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GRAPH EQUIVARIANT COHOMOLOICAL RIGIDITY FOR
GKM‐GRAPHS

HITOSHI YAMANAKA

ABSTRACT. This is the report of the author’s talk delivered at the RIMS
conference “Geometry, Algebra and Combinatorics in Transformation group
theory”. The main theorem of [10] and the philosophy governing loc. cit are
explained.

1. EQUIVARIANT COHOMOLOGY, AS INVARIANT

In the book A. Borel introduced the notion of the equivariant cohomology H_{G}^{*}(X)
of a  G‐space  X . In loc. cit Borel also examined the usage of the cohomology theory
 H_{G}^{*} to the Smith conjecture.

Since 1980, equivariant cohomology has been applied in different research areas.
In the seminal work [1], Atiyah‐Bott studied torus equivariant cohomology in its
relation to moment map. Kazhdan‐Lusztig [7] found a construction of the Springer
representation via equivariant cohomology. Nowadays equivariant cohomology is
frequently used in mathematical physics.

Among these big applications, what we want to discuss here is yet another aspect
of torus equivariant cohomology, that is, as invariant.

Wheres many applications were found after the work of Borel, any research in
this direction (seemingly) has been missed before the last century.

At least for my knowledge, the following result of Masuda [9] is the first result
in this direction:

Theorem 1.1 (Masuda). Let  X and  Y be  n‐dimensional toric manifolds (i.e.,
nonsingular complete (normal) toric variaties over  \mathbb{C} ). Then the following two
conditions are equivalent:

(i)  X\cong Y as  (\mathbb{C}^{\cross})^{n} ‐varieties.
(ii)  H_{(\mathbb{C}^{\cross})^{n}}^{*}(X)\cong H_{(\mathbb{C}^{\cross})^{n}}^{*}(Y) as graded  H^{*}(B(\mathbb{C}^{\cross})^{n}) ‐algebras.

Remark 1.2. (i) As a corollary, one finds that if two toric manifolds have the
same  (\mathbb{C}^{\cross})^{n} ‐equivariant homotopy type, then they are isomorphic as  (\mathbb{C}^{\cross})^{n} ‐
varieties. This well‐explains the power of torus equivariant cohomology as
invariant.

(ii) Since toric manifolds are in one‐to‐one correspondence to non‐singular com‐
plete fans, Theorem 1.1 can be viewed as equivariant cohomological rigidity
of such fans.

(iii) Toric hyperKähler analogue also holds. See [6].

While Theorem 1.1 seems a speciality of toric geometry, I believe that this kind
of equivariant rigidity holds for much wider class of  (S^{1})^{r} ‐manifolds.

Our central dogma is the following. Let  T be a compact torus.
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Our problems are two hold:

(i) To find a wide class of  T‐manifolds in which equvariant cohomological rigid‐
ity holds.

(ii) To reveal why such rigidity phenomenon happens.
The content of this report is concerning the former question.
Theorem 1.1 tells us that the working hypothesis is true for toric manifolds.

Our main result (  = Theorem 2.5 below) extends Theorem 1.1 to general abstract
GKM‐graphs, a generalization of non‐singular complete fans.

2. ABSTRACT  GKM‐GRAPH

The class of GKM‐manifolds is a vast generalization of that of toric manifolds.
Historically it was introduced by Goresky‐Kottwitz‐MacPherson [4] in algebro‐
geometric setting. Later Guillemin‐Zara [5] reformulated it in the category of closed
 (S^{1})^{r} ‐manifolds. Moreover, Guillemin‐Zara found a framework which allows us pos‐
sible to study torus equivariant cohomology of equivariantly formal GKM‐manifolds
in purely combinatorial fashion.

This section is devoted to recalling their formulation. Let  \mathcal{G} be a finite  n‐valent
graph (multi‐edges are allowed, but loops are not) and  \mathcal{V} be the set of vertexes. We
denote by  \mathcal{E} the set of directed edges (thus the cardinality of  \mathcal{E} is even). Let  \mathcal{G} be a
finite  n‐valent undirected graph (multi‐edges are allowed, but loops are not) with
vertex set  \mathcal{V} . We denote by  \mathcal{E} the set of directed edges of  \mathcal{G} . (Note that  \mathcal{E} is not the
set of edges of  \mathcal{G} ; the cardinality of  \mathcal{E} is twice that of the edge set.) For each  e\in \mathcal{E},
we denote by  \overline{e} the directed edge obtained by reversing the direction of  e . Let  i(e)
and  t(e) be the initial and terminal point of a directed edge  e , respectively. We set

 \mathcal{E}_{p}:=\{e\in \mathcal{E}|i(e)=p\}
for any vertex  p.

Definition 2.1. A map  \alpha:\mathcal{E}arrow H^{2}(BT) is called an axial function on  \mathcal{G} if it
satisfies the following three conditions for all  e,  e'\in \mathcal{E} :

(i)  \alpha(\overline{e})=\pm\alpha(e) .
(ii) (GKM condition)  \alpha(e) and  \alpha(e') are linearly independent over  \mathbb{Z} if  e\neq e'

and  i(e)=i(e') .

(iii) (Primitivity) The greatest common divisor of the coefficients of  \alpha(e) is 1.

