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Abstract. Let  G be  S_{5} or  SL(2,5) and leet  \Sigma be a homology sphere
with smooth  G‐action such that the  G‐fixed point set consists of odd‐

number points. Then the dimension of  \Sigma could be restrictive. In this

article, we report results on the dimension of  \Sigma and on the tangential
 G‐representation of a  G‐fixed point in  \Sigma.

This is a report of a joint work with Shunsuke Tamura.

1. REVIEW OF KNOWN RESULTS

In the present article,  G is a finite group and  G‐actions on manifolds should be

understood as smooth  G‐actions. By various researchers,  G‐actions on spheres with

finite  G‐fixed points have been studied.

Throughout the article, let  A_{n} and  S_{n} denote the alternating group and the sym‐

metric group on  n letters, respectively, and let  C_{n} denote the cyclic group of order

 n . First we like to recall several results found so far.

(1) For  G=A_{5} , there are  G‐actions on  \mathbb{Z}‐homology spheres  \Sigma of dimension 3

such that  |\Sigma^{G}|=1 , e.g.  \Sigma=S^{3}/SL(2,5) .

(2) (E. Stein [30]) For  G=SL(2,5) , there exist effective  G‐actions on the sphere
 S^{7} (of dimension 7) such that  |S^{G}|=1.
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(3) (T. Petrie [26]) Let  G be an abelian group of odd order possessing at least 3

non‐cyclic Sylow subgroups. Then there exist effective  G‐actions on spheres

 S^{n} , for some integers  n , such that  |S^{G}|=1.

(4) (E. Laitinen‐M. Morimoto [11]) A finite group  G has effective  G‐actions on

spheres  S^{n} , for some  n , such that  |S^{G}|=1 if and only if  G is an Oliver

group, i.e.  n_{G}=1 cf. [24, 23].

(5) (A. Borowiecka [3]) Let  G=SL(2,5) . Then  S^{8} does not admit any effective
 G‐action satisfying  |S^{G}|=1.

(6) (M. Morimoto [15, 17, 18], A. Bak‐M. Morimoto [1, 2]) Let  G=A_{5} . Then

there are effective  G‐actions on  S^{n} satisfying  |S^{G}|=1 if and only if  n\geq 6.

(7) (B. Oliver [23]) Let  G be an Oliver group, and  V_{1},  V_{2} , . . . ,  V_{m} are  \mathcal{P}‐
matched real  G‐modules such that  V_{i}^{G}=0 for  1\leq i\leq m . Then there

are effective  G‐actions on spheres  S and real  G‐modules  W such that  S^{G}=

 \{x_{1}, . . . , x_{m}, y_{1}, . . . , y_{m}\} and  T_{x_{i}}(S)\cong V_{i}\oplus W\cong T_{y_{i}}(S) for  1\leq i\leq m.

(8) (M. Morimoto‐K. Pawalowski [21], M. Morimoto [20]) Let  G be a gap Oliver

group, and  V_{1},  V_{2} , . . . ,  V_{m} are  \mathcal{P}‐matched real  G‐modules such that  V_{i}^{N}=0
for  1\leq i\leq m and  N\underline{\triangleleft}G with prime power index  |G :  N| . Then there

are effective  G‐actions on spheres  S and real  G‐modules  W such that  S^{G}=

 \{x_{1}, . . . , x_{m}\} and  T_{x_{i}}(S) \cong V\'{i}\bigoplus W for  1\leq i\leq m.

2. REPORT OF RESULTS

We define the sets  T_{G} of integers, for several finite groups  G , as follows.

 \bullet T_{A_{5}}=[0..2]\cup\{4,5\}.

 \bullet T_{SL(2,5)}=[0..6]\cup\{8,9\}.
 \bullet\tau_{s_{5}=}[0..5]\cup[7..9]\cup\{13\}.
 \bullet  T_{A_{6}}=[0..7]\cup[9..12]\cup\{14,15\}\cup\{19,20\}.
 \bullet  T_{SL(2,9)}=[0..15]\cup[17..20]\cup\{22,23\}\cup\{27\}.
 \bullet  T_{S_{6}}=[0..15]\cup[17..20]\cup[22..24]\cup[27..29]\cup\{33\}\cup\{38\}.

We would like to report the following results.
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Theorem 2.1 (cf. [22]). Let  G be  A_{5} or  SL(2,5) (resp.  S_{5}) and let  \Sigma be a  \mathbb{Z}_{2^{-}}

homology (resp.  \mathbb{Z} ‐homology) sphere of dimension  n in  T_{G} . Then  \Sigma never admits

effective  G ‐actions satisfying  |\Sigma^{G}|\equiv 1mod 2.

Related to Theorem 2.1, we remark the following:

(1) S. Tamura announced an interesting result: Let  G be  A_{6} or  SL(2,9) (resp.

