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Abstract

In this article, we show that the third subgroup of the Andreadakis‐Johnson
filtration of the automorphism group of a free group coincides with the the third
group of the lower central series of the IA‐automorphism group.

The origin of the study of surface automorphisms goes back to the pioneer works by
Dehn and Nielsen in early 20th century. In particular, they studied the homeomorphism
groups and the mapping class groups of surfaces. In order to describe mapping classes
of surfaces, the most basic and standard way is to consider their actions on the homol‐
ogy groups of the surfaces. In most cases, however, such descriptions kill many deep
and important deta of surface automorphisms in general. To describe surface automor‐
phisms completely, Nielsen considered to study the actions of the mapping class groups
on the fundamental groups of surfaces, and obtained plenty of remarkable results.

In general, the fundamental groups are non‐abelian groups, and to deal with non‐
abelian groups and their automorphisms is sometimes quite complicated, compared to
the case of finitely generated abelian groups. In order to investigate the automorphism
groups of non‐abelian groups, Andreadakis [1] introduced descending filtrations of the
automorphism groups of groups. Let G be a group, and Aut  G its automorphism group.
Let  G=\Gamma_{G}(1)\supset\Gamma_{G}(2)\supset. . . be the lower central series of  G . The action of Aut  G

on the  (k+1)-st nilpotent quotient group  G/\Gamma_{G}(k+1) induces the homomorphism
Aut   Garrow Aut  (G/\Gamma_{G}(k+1)) . Its kernel is denoted by  \mathcal{A}_{G}(k) . Then we have the
descending filtration

Aut  G\supset \mathcal{A}_{G}(1)\supset \mathcal{A}_{G}(2)\supset. . .

of Aut  G . We call this filtration the Andreadakis‐Johnson filtration. (We will explain
why we attach the name “Johnson” in the next paragraph.) Andreadakis [1] showed
that this filtration is central. More precisely, the commutator subgroup of  \mathcal{A}_{G}(k) and
 \mathcal{A}_{G}(l) is contained in  \mathcal{A}_{G}(k+l) for any  k,  l\geq 1 . Hence, each of the graded quotient
 \mathcal{A}_{G}(k)/\mathcal{A}_{G}(k+1) for  k\geq 1 is an abelian group. The graded quotients  \mathcal{A}_{G}(k)/\mathcal{A}_{G}(k+1)
are considered to be a sequence of approximations of Aut  G by abelian groups, and are
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one of powerful tools to study the group structure of Aut  G . If  G is finitely generated,
then so is  \mathcal{A}_{G}(k)/\mathcal{A}_{G}(k+1) for any  k\geq 1 . However, to determine the structure of it is
quite a difficult problem in general.

Here we remark Johnson’s results on mapping class groups of surfaces in the  1980s.

The mapping class group of a compact oriented surface with one boundary component
can be embedded into the automorphism group of a free group by classical works of
Dehn and Nielsen in the  1910s and in early  1920s respectively. Hence we can consider
the descending filtration of the mapping class group by restricting the Andreadakis‐
Johnson filtration to it. This filtration is called the Johnson filtration of the mapping
class group, and it became famous among topologists. The first subgroup of the Johnson
filtration is called the Torelli group. In the  1980s , Johnson studied the group structure
of the Torelli group in a series of works [15], [16], [17] and [18]. In particular, he gave a
finite set of generators of the Torelli group, and constructed a certain homomorphism
 \tau to determine the abelianization of it. Today, his homomorphism  \tau is called the first
Johnson homomorphism, and it is generalized to Johnson homomorphisms of higher
degrees. Over the last two decades, good progress was made in the study of the Johnson
homomorphisms of mapping class groups through the works of many authors including
Morita [24, 25, 26], Hain [12] and others. The definition of the Johnson homomorphisms
of the mapping class group can be easily generalized to those of Aut  G for any group  G.

To put it plainly, the Johnson homomorphisms are powerful tools to study the graded
quotients  \mathcal{A}_{G}(k)/\mathcal{A}_{G}(k+1) of the Andreadakis‐Johnson filtration of Aut G. (For details,
see our survey papers [36] and [35].)

Now, the first subgroup  \mathcal{A}_{G}(1) is called the IA‐automorphism group of  G , and usu‐
ally denoted by  IA(G) . The letters I and A stands for “Identity” and “Automorphism”
respectively due to Bachmuth [2]. Let  \mathcal{A}_{G}'(1)\supset \mathcal{A}_{G}'(2)\supset. . . be the lower central series
of  IA(G) . Since the Andreadakis‐Johnson filtration is central,  \mathcal{A}_{G}(k) contains  \mathcal{A}_{G}'(k)
for each  k\geq 1 . Then, it is a natural question to ask: How much is the difference
between  \mathcal{A}_{G}(k) and  \mathcal{A}_{G}'(k) ? Andreadakis focused his interests on the case where  G is

a free group, and studied the above question.

