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ON THE RELATION BETWEEN UNIFORM K-STABILITY AND
CHOW STABILITY OF TORIC VARIETIES

Naoto Yotsutani
Faculty of Education, Kagawa University

Abstract. The aim of this note is to announce the current research progress
in [HIY18] concerning the relation between uniform K-stability and as-
ymptotic Chow stability for polarized toric varieties.

1. PRELIMINARY TORIC GIT STABILITY

1.1. Polarized toric varieties. Let A be an n-dimensional lattice polytope
in R™ which is described by an intersection of half spaces:

d
(1.1) A=(V{zeR" | lix) = (x,v;) + X >0}
=1

where \; € Z, v; € Z" is primitive and d is the number of facets of A. We
denote the interior and the boundary of A by A° and A respectively. The
set of vertices of A is written by V(A). Analogously F(A) denotes the set
of facets. For a finite set S, a convex polyhedral cone of S is a set of the

form
Cone(S5) = { Zcuu Cy 20 } :

ues
We observe that a convex polytope A gives a convex polyhedral cone C'(A) C
R™ x R, called the cone of A and defined by

CA):={c- (u,])eR"XR|ueA, c=>0}.

If A = Conv(S), then this is described as C'(A) = Cone(S x {1 }). Defin-
ing Sa = C(A) C Z™"!, one can see that S, is an affine (finitely gener-
ated) semigroup by Gordan’s lemma. Let us denote its semigroup ring by
C[Sa]. The character corresponding to (m, k) € Sa is x™t*, and C[Sa] is
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graded by height, i.e., deg(y"t*) = k. Consequently, we obtain the graded
C-algebra

ClSal =P Re,  Ri:={f€C[Sal|degf=k},
kEZ

from a polytope A. We define the polarized toric variety (X, L) by
(Xa,La) := (Proj C[Sa], Ox,(1)).

Observe that the semigroup Sa is generated by (ANZ"™) x { 1 } in the above
construction. This implies that the line bundle Ln = Ox, (1) is very ample.

1.2. Set up and notation. We fix our notation as follows.

e Throughout the paper A C R"™ denotes an n-dimensional convex
lattice polytope in R" with the form (1.1).

e (Xa,LA) is the associated polarized toric variety as constructed in
Section 1.1.

e Fori € Z>(, Ea(i) denotes the Ehrhart polynomial of A satisfying

En(i)=#| > a|=dimH" (X L}).
acAN(Z/i)»

e Fori € Z~(, we set the sum polynomial of A which is the R"-valued
polynomial and is given by

sa(i) = Z a:% Z a.

acAN(Z/i)" aciANZn

Let Aut’(X,) denote the identity component of the automorphism group
of Xa. Then there is a maximal torus 7' = (C*)" < Aut’(X,) by De-
mazure’s structure theorem. Denoting the normalizer of 7" in Aut’(X,) by
N(T), we define the Weyl group W (X) := N(T)/T.

1.3. Chow stability. Next we define Chow form and Chow stability of irre-
ducible projective varieties. See [GKZ94] for more details. Let X ¢ CPV
be an n-dimensional irreducible complex projective variety of degree d. Re-
call that the Grassmann variety G(k, CP?") parameterizes k-dimensional
projective linear subspaces of CP”. The associated hypersurface of X C
CPV is the subvariety in G(N — n — 1, CP") which is given by

Zx ={WeGIN -—n—-1,CP")|WNX#0D}.

It is known that is Zx is an irreducible hypersurface with deg Zx = d in the
Pliicker coordinates. In particular, Zx is given by the vanishing of a section
Ry € H°(G(N —n — 1,CPY),0(d)). We call R the Chow form of
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X. Note that R% is well defined up to a multiplicative constant. Let V :=
H°(G(N —n—1,CPY),0(d)) and Rx € P(V) be the projectivization of
R%. We call Rx the Chow point of X. Since we have the natural action of
G = SL(N + 1,C) into P(V), we can define stabilities of Rx as follows.

Definition 1.1. Let X ¢ CP" be an irreducible, n-dimensional complex
projective variety. Then X is said to be Chow polystable if the Chow point
Rx of X is SL(N + 1, C)-polystable i.e., the SL(N + 1, C)-orbit of Rx in
V is a closed orbit.
Definition 1.2. Let (X, L) be a polarized variety. Fori > 0,let ¥, : X —
P(H°(X,1L%)*) be the Kodaira embedding.
(1) Suppose that LL is very ample. (X, L) is said to be Chow polystable
if U1(X) C P(H°(X,L)*) is Chow polystable.
(2) (X,LL) is called asymptotically Chow polystable if there is an i
such that W;(X) is Chow polystable for each i > 1.

