APPLICATION OF FRAGMENTATION NORMS TO TRANSPORTED POINTS BY HAMILTONIAN ISOTOPIES

MORIMICHI KAWASAKI AND RYUMA ORITA

ABSTRACT. We prove that a certain C^0 -robust condition of a Hamiltonian function H induces the existence of a point transported ε out of the original point by the Hamiltonian diffeomorphism φ_H . Related to our observation, we provide a problem on Hamiltonian pseudo-rotations.

1. Main result

Let (M, ω) be a symplectic manifold. For a Hamiltonian $H: S^1 \times M \to \mathbb{R}$ with compact support, we set $H_t = H(t, \cdot)$ for $t \in S^1 = \mathbb{R}/\mathbb{Z}$. The Hamiltonian vector field X_{H_t} associated with H_t is a time-dependent vector field defined by the formula

$$\omega(X_{H_t}, \cdot) = -dH_t$$

The Hamiltonian isotopy $\{\varphi_H^t\}_{t\in\mathbb{R}}$ associated with H is defined by

$$\begin{cases} \varphi_{H}^{0} = \mathrm{id}_{M}, \\ \frac{d}{dt} \varphi_{H}^{t} = X_{H_{t}} \circ \varphi_{H}^{t} & \text{for all } t \in \mathbb{R}, \end{cases}$$

and its time-one map $\varphi_H = \varphi_H^1$ is referred to as the Hamiltonian diffeomorphism (with compact support) generated by H. We denote by Ham(M) the group of Hamiltonian diffeomorphisms of M with compact support.

In his famous work [B], Banyaga proved the simplicity of $\operatorname{Ham}(M)$ when M is closed. The key ingredient was the proof of the fragmentation lemma for this group, which enables us to define fragmentation norms on $\operatorname{Ham}(M)$ as follows. Let U be an open subset of M. The fragmentation lemma implies that for every $\phi \in \operatorname{Ham}(M)$ there exists a positive integer n such that ϕ can be represented as a product of n diffeomorphisms $\theta_i \in \operatorname{Ham}(\psi_i(U))$, where $\psi_i \in \operatorname{Ham}(M)$ and $1 \leq i \leq n$. For $\phi \neq \operatorname{id}_M$, its fragmentation norm $\|\phi\|_U$ with respect to the open subset U is defined to be the minimal number of factors in such a product. We set $\|\phi\|_U = 0$ when $\phi = \operatorname{id}_M$.

Definition 1.1. Let U be an open subset of M. The fragmentation norm $\|\cdot\|_U$ is controlled by the C^0 -topology if there exist an C^0 -open neighborhood $\mathcal{U} \subset \operatorname{Ham}(M)$ of the identity and a positive number C > 0 such that $\|\phi\|_U < C$ for any $\phi \in \mathcal{U}$.

Entov, Polterovich and Py proved the following interesting theorem.

Theorem 1.2 ([EPP, Theorem 4]). Let Σ be a compact Riemann surface (possibly with boundary) equipped with an area form. Let $U \subset \Sigma$ be an open subset diffeomorphic to an open disc. Then the fragmentation norm $\|\cdot\|_U$ is controlled by the C^0 -topology.

Our main result is the following theorem which is an application of Theorem 1.2.

Date: August 31, 2018.

This work is supported by JSPS KAKENHI Grant Numbers JP18J00765, JP18J00335.

Theorem 1.3. Let Σ_g be a closed Riemann surface of genus $g \geq 1$ equipped with an area form and a Riemannian metric. Let L_1 and L_2 be non-contractible simple closed curves in Σ_g . Then there exist positive numbers $\varepsilon_0 > 0$ and C > 0 such that for any Hamiltonian $H: S^1 \times \Sigma_g \to \mathbb{R}$ satisfying $H|_{S^1 \times L_1} > C$ and $H|_{S^1 \times L_2} < 0$, there exists $x \in \Sigma_g$ such that $d(x, \varphi_H(x)) > \varepsilon_0$.

Here d is the distance induced by the Riemannian metric on Σ_q .

Remark 1.4. Since the Hamiltonians kH, $k \in \mathbb{Z}_{>0}$, also satisfy $kH|_{S^1 \times L_1} > C$ and $kH|_{S^1 \times L_2} < 0$, Theorem 1.3 yields that $\varphi_H^{k_i}$ never converges to the identity with respect to the C^0 -topology for any sequence $k_i \to \infty$.

2. Proof of Theorem 1.3

To prove Theorem 1.3, we use the following theorem which is an application of Lagrangian spectral invariants [LZ, K].

Theorem 2.1 ([KO]). Let Σ_g be a closed Riemann surface of genus $g \geq 1$ equipped with an area form and U a contractible open subset of Σ_g . Then, there exists a positive number r satisfying the following condition. Let L_1 and L_2 be noncontractible simple closed curves in Σ_g . For any C > 0 and any Hamiltonian $H: S^1 \times \Sigma_g \to \mathbb{R}$ satisfying $H|_{S^1 \times L_1} > C$ and $H|_{S^1 \times L_2} < 0$,

$$\|\varphi_H\|_U > r \cdot C.$$

Proof of Theorem 1.3. Fix a Riemannian metric on Σ_g . For a positive number ε , we define a subset $\mathcal{U}_{\varepsilon}$ of $\operatorname{Ham}(\Sigma_g)$ by

$$\mathcal{U}_{\varepsilon} = \left\{ \phi \in \operatorname{Ham}(\Sigma_g) \mid d(x, \phi(x)) \leq \varepsilon \text{ for any } x \in \Sigma_g \right\}.$$

By Theorem 1.2, there exist positive numbers C and ε_0 such that $\|\phi\|_U < C$ holds for any $\phi \in \mathcal{U}_{\varepsilon_0}$.