Let  F_{n} be the free group of rank  n with basis  x_{1} , . . . ,  x_{n} . Nielsen [27] showed that
 IA(F_{2}) coincides with the inner automorphism group of  F_{2} . In 1935, Magnus [21]
showed that  IA(F_{n}) is finitely generated. The group structure of  IA(F_{n}) is, however,
less well‐understood in general at the moment. Krstič and McCool [20] showed that
 IA(F_{3}) is not finitely presentable. For  n\geq 4 , it is not known whether  IA(F_{n}) is finitely
presentable or not. We should remark that Day and Putman [10] obtained an infinite
presentation for  IA(F_{n}) One of reasons why the study of  IA(F_{n}) has not achieved good
progress so much seems that the combinatorial complexity increases quite rapidly as  n

tends to large.

Andreadakis [1] showed that each of  \mathcal{A}_{F_{n}}(k)/\mathcal{A}_{F_{n}}(k+1) is free abelian group of
finite rank, and gave its rank for  k=1 by using Magnus’s generators. He also showed
that  \mathcal{A}_{F_{2}}(k)=\mathcal{A}_{F_{2}}'(k) for any  k\geq 1 , and  \mathcal{A}_{F_{3}}(k)=\mathcal{A}_{F_{3}}'(k) for  1\leq k\leq 3 . Then he
conjectured that  \mathcal{A}_{F_{n}}(k)=\mathcal{A}_{F_{n}}'(k) for any  n\geq 3 and  k\geq 1 . Today, this conjecture
is called the Andreadakis conjecture. So far, in our previous works [32, 37], we proved
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that the Andreadakis conjectures restricted to some subgroups are true. However, to
attack the original problem is quite difficult due to combinatorial complexities. For any
 n\geq 2 , Bachmuth [3] showed that  \mathcal{A}_{F_{n}}(2)=\mathcal{A}_{F_{n}}'(2) . This fact is also obtained from
the independent works by Cohen‐Pakianathan [7, 8], Farb [11] and Kawazumi [19] who
determined the abelianization of  IA_{n} . Pettet [28] showed  \mathcal{A}_{F_{n}}'(3) has at most finite index
in  \mathcal{A}_{F_{n}}(3) by using the representation theory of the general linear group. Recently,
Bartholdi [4, 5] showed that this conjecture is not true in general. In particular, he
showed that

 \mathcal{A}_{3}(4)/\mathcal{A}_{3}'(4)\cong(Z/2Z)^{\oplus 14}\oplus(Z/3Z)
^{\oplus 3},
 \mathcal{A}_{3}(5)/\mathcal{A}_{3}'(5)\cong Z^{\oplus 3}\oplus(torsions)

by using a computer. For a general  n\geq 4 , the conjecture is still open. Here we
should remark a remarkable result due to Darné [9]. Recently, he proved that the
stable Andreadakis conjecture is true. Namely, the natural map  \mathcal{A}_{F_{n}}'(k)/\mathcal{A}_{F_{n}}'(k+1)arrow
 \mathcal{A}_{F_{n}}(k)/\mathcal{A}_{F_{n}}(k+1) induced from the inclusion is surjective for sufficiently large  n . The
purpose of the paper is to consider the unstable case, and to improve the above Pettet’s
result. More precisely, we show the following.

Theorem 1. For any  n\geq 3,  \mathcal{A}_{F_{n}}'(3)=\mathcal{A}_{F_{n}}(3) .

In [31, 36], we showed this type of theorems for some quotient groups of the McCool
subgroup of  IA(F_{n}) . The above main theorem is the refinement of these previous results.