 S_{6}) and let  \Sigma be a  \mathbb{Z}_{2} ‐homology (resp.  \mathbb{Z}‐homology) sphere of dimension  n

in  T_{G} . Then  \Sigma never admits effective  G‐actions satisfying  |\Sigma^{G}|\equiv 1mod 2.

(2) In a recent work of A. Borowiecka‐P. Mizerka, they gave certain subsets  I_{G}

(possibly the empty set) of [6..10] for finite groups  G such that  |G|\leq 216 or

 G\cong A_{5}\cross C_{k} with  k=3,5 , or 7, and they claimed that if  n\in I_{G} then there

is no  G‐action on  S^{n} satisfying  |S^{G}|=1.

Theorem 2.2. Let  G be  S_{5} and  n a non‐negative integer. If  n does not belong to

 T_{G} then there exist effective  G ‐actions on  S^{n} satisfying  |S^{G}|=1.

For a  G‐manifold  X and  m\in \mathbb{N} , let  X_{0}^{G} denote the set consisting of all G‐fixed

points  x in  X such that  \dim T_{x}(X)^{G}=0 , and let  X^{G}(m) denote the set consisting of

all G‐fixed points  x in  X such that  T_{x}(X) contains an irreducible real  G‐submodule

of dimension  m , where  T_{x}(X) stands for the tangential  G‐representation at  x(\in X^{G})
in  X.

Theorem 2.3. Let  G=A_{5} and  \Sigma a\mathbb{Z}_{2} ‐homology sphere with  G ‐action.

(1)  If|\Sigma_{0}^{G}|\equiv 1mod 2 then  \Sigma^{G}(3)\neq\emptyset.

(2)   If|\Sigma^{G}|<\emptyset then  |\Sigma^{G}(3)|\equiv|\Sigma^{G}|mod 2.

Theorem 2.4. Let  G=S_{5} and  \Sigma a\mathbb{Z} ‐homology sphere with  G ‐action.   If|\Sigma^{G}|<\infty
then  \Sigma^{G}(6)=\Sigma^{G}.

Theorem 2.1 follows from Theorems 2.3 and 2.4.
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3. IRREDUCIBLE REAL  G‐REPRESENTATIONS AND FIXED−POINT−SET DIMENSIONS

In this section, we give basic data to prove Theorems 2.2 and 2.3. For a real G‐

representation  V we call data of pairs  (H, \dim V^{H}) fixed‐point‐set dimensions, where

 H ranges over a set of subgroups of  G.

Case 1. Let  G=A_{4} . The irreducible real  G‐representations (up to isomorphisms)

are  \mathbb{R},  U_{3,1},  U_{3,2},  U_{4} , and  U_{5} , where  \dim U_{3,i}=3 , and  \dim U_{k}=k . The  G‐actions

on  U_{3,1},  U_{3,2},  U_{4} , and  U_{5} are effective. We tabulate fixed‐point‐set dimensions of

irreducible real  A_{5}|‐representations.

Case 2. Let  G=SL(2,5) . The irreducible real  G‐representations (up to iso‐

morphisms) are  \mathbb{R},  U_{3,1},  U_{3,2},  U_{4},  U_{5},  W_{4,1},  W_{4,2},  W_{8} , and  W_{12} , where  U_{*}^{Z}=U_{*},

 W_{*}^{Z}=0,  \dim \mathbb{R}=1,  \dim U_{k,i}=k,  \dim U_{k}=k,  \dim W_{k,i}=k , and  \dim W_{k}=k . The

 G‐actions on  W_{4,1},  W_{4,2},  W_{8} , and  W_{12} are effective.

Case 3. Let  G=S_{5} . The irreducible real  G‐representations (up to isomorphisms)

are  \mathbb{R},  \mathbb{R}\pm,  V_{4,1},  V_{4,2},  V_{5,1},  V_{5,2} , and  V_{6} , where  \dim \mathbb{R}=1,  \dim \mathbb{R}\pm=1,  \dim V_{k,i}=k,

and  \dim V_{6}=6 . The  G‐actions on  V_{4,1},  V_{4,2},  V_{5,1},  V_{5,2} , and  V_{6} are effective. The

characters of them are as follows.
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We tabulate fixed‐point‐set dimensions of irreducible real  S_{5}|‐representations.

Here  D_{m} are dihedral subgroups of order  m contained in  A_{5},  C_{m} are cyclic subgroups

of order  m contained in  A_{5},  \mathfrak{F}_{20} is a subgroup of order 20 not contained in  A_{5},  \mathfrak{D}_{m}

are dihedral subgroups of order  m not contained in  A_{5} , and  \mathfrak{C}_{m} are cyclic subgroups

of order  m not contained in  A_{5}.
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