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On higher Fano varieties‐ a summary
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Abstract

A concise survey on higher Fano varieties is given. The focus is [Min18], where results of de Jong‐Starr,
Araujo‐Castravet, and Suzuki are generalized.

• A gneral result for k‐Fano manifolds.
 \bullet A general result which guarantees that any general point of  X is contained in the image of a generaically

injective morphism  Rarrow X from a rational  k‐fold  R.

1 Background

Let us start with the following:

With a glance at this result, topologists would wonder how this theorem could be generalized to

“higher connected case”, whatever that means. Then the origin of such To search for a clue, it is very

natural to go back to the origin of the above theorem:

Shigefumi Mori, Ann.Math.1979 [Mor79]

Any Fano variety  X of positive dimension is covered by rational curves (i.e. any general point
 x\in X is contained in the image of a generically injective morphisms  \mathbb{P}^{1}arrow X ).

Since it is not obvious what kind of “higher connectivity”we should look after, in view of this funda‐

mental theorem of Mori, we may instead look after the “covered by rational k‐folds”property, i.e. any

general point is contained in the image of a generaically injective morphism  \mathbb{P}^{k}arrow X or more generally

by rational projective  k‐folds instead of  \mathbb{P}^{k}.

For this purpose, we should impose appropriate furhter restrictions of the Fano property, which would

(under some mild assumption if necessary) guarantee the “covered by rational  k‐folds” property.
Now, it has become apparent that the following  k‐Fano”property is very appropriate for this purpose,

by the work of de Jong ‐Starr  [dJS07] (for  k=2 ) and Araujo‐Castravet [AC12] (for  k=3):
 *
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 k‐Fano variety

Let us call a Fano variety  Xk‐Fano  (k\geq 2) when

 ch_{i}(X)>0(1\leq i\leq k-1), ch_{k}(X)\geq 0 , (1)

and, for terminological convenience, we sometimes call an ordinary Fano variety 1‐Fano.

The basic strategy to cover a  k‐Fano  X by rational  k‐folds is, starting with a  k‐Fano manifold  X,

under some extra condition, construct a sequence

 X=H_{0}\mapsto H_{1}\mapsto\cdots H_{k-2}\mapsto H_{k-1},

where  \mapsto ” means an inductive construction procedure explained below, but the points are:

 \bullet For  0\leq i\leq k-1,  H_{i} is  k-i‐Fano;

 e Since  H_{k-1} is Fano, it is covered by a rational 1‐fold by the Mori theorem. Inductively, if  H_{j} is covered

by a rational  k-j‐fold, show  H_{j-1} is covered by a rational  k-j+1‐fold, under some condition if

necessary. Thus, at the end, we see  X=H_{0} is covered by a rational  k‐fold.

Now the inductive construction  \mapsto ”  may be summarized the following itembox, which inputs a  k‐Fano

manifold  X=H_{0} and outputs a  k-1 ‐Fano manifold  H_{x}=H_{1} , where  x\in X is a general point (for the
precise meanings of the terminologies and notations, consult [Ko196] [AC12]) :
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Here, the importance of the polarization  L_{x} in PMFRC  (H_{x}, L_{x}) becomes apparent with a glance at

the following fundamental formula of Araujo‐Castravet [AC12]:

 0 Although a similar formula is expected for the Kontsevich’s space, on which deJong‐Starr  [dJS07]

based upon, it is yet to be worked out [MP17].

 e The proof of Araujo‐Castravet fundamental formula given in  [?] is a tough computations (a transparent

computational proof is given in [Min18]), exploiting the following description of the tangent bundle

 T_{H_{x}} by Druel [Dru06]:
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Now, Araujo‐Castravet, under some extra conditions, proved their covering results by constructing

the following sequences:

 X (2‐Fano)  \mapsto H_{x} (  1‐Fano)

 X (3‐Fano)  \mapsto H_{x} (  2‐Fano)  \mapsto W_{h} (  1‐Fano)

by applying the fundamental formula at each  \mapsto . ”’

Thus, it is quite natural hope to iterate the Araujo‐Castravet fundamental formula  k-1‐times to

deal with the  k‐Fano case. Though, the computational complexty appears to explode out of our hands

quickly.
However
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2 Suzuki’s work [Suz16] and subsequent work [Min17][Nag18]

As I talk in Fukui [Min17], the above technical condition

“either   2\leq or some inequalities invloving Bernouilli numbers hold for  \leq k “ (4)

can be removed. Now, just before the RIMS workshop for this Kokyuroku, I learnt Takahiro Nagooka

also eliminated this technical condition around he same time and announced it in [Nag18].
In fact, both [Min17] and [Nag18], following the lead of [Suz16], start with explicit formulae of  g(i, k)_{j} ’s

in

 ch_{j}(H_{i})=(g(i,0)_{j}+   i   \min\{dimX,i+j\}   (i,k)_{j})  c_{1}(L_{i})^{j},

where  T^{i} :  A^{*}(X)arrow^{T}A^{*}(H_{1})arrow^{T} . . .  arrow TA^{*}(H_{i}) with each  T of the form  \pi_{*}\circ ev^{*} (see (1) for the case
 \pi=\pi_{x} , ev  =ev_{x}) .