Here we recall some results about the Johnson filtration of the mapping class groups.
Let  \Sigma_{g,1} be the compact oriented surface of genus  g\geq 1 with one boundary component,
and  \mathcal{M}_{g,1} its mapping class group. The fundamental group of  \Sigma_{g,1} is a free group  F_{2g} of
rank  2g . Let  \mathcal{M}_{g,1}(1)\supset \mathcal{M}_{g,1}(2)\supset. . . be the Johnson filtration of  \mathcal{M}_{g,1} . Namely, if we
consider  \mathcal{M}_{g,1} as a subgroup of Aut  F_{2g} through the Dehn‐Nielsen embedding, we have
 \mathcal{M}_{g,1}(k)=\mathcal{A}_{F_{2g}}(k)\cap \mathcal{M}_{g,1} . The subgroup  \mathcal{M}_{g,1}(1) is the Torelli group. Let  \mathcal{M}_{g,1}'(1)\supset
 \mathcal{M}_{g,1}'(2)\supset be the lower central series of the Torelli group. So far, it is known that
the Johnson filtration does not coincide with the lower central series of the Torelli group.
In fact, Johnson [18] determined the abelianization of  \mathcal{M}_{g,1}(1) , and showed that it has
many direct summands of  Z/2Z by using the Birman‐Craggs homomorphism. From
this, it immediately follows that  \mathcal{M}_{g,1}(2)\neq \mathcal{M}_{g,1}'(2) . In addition to this, we should
remark Morita’s remarkable result. Morita [23] showed that  (\mathcal{M}_{g,1}(3)/\mathcal{M}_{g,1}'(3))\otimes_{Z}Q is
not trivial for  g\geq 3 by using the Casson invariants. Thus, the Andreadakis conjecture
restricted the mapping class group never holds for topological reasons.

To the best of our knowledge, it seems that there are very few results on the original
Andreadakis conjecture for general  n\geq 3 and  k\geq 4 . It seems to be important to give
a theoretical proof if the conjecture is true. In addition to this, if the conjecture is not
true, it also seems to be interesting to describe obstructions in algebraic way with the
combinatorial group theory, the representation theory, and so on.

In this section, we introduce a strategy to study the difference between the An‐
dreadakis Johnson filtration and the lower central series of  IA_{n} by using combinatorial
group theory. Basically, it is the same method as in our previous work [37] for the
lower‐triangular automorphism groups of free groups.
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The strategy to attack the conjecture

Let  n\geq 3 and fix it. For  k=1 and 2, the conjecture is true. We assume that
 \mathcal{A}_{n}(k)=\mathcal{A}_{n}'(k) for  k\geq 1 . Then we have the homomorphism  gr^{k}(\mathcal{A}_{n}')arrow gr^{k}(\mathcal{A}_{n})
induced from the natural inclusion map. If the conjecture is true, it suffices to show
that this map is injective. In fact, if this map is injective, we can conclude  \mathcal{A}_{n}(k+1)=
 \mathcal{A}_{n}'(k+1) from the fact that  \mathcal{A}_{n}(k)=\mathcal{A}_{n}'(k) and  \mathcal{A}_{n}'(k+1)\subset \mathcal{A}_{n}(k+1) . In general,
however, it is quite difficult to study the structure of  \mathcal{A}_{n}'(k)/\mathcal{A}_{n}'(k+1) directly. Thus,
we use the Johnson homomorphisms. By using our previous result obtained in [30], we
determined the cokernel of the composition map

 \tau_{k}':gr^{k}(\mathcal{A}_{n}')arrow gr^{k}(\mathcal{A}_{n})arrow H^{*}
\otimes_{Z}\mathcal{L}_{n}^{(}k+1)

for  m\geq k+2 . More precisely, let  C_{n}(k) be the quotient module of  H^{\otimes k} by the action
of cyclic group of order  k on the components:

 \mathcal{C}_{n}(k) :=H^{\otimes k}/\langle\alpha_{1}\otimes a_{2}
\otimes\cdots\otimes a_{k}-a_{2}\otimes a_{3}\otimes\cdots\otimes a_{k}\otimes 
a_{1}|a_{i}\in H\rangle.

In [33], we showed that  Coker(\tau_{k}')=C_{n}(k) for any  k\geq 2 and  n\geq k+2 . Furthermore,
recently, Darné showed that the natural map  gr^{k}(\mathcal{A}_{n}')arrow gr^{k}(\mathcal{A}_{n}) is surjective for   n\geq
 k+2 . This induces that

 Coker(\tau_{k})=C_{n}(k)

for  n\geq k+2 . This means that we can give a lower bound on the number of generators of
 gr^{k}(\mathcal{A}_{n}') by considering  rank_{Z}({\rm Im}(\tau_{k})) . Thus, if we want to give an affirmative answer to
the conjecture, it suffices to show that  gr^{k}(\mathcal{A}_{n}') is generated by  rank_{Z}({\rm Im}(\tau_{k})) elements.

Let us consider the case where  k=2 . Pettet [28] determined the  GL(n, Q)‐module
structure of  {\rm Im}(\tau_{2,Q}') , and gave

rank  ({\rm Im}(\tau_{2}))=\dim_{Q}({\rm Im}(\tau_{2,Q}'))

 = \frac{1}{3}n^{2}(n^{2}-4)+\frac{1}{2}n(n-1)=\frac{1}{6}n(n+1)(2n^{2}-2n-3) .

In this article, for  k=2 , we show that  gr^{2}(\mathcal{A}_{n}') is generated by the above number of
elements for  n\geq 3.
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