By Theorem 2.1, for any Hamiltonian $H: S^1 \times \Sigma_g \to \mathbb{R}$ satisfying $H|_{S^1 \times L_1} > C/r$ and $H|_{S^1 \times L_2} < 0$,

$$\|\varphi_H\|_U > r \cdot C/r = C.$$

Then $\varphi_H \notin \mathcal{U}_{\varepsilon_0}$ and hence, there exists a point x in Σ_g such that $d(x, \phi(x)) > \varepsilon_0$.

3. A problem on Hamiltonian pseudo-rotations

Let $\mathbb{C}P^n$ be the *n*-dimensional complex projective space equipped with the Fubini–Study form ω_{FS} . A Hamiltonian pseudo-rotation of $\mathbb{C}P^n$ is a Hamiltonian diffeomorphism with exactly n + 1 fixed points. Observe that this is the minimal possible number of fixed points of Hamiltonian diffeomorphisms of $\mathbb{C}P^n$. Ginzburg and Gürel proved the following crucial theorem.

Theorem 3.1 ([GG, Theorem 5.13]). Let φ be a Hamiltonian pseudo-rotation of $\mathbb{C}P^n$ with exponentially Liouville mean index vector $\vec{\Delta}$ (see [GG, Definition 5.11] for the definition). Then there exists a sequence $k_i \to \infty$ such that

$$\varphi^{k_i} \xrightarrow{C^0} \mathrm{id}.$$

We consider $(\mathbb{C}P^2, \omega_{\rm FS})$. The real projective space $\mathbb{R}P^2$ is naturally embedded in $(\mathbb{C}P^2, \omega_{\rm FS})$ as a Lagrangian submanifold. There is another Lagrangian submanifold L_W called the Chekanov torus which is disjoint from $\mathbb{R}P^2$. Then the authors proved the following theorem.

Theorem 3.2 ([KO]). Let U be a displaceable open subset of $\mathbb{C}P^2$. Then, there exists a positive number r satisfying the following condition. For any C > 0 and any Hamiltonian $H: S^1 \times \mathbb{C}P^2 \to \mathbb{R}$ satisfying $H|_{S^1 \times \mathbb{R}P^2} > C$ and $H|_{S^1 \times L_W} < 0$,

$$\|\varphi_H\|_U > r \cdot C.$$

Combining with Theorems 3.1 and 3.2, an argument similar to the proof of Theorem 1.3 yields the following corollary.

Corollary 3.3. Assume that the fragmentation norm $\|\cdot\|_U$ is controlled by the C^0 -topology. Let U be a displaceable open subset of $\mathbb{C}P^2$ and $H: S^1 \times \mathbb{C}P^2 \to \mathbb{R}$ a Hamiltonian satisfying $H|_{S^1 \times \mathbb{R}P^2} > C$ and $H|_{S^1 \times L_W} < 0$. Then φ_H is not a Hamiltonian pseudo-rotation of $\mathbb{C}P^2$ with exponentially Liouville mean index vector $\vec{\Delta}$.

Thus, we pose the following problem.

Problem 3.4. Does there exist a positive number C > 0 such that for any Hamiltonian $H: S^1 \times \mathbb{C}P^2 \to \mathbb{R}$ satisfying $H|_{S^1 \times \mathbb{R}P^2} > C$ and $H|_{S^1 \times L_W} < 0$, the Hamiltonian diffeomorphism φ_H is not a Hamiltonian pseudo-rotation of $\mathbb{C}P^2$ (i.e., φ_H has more than 3 fixed points)?

References

- [B] A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978) no. 2 174–227.
- [EPP] M. Entov, L. Polterovich and P. Py, On continuity of quasimorphisms for symplectic maps, With an appendix by Michael Khanevsky. Progr. Math., 296, Perspectives in analysis, geometry, and topology, 169–197, Birkhäuser/Springer, New York (2012).
- [GG] V. Ginzburg and B. Gürel, Hamiltonian Pseudo-rotations of Projective Spaces, to appear in Invent. Math., arXiv:1712.09766v1.
- [K] M. Kawasaki, Function theoretical applications of Lagrangian spectral invariants, in preparation.
- [KO] M. Kawasaki and R. Orita, Disjoint superheavy subsets and fragmentation norms, https://cgp.ibs.re.kr/archive/preprints/2018, Preprint (2018).
- [LZ] R. Leclercq and F. Zapolsky, Spectral invariants for monotone Lagrangians, J. Topol. Anal., Online Ready (17 May 2017), https://doi.org/10.1142/S1793525318500267.

(Morimichi Kawasaki) RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVER-SITY, KYOTO 606-8502, JAPAN

E-mail address: kawasaki@kurims.kyoto-u.ac.jp

(Ryuma Orita) DEPARTMENT OF MATHEMATICAL SCIENCES, TOKYO METROPOLITAN UNIVERSITY, TOKYO 192-0397, JAPAN

E-mail address: ryuma.orita@gmail.com *URL*: https://ryuma-orita.github.io/