The following notion, found by Gullemin‐Zara [5], is a corner stone in GKM‐
theory:

Definition 2.2. Let  \alpha be an axial function on  \mathcal{G}. A parallel transport of  (\mathcal{G}, \alpha)
is a family  \mathcal{P}=\{\mathcal{P}_{e}\}_{e\in \mathcal{E}} of bijections  \mathcal{P}_{e}:\mathcal{E}_{i(e)}arrow \mathcal{E}_{t(e)} satisfying the following
conditions for all  e\in \mathcal{E} and all  e'\in \mathcal{E}_{i(e)} :

(i)  \mathcal{P}_{\overline{e}}=\mathcal{P}_{e}^{-1}.
(ii)  \mathcal{P}_{e}(e)=\overline{e}.

(iii)  \alpha(\mathcal{P}_{e}(e'))-\alpha(e')\in \mathbb{Z}\alpha(e) .

Definition 2.3. (1) A pair  (\mathcal{G}, \alpha) is called an abstract GKM‐graph if it admits
at least one connection.
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(2) The graph equivariant cohomology  H_{T}^{*}(\mathcal{G}) is defined to be

{  f :  \mathcal{V}arrow \mathbb{Z}[x_{1} , ,  x_{r}]f(i(e))-f(t(e)) is divisible by  \alpha(e) for all  e\in \mathcal{E} }.
Remark 2.4. (i) For a GKM‐manifold  X , one can associate an abstract GKM‐

graph  \mathcal{G}x by encording the graph structure of the 1‐skeleton of  X and the
weights of tangencial representations.  \mathcal{G}x is called the GKM‐graph of  X . If
 X satisfies the so‐called equivariant formality, the torus equivariant coho‐
mology  H_{T}^{*}(X) is isomorphic to  H_{T}^{*}(\mathcal{G}_{X}) as graded  H^{*}(BT) ‐algebras (see
[5] for details). This is why  H_{T}^{*}(\mathcal{G}) is called graph “equivariant cohomol‐
ogy”

(ii) Any toric manifold is an equivariantly formal GKM‐manifold. In addition,
its GKM‐graph is essentially the same to the corresponding fan. In this
case, its graph equivariant cohomology is known to be isomorphic to the
Stanley‐Reisner ring as graded rings.

(iii) Above notation and terminology are somewhat different from usual one.
See [10], Remark 2.4.

Our main theorem is the following:

Theorem 2.5. Let  \mathcal{G},  \mathcal{G}' be abstract GKM‐graphs with the same type.

(i)  \mathcal{G}\cong \mathcal{G} as GKM‐graphs, i.e., these are isomorphic as graphs and the corre‐
sponding edges have the same weight up to multiplication by  \pm 1.

(ii)  H_{T}^{*}(\mathcal{G})\cong H_{T}^{*}(\mathcal{G}') as graded  \mathbb{Z}[x_{1}, . . . , x_{r}] ‐algebras.

Remark 2.6. Masuda’s theorem  (=Theorem 1  .1) opened the door to the so‐called
cohomological rigidity problem in toric topology. In view of Theorem 2.5, it is seem‐
ingly valuable to study a similar problem for equivariantly formal GKM‐varieties.

3. ON THE PROOF OF THEOREM 2.5

In this section we explain the idea for proving Theorem 2.5.
The difficultly is that it is highly difficult (and seemingly impossible) to express

graph equivariant cohomology  H_{T}^{*}(\mathcal{G}) in terms of generators and relations, in a
uniform way.

To overcome this point, we recall our working hypothesis, that is,

 (*)T‐space  X and  H^{*}(BT)‐algebra  H_{T}^{*}(X) are of equal value.

Once we believe  (*) , there should exist the notion of 1‐skeleton of  H_{T}^{*}(X) ” Since
the 1‐skeleton of  X takes a very small part of  X , “the 1‐skelton of  H_{T}(X) ” may
be a very small subset of  H_{T}^{*}(X) similarly. This expectation leads us the following
definition:

Definition 3.1. Let  p,  q be distinct vertexes of a GKM‐graph  \mathcal{G} . We define the
1‐ideal  I_{pq} associated with  p,  q by

 I_{pq}:=\{f\in H_{T}^{*}(\mathcal{G})|f(r)=0(r\in \mathcal{V}\backslash \{p, 
q\})\}.

We regard the set of 1‐ideals  I_{pq} for adjacent vertexes  p,  q as “the 1‐skelton of
 H_{T}^{*}(X)

”

Next, assume that an algebra isomorphism  H_{T}^{*}(\mathcal{G})arrow H_{T}^{*}(\mathcal{G}') is given. Under  (*)
the algebra isomorphism corresponds to a  T‐equivariant homeomorphism  X'arrow X.

The  T‐equivariant homeomorphism induces a  T‐equivariant homeomorphism   X\'{i}arrow
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 X_{1} . Back to the algebraic side, the existence of the  T‐equivariant homeomorphism
Xí  arrow Xl indicates that 1‐ideals should be related under the algebra isomorphism:

Lemma 3.2. For any algebra isomorphism  \varphi :  H_{T}^{*}(\mathcal{G})arrow H_{T}^{*}(\mathcal{G}') and any 1‐ideal
 I of  H_{T}^{*}(\mathcal{G}) , the image  \varphi(I) is a 1‐ideal of  H_{T}^{*}(\mathcal{G}')

Above Lemma implies condition (i) in Theorem 2.5. See [10] for details.
Note that everything goes by logically if we accept the working hypothesis  (*) .

Remark 3.3. Recently an alternative proof of Theorem 2.5 is found by Matthias
Franz. The detail will appear as a joint note [3].
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