 <--- < p; <00, and ny,na,...,ng € N. Then, for any
2< <t

From this it follows

Remark 0.1. Under the assumption of Lemma 0.6, for f € LPrP2--Pe(R™ x R"2 x
-+ - X R™) we have

" 1 n
flxe, @i, - @y, @) € L (R™)
for almost every (z1,...,2j-1,Z—j11,...,%¢) € R™ X - x RW-1 X R™+2 x -« x R™,

Remark 0.2. Without the assumption of Lemma 0.6, the conclusion in the above
remark does not hold. In fact, let 1 <p < ¢ < co. Taking 1/¢ < a < 1/p, set

1
flz) = X=lal<blol<1 T e

Then f € LP9(R x R) but f(z,y) ¢ LI(R,) for |z| < 1, and hence f ¢ L7 (R x R).

Proof.
q/p 1/q 1 q/p 1/q
z, T = —dzx Y
(L(Leara) )= ([ (] =) o)
R \JR i<1 \Jjzj<1 |T = yloP
19 q/p 1/q
< ([ ) o)
i<t \Jo T%
1 2 1/p
:21/q</ —dz) < 00.
o T
But

d
/\f(x,y)lqdyz/ E—JJy|—”q:+OO for |z| < 1,
R lyl<1 1

and hence f ¢ L% (R x R). O
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Example 0.5. Let 1 <p<g<ooand 1/g<a < 1/p. Set
1
|z = yl(1+ [yl)*

Then f € LP9(R x R), but f(z,-) ¢ LI(R,) for any = € R. In particular, f ¢ L% (R x R).
Furthermore, f ¢ L"(R?) for any 1 <7 < oo.

Proof.

(L[ i) mdy) "- (/ (/, ) ma ) )
1 q/p 1/q

(L] %’d) a ij!)w dy)

(1 3pa> p(qaz— 1) q =00

On the other hand, for |z — y| < 1, we have |y| < |z| + |y — z| < |z| + 1. So, we get

</ ! (x’”'qdy) - </; m@)/ ; </|ms1 1j|5a>1/q'<|x| o

which implies f(z,-) ¢ LI(R,) for any = € R.
Next, for 1/a < r < co we have as above

(feran)” ([ o) = (i) s =

which implies f(z, ) & L"(R,) for any = € R, and so f(z,y) ¢ L"(R?).
Ifl1<r<1/a, weget

(L(Liewrasyan) ™ = (L[ mom) )
1 1/r
(UL ) eb)
:(1—2m> (/RmTynmdy) =0

ie. f¢L(R?). O
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