1.4. Chow weight of (X, LL\). Let (Xa,La) be a polarized toric variety
with the moment polytope A C Mg. We fix any ¢ € Z+,. Let (Z,.%) —
P! be any T-equivariant test configuration of (X, LY ).

Theorem 1.3 (Theorem 1.1 [Onol3], Corollary 2.7, [LLSW17]). In the
above, the Chow weight for the degeneration (2, %) — P! is given by

(1.2) Qa(i,g) :== Ea(i) / gdx—vol(A) Y g(a)
A acAN(Z/i)n

where g is the corresponding rational piece-wise linear concave function
over A. In particular, (Xa,1LY) is Chow polystable iff Qa(i,g) > 0 holds
for any Weyl group invariant concave piece-wise linear function

g € PL(A; i)™ = {g € PL(Asd) | g(w - 2) = g(x) Yw e W},
and equality holds when and only when g is an affine linear.
Applying (1.2) to linear functions, one can see the following.

Corollary 1.4 (Corollary 4.7 [Ono13]). If (Xa,LLY) is Chow semistable for
1 € ZL~g, then

Chowa (i) = Ea (i) / xdr—vol(d) Y a=0
A acAN(Z/i)™
In short, the equality

En(i
(1.3) > a= Vol((A>)/Ade

acAN(Z/i)"

holds.



By the equality (1.3), one can see that (%, ¢) is invariant when adding
an affine linear function to g, and is homogeneous with respect to g.

Proof of Theorem 1.3. Since Qa (i, g) is invariant under adding a constant,
we may assume g > 0. Let (27,.Z) — P! be a T-equivariant toric test
configuration of (Xa,LY%) and g be the corresponding piece-wise linear
function. Hence 2" is an (n+ 1)-dimensional toric variety with the moment
polytope

Qg ={(x,\) €eR" xR5o |0 <\ <g(x)}

We observe that
(14 wl@)= [g)dn  Eo)-Bs)= Y o
a acAN(Z/i)"

In the proof of Proposition 4.2.1 in [Dona02], the weight of C*-action on
ATl HO(%,XW‘%) is given by
wp = dim H*(2g,, £5) — dim H*(Xa, LY)

= EQg (m) — EA(m)
= Gy ()M +a, (D)m™ + ...
where
ak(z) = ap,t" + ak,n,li”_l + ...
Note that there are asymptotic expansions
Eq, (m) = vol(Q)m™ + O(m"),  Ea(m) = vol(A)m" + O(m" ")

by the Ehrhart theorem. As in [RT07], the Chow weight for the degen-
eration (2°,.¢) — P! is given by the normalized leading coefficient of
an+1(1), we compute

w;

EA(7)

= (Eq,(m) — Ea(m)) — mEa(m)

Wy, — MEA(mM)
EQg (2) — EA(l)
E(i)

Ea, )~ Esl) i o,
Ea(7) o)

= vol(Q,)m"™ ™ — vol(A)

= m"t! /Ag dx — VOI(A_) Z g(a) | + O(m")

NO) acAN(Z /i)

Here we used (1.4) in the last equality. The assertion is verified. |
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1.5. Uniform K-stability. It is crucial to see the coercivity of the K-
energy map when we consider the existence problem of constant scalar
curvature Kahler metrics on a certain polarized manifold (X,L). It has
been conjectured that the coercivity property of the K -energy map is cor-
responding to uniform K -stability of (X, 1L). In [Hisal6], this conjecture
was justified in the case where (X, L) is a polarized toric manifold. The
toric reduction of uniform K-stability is the following.

Definition 1.5 (Hisamoto, [Hisal6]). Let (XA, L) be a polarized toric va-
riety with the moment polytope A C Mp. For a rational piece-wise linear
convex function u over A\, we define

Lau) ::AAuda—%/Audx.

Then (Xa,La) is said to be uniformly K-polystable in the toric sense if
there exists a constant 65 > 0 such that

(1.5) La(u) = 0oalull,

where ||ul| ; is the J-norm defined as

lull, = igf{ﬁ/A(quf)dx—mAin{unLﬁ}},

and ¢ runs over all the affine functions.