However, explicit formulae for  g(i, k)_{j} ’s given in [Min17] and [Nag18] are different; whereas [Nag18]
express them using Bernouilli numbers, [Min17] expresses them as

 g(i, k)_{j}=\{\begin{array}{ll}
-\frac{i}{j!}   k=0
\frac{(-1)^{j}k!}{j!}\sum_{q=\max\{k-i,1\}}^{j} [Matrix] \frac{1}{(i+q)!}   
k\geq 1,j\geq\max\{k-i, 1\}
0   k\geq 1,j<\max\{k-i, 1\}
\end{array}
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using the Stirling numbers of the first kind  \{\begin{array}{l}
p
k
\end{array}\} , which enjoys the following inductive characterizations:

 \{\lfloor m\}_{n+1}^{0}\lceil 0]=1]'=\lfloor m-1\}_{n}^{0}\lceil m]=] 
\{\begin{array}{l}
0
n
\end{array}\}+n=\{\begin{array}{l}
n
m
\end{array}\}0(m\neq 0, n\neq 0)
Although it is nice to have eliminated the technical condition (4), we now realize the following prob‐

lems, which are the motivation of this work:
Problems  \Rightarrow Motivation

 \bullet For a complete intersection  X of type  (d_{1}, \ldots, d_{c}) in  \mathbb{P}^{n},

 ch_{i}(X)>0  ( resp.  ch_{i}(X)\geq 0)  \Leftrightarrow   \sum_{1\leq j\underline{<}c}d_{\dot{j}}^{i}\leq n  (resp.   \sum_{1\leq\dot{j}\underline{<}c}d_{j}^{i}\leq n+1) ,

which implies:
 X is weak  k‐Fano (3)  \Leftrightarrow X is  k‐Fano (1)

Thus, we mould like to see how much we can gain by shifting from weak  k‐Fano to  k‐Fano.

 0 The final conclusin in Suzuki’s formulation claims only the stronger condition that any general

point of  X is contained in the image of a generaically injective morphism  \mathbb{P}^{k}arrow X , under some

(somewhat unsatisfactory) condition. So, we wonder what might be gained by searching for
the weaker condition, replacing  \mathbb{P}^{k} with a general rational  k‐fold. In fact, the prototype of this

phenomenon already happens for the 2‐Fano case:
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3 Main theorems

From our motivation just stated, I shall state our two main theorems of the following types:

 \bullet A gneral result for  k‐Fano manifolds.

 e A general result which guarantees that any general point of  X is contained in the image of a gen‐

eraically injective morphism  Rarrow X from a rational  k‐fold  R.

3.1  k‐Fano version

Notice that the difference between the weak  k‐Fano (3) and the  k‐Fano (1) arises for  k\geq 3 , we now
suppose  k\geq 3 . Then we main theorem reads as follows:

3.2 A general result which guarantees that any general point of  X is con‐

tained in the image of a generaically injective morphism  Rarrow X from a
rational  k‐fold  R.

Here, our main theorem is the following:

Our two main theorems stated above generalize the theorems of de Jong‐Starr  [dJS07] , Araujo‐

Castravet [AC12] for  k=2,3.

47



48

References

[AIK14] T. Arakawa, T. Ibukiyama, and M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer

Monographs in Mathematics, Springer (2014).

[AC12] C. Araujo and A‐M. Castravet, Polarized minimal families of rational curves and higher Fano
manifolds, American J. Math., 134(1) (2012), 87‐107.

[Cam92] F. Campana, Connexité rationnelle des variétés de Fano , Ann. Sci. École Norm. Sup. (4), 25,
1992, 539‐545.

[DebOl] O. Debarre, Higher‐dimensional algebraic geometry, Universitext, Springer‐Verlag, New York,
2001.

[dJS07] A. J. de Jong and J. Starr, Higher Fano manifolds and rational surfaces, Duke Math. J. 139

(2007), no. 1, 173‐183.

[Dru06] Stéphane Druel, Classes de Chern des variétés unirégléesm Math. Ann. 335 (2006), mo.4, 917‐935.

[Fu188] William Fulton, Intersection Theory, Second edition, Springer, 1998.

[FM81] William Fulton, Robert MacPherson, Categorical framework for the study of singular spaces,

Mem. Amer. Math. Soc. 31 (1981), no. 243,  vi+165 pp.

[GKP90] Ronald L. Graham and Donald E. Knuth, Oren Patashnik, Concrete Mathematics, ADDISON‐
WESLEY, 1990.

[HM04] J.‐M. Hwang and N. Mok, Birationality of the tangent map for minimal rational curves, Asian

J. Math. 8 (2004), no.l, 51‐63.

[Keb02] S. Kebekus, Families of singular rational curves, J. Algebraic Geom. 11 (2002), no. 2, 245‐256.

[Ko196] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Gren‐
zgebiete. 32, Springer‐Verlag, 1996.

[KM98] János Kollár, Shigefumi Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts
in Mathematics 134, 1998,

[KMM92] János Kollár, Yoichi Miyaoka, Shigefumi Mori, Rational connectedness and boundedness of
Fano manifolds, J. Differential Geom. 36, 1992, 765‐779.

[Min17] Norihiko Minami, On some positivity conditions of the Chern characters of Fano maifolds, talk
at The 44th Symposium on Transformation Groups, Fukui Phoenix Plaza, November 18, 2017.

[Min18] Norihiko Minami, On Higher Fano Varieties.

[MP17] Cristian Minoccheri, Xuanyu Pan, 1‐Cycles on Fano varieties, arXiv: 1711.09987.

[Mor79] Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. 110, 593‐606,
1979.

[Nag18] Takahiro Nagaoka, On a sufficient condition for a Fano manifold to be covered by rational
 N‐folds,  arXiv:1805.11244.

[Suz16] Taku Suzuki, Higher order minimal families of rational curves and Fano manifolds with nef
Chern characters , arXiv: 1606.09350.

48