2. THE MAIN RESULT
The main result of this note is stated as follows.

Theorem 2.1. Suppose Chowna (i) = 0 holds for i > 0. If a polarized
toric variety (Xa,ILa) is uniformly K-polystable in the toric sense, then
(Xa,La) is asymptotically Chow polystable in the toric sense.

2.1. Approach. One can see that QA (i, g) = 0 for affine linear functions
by the assumption of Chowa (i) = 0 in Theorem 2.1. Hence it suffices to
show that fori > 0, Qa(i,g) > 0 when g € PL(A;i)" ) is NOT affine
linear, in order to prove Theorem 2.1.

2.2. Sketch of the proof of the main Theorem. Since QA (7, g) is invari-
ant when adding an affine linear function to g, we may assume that u = —g
is a rational piece-wise linear convex function normalized at 0 in the sense
that

inf u(z) = u(0) =0, and / udo = 1.

TEA SA

The key lemma below is an improvement of Lemma 3.3 of [ZZ08], not

only it has estimates on the coefficients but also it holds for general rational



piecewise linear functions. We summarize key ideas of the proof of Lemma
2.2 in Appendix.

Lemma 2.2 (Euler-Maclaurin Formula). Assume A is a lattice polytope and
u is a nonnegative rational piece-wise linear function, then

m—1

i
u(a) =1" | udr+ / udo + ik,
> = [ uwdee S [ wdo Yo,

acAN(Z/i)"

ar = —Chia </ uda—i—/uda:), k=0,...,n—2
A A

for some constant C,, j.n > 0 depending only on n, k, and A.

where

3. APPENDIX: BOUNDS ON COEFFICIENTS OF EHRHART POLYNOMIAL
AND THEIR APPLICATIONS

In this section, we discuss some application of the bounds on coefficients
of Ehrhart polynomial.
First, we recall some useful results on Ehrhart polynomial

(3.1) Ea(i) =) e,
k=0
Recall that one has
1(OA
en = vol(A), e,—1 = Yo (28 ),eo =1

No convex geometric meaning is known for the rest coefficients. How-
ever, the upper and lower bounds for them have been established by [BM8S5,
HTO09], respectively. We conclude them as follows

Theorem 3.1. Let A be an n-dimensional lattice polytope and e, are given
by (3.1). Then
(1)
—1)" "k ls(n, k+1)
(n—1)! ’
where s, i, denotes the Stirling numbers of the first kind which can
be defined via the identity

er < (=1)"*s(n, k)vol(A) + (
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(2) If n = 3, then for k = 1,...,n — 1, we have
e > % [(~1)" Fs(n+ 1,k + 1) + (nlvol(A) — 1)my]
Here my, ,, is given by
my, = min{C,:L’j 1< j<n—2},
where Cy. ; is the k-th coefficient of the polynomial
(z+)z+j—1)-(z4+j—(n—-1))
with variable z.

The following fact will be frequently used later.

Lemma 3.2. If A is an n-dimensional lattice polytope, then

1
(3.2) vol(A) > —.
n!
In order to prove Lemma 2.2 used in Section 2.2, we need the following
Lemma 3.3. In fact, Lemma 2.2 follows by an approximation argument of
the following lemma, because a general nonnegative continuous function

can be approximated by nonnegative rational piecewise linear function.

Lemma 3.3. Assume A is a lattice polytope and u is a nonnegative rational
piecewise linear function, then

: ! :
(3.3) Z u(a) :z”/Audx—i- 5 / uda—i—Zakzk,

acAN(Z/i)™

ap = —C), (/ ud0+/udx>, k=0,...,n—2
oA A

for some Cy, > 0 depending on n, k, and A.

where

Remark 3.4. Our current approach for proving Lemma 3.3 is the following:
since u is a piecewise linear function, we shall consider a decomposition of
A = UY_, A such that u is linear on each piece A,. Then we assume that
each A, is a lattice polytope. Otherwise it suffices to consider a dilation
of A. Setting an (n + 1)-dimensional convex polytope Dy := graph(A;),
we further assume that all D, are lattice polytopes. Otherwise we shall
consider an zgu for some iy € Z since (3.3) is homogeneous with respect
to u. However the main difficulty in this approach is that (3.3) does not
have good invariance under scaling of domain. Hence we may need another
approach for dealing with this difficulty.
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